Agile, Efficient Virtualization Power Management
with Low-latency Server Power States

Canturk Isci* Suzanne Mclintosh* Jeffrey Kephart* Rajarshi Das* James Hanson*
Scott Piper’ Robert Wolford" Thomas Brey” Robert Kantner’ Allen Ng'
James Norris* Abdoulaye Traore* Michael Frissora*

*IBM T.J. Watson Research Center
Yorktown Heights, NY

ABSTRACT

One of the main driving forces of the growing adoption
of virtualization is its dramatic simplification of the pro-
visioning and dynamic management of IT resources. By
decoupling running entities from the underlying physical re-
sources, and by providing easy-to-use controls to allocate,
deallocate and migrate virtual machines (VMs) across phys-
ical boundaries, virtualization opens up new opportunities
for improving overall system resource use and power effi-
ciency. While a range of techniques for dynamic, distributed
resource management of virtualized systems have been pro-
posed and have seen their widespread adoption in enterprise
systems, similar techniques for dynamic power management
have seen limited acceptance. The main barrier to dynamic,
power-aware virtualization management stems not from the
limitations of virtualization, but rather from the underlying
physical systems; and in particular, the high latency and
energy cost of power state change actions suited for virtual-
ization power management.

In this work, we first explore the feasibility of low-latency
power states for enterprise server systems and demonstrate,
with real prototypes, their quantitative energy-performance
trade offs compared to traditional server power states. Then,
we demonstrate an end-to-end power-aware virtualization
management solution leveraging these states, and evaluate
the dramatically-favorable power-performance characteris-
tics achievable with such systems. We present, via both real
system implementations and scale-out simulations, that vir-
tualization power management with low-latency server po-
wer states can achieve comparable overheads as base distri-
buted resource management in virtualized systems, and thus
can benefit from the same level of adoption, while delivering
close to energy-proportional power efficiency.

1. INTRODUCTION

Over the last decade, reducing the energy consumption
of computing devices in data centers has become a topic
of great practical and academic interest [24, 41]. Myriad
techniques for reducing energy consumption have been in-
troduced at all levels of the stack, from circuits and archi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’13 Tel-Aviv, Israel

Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

fIBM Systems & Technology Group
Raleigh, NC & Kirkland, WA

tecture levels up through the firmware, operating system,
and the middleware.

Among these techniques, those which employ virtualiza-
tion have been shown to yield significant energy efficiency
improvements. By consolidating multiple workloads onto a
single physical server, virtualization drives up system uti-
lization and enables a given amount of computational work
to be performed on a smaller set of servers. While a more
heavily utilized server uses more power than a lightly uti-
lized one, the total power consumed by running a workload
on a smaller number of more heavily-utilized server can be
substantially less than that for a large number of lightly-
utilized servers.

One important class of virtualization-based energy effi-
ciency methods is static consolidation. The fundamental
idea, which arose from the observation that a large fraction
of dedicated physical servers are severely underutilized [3],
is based upon capacity planning. Long-term statistics on
resource consumption for a given set of workloads are used
to estimate how many virtualized physical servers would be
needed to support that computational load [8, 36]. This
approach is commonly used for migrating workloads from
dedicated physical servers to virtualized environments [30,
43, 44], although the original environment could also be vir-
tual. VM migration may be employed from time to time
to even out the workload across the physical servers, but
no further changes are made to the power state of the ser-
vers. Thus, while static consolidation eliminates substantial
amounts of overprovisioning, it does not take advantage of
dynamic fluctuations in workload intensity [31, 39].

A second important class, dynamic consolidation, attempts
to extract further efficiency by migrating VMs to vacate
some physical servers during lulls in workload intensity, turn-
ing them off to save energy until the workload increases [16,
25, 42, 46, 40]. Dynamic consolidation techniques promise
to yield substantial energy efficiency improvements on top of
what is achievable by static methods. However, while they
have gained some traction in certain desktop virtualization
frameworks [10, 5], in practice they do not make good on
that promise at the enterprise level. This is because mecha-
nisms for turning servers on and off entail latencies that can
extend to minutes. The longer the latency, the greater the
risk that the workload will increase and the performance will
suffer for the period during which the increase is detected
and addressed by turning on enough servers.

Previously-explored methods for mitigating the risk caused
by the latency of coarse-grained power management include
workload scheduling, workload forecasting, and keeping ex-
tra servers on as a buffer to protect against unanticipated

workload surges. All of these approaches have drawbacks.
Workload scheduling is feasible only when one has substan-
tial control over the workload (for example in a compute
grid scenario). Workload forecasting is difficult to apply be-
cause no workload is completely predictable, and the penalty
for suffering an unanticipated surge—even if such errors are
rare—can be substantial. Therefore, even when one uses
workload forecasting, some amount of buffering is necessary,
and this can largely wipe out the potential energy savings.

In this paper, we demonstrate a radically different ap-
proach that overcomes the traditional barriers to achiev-
ing substantial energy savings via dynamic consolidation.
Rather than merely treating the symptoms, we attack the
underlying root cause or the problem: the latency itself. Our
method exploits low-power, low-latency power states in en-
terprise servers; specifically, the S3 state. We first present an
across-the-stack implementation of S3 capability for enter-
prise servers with two actual prototypes. Then, we build
an end-to-end virtualization management solution, lever-
aging this technology. Our experimental results with our
real-system prototypes and scale-out simulation framework
show substantial energy efficiency improvements over stan-
dard techniques. These further underline two key aspects
of our approach with low-latency server power states: the
ability to react to fine-grained load fluctuations that most
existing solutions cannot handle with standard power sta-
tes; and reduced impact from incorrect power management
decisions with substantially faster reaction times. While the
basic principle of our solution is simple, realizing this prin-
ciple in practice entails substantial work all along the stack
from the hardware level up through the firmware, the OS
and the middleware used to control the VM migration and
manage the power states of the physical servers.

The remainder of this paper is organized as follows. Sec-
tion 2 provides more background on the fundamental idea
underlying our solution and highlights its energy saving po-
tential. Section 3 presents a power state characterization
study, establishing that the S3 state offers an excellent trade-
off between latency and power consumption. Section 4 de-
tails how we modified a commercial server to support S3 at
the hardware, firmware and OS levels, while Section 5 de-
scribes middleware that we developed for power-aware vir-
tualization management. Sections 6 and 7 describe our ex-
perimental results. We describe related work in Section 8,
and summarize our results in Section 9.

2. BACKGROUND AND MOTIVATION

How can reducing the latency of power management oper-
ations increase the energy savings realized by dynamic con-
solidation? To develop some intuitive understanding, we
sketch two scenarios in Figure 1.

The top scenario (Figure 1(a)) represents present-day dy-
namic power management approaches for virtualized sys-
tems that employ standard high-latency server power-on
and power-off actions triggered by Wake-on-LAN or IPMI.
VMware Distributed Power Management (DPM) [46] is a
prime example of such technology. In this scenario, the clus-
ter demand (dashed line) starts high, dips low for a while,
and then returns to its original high level. During the period
of lower demand, the power management (PM) algorithm
identifies a server that could be evacuated and turned off.
As can be seen by comparing the power consumption pro-
file for that server (solid line) to the cluster demand, there
are three distinct problematic time periods (cross-hatched

Power
down/up
overhead

Lost power
saving
‘ opportunity

T -

- ' q [P a—Y
Wait to be sure Power Power up
demand is low down (Perf. Degradation!)

(a) DPM Overview.

Power

. — down/up
overhead

Power

Demand

iy P t
Power down Power up
(b) Power management with low-latency power states.

Figure 1: The effect of power state change overheads
on energy-aware virtualization management.

areas) during which power is wasted and/or performance is
degraded:

e Power-on latency. In the rightmost region, the PM
algorithm detects that the cluster demand has risen,
so it initiates a power-on action. As the server pow-
ers on, power consumption is high—potentially even
higher than when the server is processing the work-
load. Worse, the performance of the cluster as a whole
suffers until the boot-up is complete and work has mi-
grated back to the server.

e Power-off latency. In the central region, the power
consumed as the server is being turned off is used to
place the server in a stable state rather than being used
to process the workload.

e Decision period. A PM algorithm must be judicious
in its response to lower demand. If it is too hasty, and
the reduction in demand proves short-lived, the perfor-
mance cost during power-on latency will outweigh any
energy savings that may have accrued during the tran-
sient. To reduce the risk of regret, it is reasonable for
the PM to adopt a more conservative strategy, accord-
ing to which it waits for a specified time period before
turning the server off. Yet this wait time (which may
reasonably be set to the better part of an hour) can
result in significant lost opportunity for power savings,
and makes it impossible to save any power if the du-
ration of the low demand is less than the wait time.

The bottom scenario (Figure 1(b)) represents the same
situation, the only difference being that the power-up and
power-down latencies are assumed to be very much smaller.
(The actual technological basis for latency reduction will be
discussed later.) One important effect is that performance
penalty during the power-on period is reduced greatly from
that of the top scenario. Even more importantly, to the
extent that the performance penalty is reduced, the PM al-
gorithm is now free to be much less risk averse, i.e. it can
reduce the wait period to a much smaller value (zero in this
idealized figure). The reduction in power-off latency is an
extra bonus.

The key intuition is that, due to direct and indirect effects,
substantial reductions in power-on latency allow the power
profile to follow the demand profile much more closely, re-
ducing both performance degradation and power consump-
tion.

This said, it is important to acknowledge that there are
two additional latency components missing from the simple
story depicted in Figure 1:

W DRM Response M Power Up Migration
| | T

baseline

lips
i i i i i N i
0 50 100 150 200 250 300 350 400
Time [s]

Figure 2: Decomposition of the demand response to
the three orthogonal dimensions.

e VM migration time captures the time to migrate
VMs across servers when a host is evacuated before
a power down or is repopulated after a power up.
Therefore the migration latency is added to both the
power-down and power-up paths. Moreover, the asso-
ciated extra impact on power and performance due to
resources consumed by the act of migration must be
considered in power-aware virtualization management.

¢ DRM (Distributed Resource Management) re-
sponse time captures how quickly the virtualization
manager detects a change in workload profile and de-
cides on the reconfigurations needed in VM topology
and host power states. In most cases, the resource
managers operate at user-defined periods; for instance,
both VMware DRS/DPM and IBM VMControl oper-
ate at periods of several minutes [45, 21].

If these two additional latencies were to outweigh the
power-on latency, reducing the power-on latency would have
little practical import, and the work described in this paper
would be a mere academic footnote. Fortunately, in the real
prototype that is described in detail later, our measurements
(depicted in Figure 2) establish that the measured power-on
latency for current dynamic consolidation techniques dom-
inates the other two forms of latency (“baseline”). As we
shall show, our low-latency power savings method, depicted
as “llps”, reduces this latency considerably, to the same or-
der of magnitude as the other two. In both cases, the total
size of the two bars represent the total time the virtualiza-
tion resource manager takes to respond to a demand surge,
and the different colored regions represent the amount of
time consumed by each of the components (DRM response,
power-up latency, and migration time). This example exper-
iment underlines the two critical observations that drive our
work: (i) in current virtualization power management tech-
niques power latencies are the dominant bottleneck; and (ii)
improving server power state latencies can improve virtual-
ization power management substantially.

In the following section we present a detailed quantita-
tive evaluation of the low-latency server power states, and
discuss their specific characteristics based on real system
evaluations.

3. LOW-LATENCY SERVER POWER
STATES

In this section, we overview briefly the set of power states
into which physical servers may be placed, and then present
experimental measurements of the power consumption and
transition latencies for these states on different platforms
and under different load conditions. These results establish
that the S3 (suspend-to-RAM) power state provides a very
attractive tradeoff between power consumption and latency.

The ACPI (Advanced Configuration and Power Interface)
specification [17] defines a wide and growing range of power

states for physical servers of all microarchitectures at vari-
ous levels of the system hierarchy. These power states are
categorized as Global System States (G-states), Sleep Sta-
tes (S-states), Processor Power States (C-states), Proces-
sor Throttle States (T-states), and Processor Performance
States (P-states). In addition to these, ACPI also defines
special power states for system devices as Device States (D-
states). Each of these states can assume multiple levels,
wherein a higher level translates to a lower power mode. G-
states refer to entire platform-level states and range from
G3 (representing the mechanical off state) to GO (the work-
ing system state). G2 (also equivalent to the S5 halt state)
is the soft off state, which consumes the bare minimum of
power required to support base management components
such as the service processor and the Wake-on-Lan path. G1
is the global sleep state, which is further divided into dif-
ferent S-states: S1 to S4. In S4 the memory state of the
system is persisted to disk, and the system is put into hi-
bernation, turning off all components, similar to G2. 83 is
the suspend-to-RAM state, during which most of the system
components are powered down, while memory is preserved
via a lower-power self-refresh mechanism, thereby support-
ing very quick suspend-and-resume cycles. GO and SO to-
gether define a working platform state, at which a broad
and continually evolving range of C-states are defined [33,
47]. P-states and T-states are sub states of CO: P-states de-
fine dynamic voltage and frequency scaling (DVFS) steps,
while T-states define clock throttling rates, commonly used
in response to thermal events [37, 7].

There is extensive literature on the comparative power-
performance characteristics of C-, T- and P-states [11, 27,
26, 34] and their application to dynamic power management
[1, 29, 18, 22]. They are attractive in that their latencies are
negligible for most practical purposes (milliseconds in most
cases), and they can save appreciable amounts of power.
However, because they all occur when the system is in a state
where all of the main subcomponents are turned on, the in-
herent power savings opportunities are not nearly as strong
as they are for the S-states. On the other hand, much less
is known about the comparative power-performance char-
acteristics of S-states, and there are some misconceptions
about the efficiency and reliability of these states and their
suitability for dynamic, distributed power management in
enterprise servers.

Accordingly, we set out to study the power and latency
characteristics of S-states on two server platforms: IBM
HC10 and HS22 servers. The HC10 has a blade form factor
with a workstation board supporting S3 and S4. Experimen-
tal measurements on this first prototype demonstrated the
surprisingly good latency-power characteristics of S3, which
convinced us to invest substantial effort in developing a sec-
ond prototype based on a true enterprise server—the HS22
platform. We implemented S3 and S4 support on an ex-
perimental HS22 blade, as described more fully in the next
section. There also exists a new set of connected standby
(S0ix) states, recently introduced by Intel, driven by mobile
platform requirements [32]. While not yet exercised on ser-
vers, their potential latency-power characteristics warrants
further investigation of their adoption in server systems.

Figure 3 shows the power consumption for the base HC10
configuration and two HS22 systems with different mem-
ory sizes. The HS22 and HC10 were running RedHat En-
terprise Linux (RHEL) and Fedora Linux respectively, and
both platforms employed the KVM hypervisor. All power

W HS22 (RHEL, 48GB)
HS22 (RHEL, 24GB)
HC10 (Fedora, 8GB)

Normalized Power

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Active

(Linpack) (no C states) |(with C states)

Bl ms o
| =

sa|55|

Figure 3: Power consumption of different server po-

wer states.

350
After POST
Boot Up

Idle | Idle

W HS22 (RHEL, HDD)

mHS22 (RHEL, SSD)
HC10 (Fedora, HDD)
HC10 (Fedora, SSD)

300

Latency [s]
- - n N
o (3] o o
o o o o

(5]
=]

o

Resume
from S4

Full Boot Up

Resume | Suspend to |Hibernate to| Halt to S5
from S3 s3 sS4

Figure 4: Latency characteristics of different server
power states.

measurements were collected from the board service pro-
cessor. First, we measured the peak power consumed while
running the Linpack benchmark across all hardware threads
of the systems, using this to normalize a set of measurements
on an idle system, an idle system with C-states enabled, and
a system placed in the S3, S4 and S5 states.

A consistent picture emerges across all configurations. In
all cases, idle systems consume about 50% of the peak power.
When enabled, C-states reduce the idle power consumption
by about 10-15%, which is significant but pales in compari-
son to the S3, S4 and S5 states, which reduce the idle power
consumption by 85% to over 90%. Importantly, there is a
relatively small difference among the power savings achiev-
able by different S-states. That is, S3 saves almost the same
level of power as a shut down (S5) system (recall that S5 is
a soft off state, so it still consumes some power).

Figure 4 depicts the other half of the tradeoff: the power-
on and power-off latencies. We measured latency character-
istics for both platforms, using both standard server disks
(HDD) and solid-state drives (SSD), resulting in four dif-
ferent configurations that are reported in seven groups of
results. The first four groups report the power-on latencies
for S5 (both full boot up and OS portion of the boot-up,
shown as after power-on self test (POST) boot time), S4,
and S3, while the last three groups report the power-off la-
tencies for 83, 84 and S5.

Again, a consistent story emerges across all configurations.
Resume times from S3 can be an order of magnitude better
than those with S4 or S5. Similarly, the power-off times
for S3 are significantly better than for S4 and S5, which is
plausible because entry to S3 requires only a tiny amount
of state saving into memory. Taken together, Figures 3 and
4 demonstrate that, relative to S5 (which is the basis for

DPM and other present-day solutions) and S4, S3 provides
dramatically lower latency at comparable power savings, and
can therefore serve as a basis for heretofore unrealized energy
savings.

Finally, we conducted further experiments to character-
ize how the power-on and power-off transition times for the
various S-states depend upon system configuration and load.
Three memory configurations were explored: 1GB, 2GB and
8GB. For each of these three memory configurations, we ran
a server at idle, at high CPU load, and at high memory
load. The top row of Figure 5 depicts the measured power
consumption for the three idle runs. In each case, we repeat-
edly pinged the systems to detect when they were or were
not operational; the operational time periods are indicated
by the ping response markers.

When a resume request is received by a server, the po-
wer profile immediately switches from low to high. The gap
between the point at which the power curve jumps up and
when the ping response markers reappear on the curves pro-
vides a direct measure of the power-on latency of these sys-
tems. As shown in the figure, S3 resume remains around 10s
across all memory configurations, while the latency for S4
grows with memory size, from 50s at 1GB to 220s at 8GB.
Moreover, and not surprisingly, S4 consumes more power
during the transition than 83. (Note the similarity to the
shaded power-up overhead region in Figure 1.)

The experiments in which we ran the systems at 100%
CPU load and small memory footprint (not shown for rea-
sons of space) tell a similar story, although the overall power
consumption is of course greater during the period when the
system is being utilized. More interesting is the result when
we run the system at small CPU load but high memory
workload, shown in the bottom row of Figure 5. The power-
on latency for S3 remains at the same value as in the idle
case, but for S4 the power-on latency grows further beyond
what was observed in an idle system. At 8GB, the power-on
latency for S84 was measured at greater than 250s.

These results further validate that S3 is a superior power
state for dynamic virtualization power management. Not
only are the power savings nearly as high as for S4 and S5,
but the latency characteristics are strongly superior both in
terms of being much lower and in terms of being independent
of system CPU and memory load.

4. IMPLEMENTING SERVER S-STATES

Desktop workstations and laptops have supported S3 and
S84 for many years. In fact, S3 is the basis for the famil-
iar ”stand-by” power-down option on laptops. However,
manufacturers had never thought it important to support
these power modes on enterprise servers that run substan-
tive workloads in data centers, as they never had to run on
battery power. Thus the only power-down option on en-
terprise servers has been S5. In recent years, as interest in
power management has increased, manufacturers have en-
abled a growing set of C- and P-states in servers, but as we
have seen these only offer savings in the range of 10-15%.

To substantiate our claim that dynamic virtualization po-
wer management based on S3 is practical in real systems, we
set ourselves the task of enabling S3 on a real enterprise sys-
tem. As described in the previous section, we had already
conducted encouraging measurements on an HC10 system,
which is based on a workstation board in blade server form
factor. In this section, we describe modifications that we
had to make to the hardware, firmware, and OS to support

120, T E T T T T
S4: Power (Watts) S4: Power (Watts)
ol S83: Power (Watts) || S3: Power (Walts) 0
«~ —@ S4: Ping Response —@ S4: Ping Response o~
2 —@ S3: Ping Response E —@ S3: Ping Response 2
% EY i 80 %BO—
o] o O,
g 2 £
5 5 5
H o Qe g‘m’ S4: Power (Watts)
o & o S3: Power (Watts)
2 1 2 20 —@ S4: Ping Response | -
A ‘ —® S3: Ping Response
K. i " - , "
W50 400 ES 100 150 20 250 300 350 0 %
Time (seconds) Time (seconds) Time (seconds)
(a) 1GB, idle. (b) 2GB, idle. (c) 8GB, idle.
S4: Power (Watts) S4: Power (Watts)
ol e S 3: Power (Watts) . e S 3: Power (Watts) oo
o —® S4: Ping Response o~ —@ S4: Ping Response o~
2 ——& S3: Ping Response _?_:’ ——® S3:Ping Response | 2
= 80~ E 80— - =80
S S §
° 0 0
% 60~ T‘! 80 - gsn
g = g |
§ 40 qg’w— §4n S4: Power (Watts)
g | & 8 S3: Power (Watts)
wl wl . —® S4: Ping Response
| —® S3: Ping Response
om—: D - S i o — " DM . | " - . — "
E [=0 20 250 a0 00 i 400 @ 1 150 200 250 a0 350 a0
Time (seconds) Time (seconds) Time (seconds)
(d) 1GB, high memory load. (e) 2GB, high memory load. (f) 8GB, high memory load.

Figure 5: Power overhead and response time comparison for S3 and S4 with different memory sizes.

S3 on our experimental HS22 blade server.

Hardware: Three unique sets of hardware needed to be added
to support S3:

e Power sequencing circuitry. When a server enters °

S3 state, the sequence to shut down the power rails is
identical to that of powering down a server (entering
S5 state), except that the power supply for memory

and reserves a portion of memory for temporary use
during the S3 resume process. The advantage of stor-
ing configuration state information during normal boot
is that the time required to enter S3 sleep is minimized.

Suspend. During the suspend process, S3 supporting
devices are transitioned to the D3 state, and the waking
vector address is saved.

L PP e Resume. The firmware must retrieve configuration
has to be left mn the on §tate, This is necessary as data from the tables in NVM and write them back to
the server .state 18 sto.red I memory .d.urmg S3. Thl.s the registers and the chipset. Once the chipset state
augmentatlon of function requires additional power rail has been restored, control is passed to the operating
switches. system.

e System management hardware. This piece of hard-
ware processes the high-level requests from external Operating System: At first glance, one may expect that only
entities to enter or exit S3 or S4 and reports the cur- the software closest to the hardware, the firmware, must be
rent state of the server. S3/S4-aware. However, we have seen that device drivers,
e Handshake signals. The additional power rail swi- and some configurable OS functions must also cooperate in
tches require associated control signals. Handshake the state transition flow to support graceful suspend and
signals connecting the core motherboard chips to the resume during S3/84 cycles.

system management subsystem are also necessary in
order to determine when a request to enter or exit S3
is active and also to get confirmation that the server
has actually entered the S3 state.

Firmware: One layer up from the hardware layer is the
firmware layer. It must support S-states at three key times:
when the server boots up, during an S3 suspend operation,
and during 83 resume:

e Boot-up sequence. As part of the normal boot-up
sequence, the firmware performs several tasks in sup-
port of 83 functionality. It initializes S3-related regis-

ters, it saves system, memory, and chipset configura- °

tions into two tables in non-volatile memory (NVM),

e Device drivers. Device drivers run as part of the

resident operating system. Some, such as fiber chan-
nel, did not fully implement the D-state specifications,
causing the system to not resume properly. We added
driver modifications to provide proper D-state support
where possible, and unloaded some of the other non-
essential drivers from the system.

Changes to device operation. In other cases in
which devices did not resume properly, we added work-
arounds to gracefully disable the service, and unload
the device state. We added hooks on resume to reload
the device and initialize the service.

Modifications to OS hooks. We reconfigured some
of the steps (hooks) of the OS suspend-and-resume flow

to enable proper server console startup on resume. As
some of the network devices did not completely sup-
port S-states, they occasionally caused the entire re-
sume process to fail, leaving the server in an inoperable
state. We added stateless shutdown and cold reinitial-
ization logic on the suspend and resume paths in the
OS for these devices.

S. POWER-AWARE VIRTUALIZATION
MANAGEMENT PROTOTYPE

Here we describe our end-to-end power-aware virtualiza-
tion management prototypes that we designed to leverage
low-latency server power states across the two generations
of our S3-enabled experimental server hardware. The funda-
mentals of the two prototypes going up the OS and middle-
ware stack are conceptually similar. Therefore, our discus-
sion here focuses on the final HS22-based implementation.
Figure 6 shows the overall architecture of our end-to-end
system, consisting of three distributed components: hosts,
management module(s) and the global virtualization man-
ager.

The global controller is the center piece of our dynamic,
distributed virtualization power management framework. It
interfaces with all the physical and logical components to
perform a wide range of tasks for virtualization manage-
ment and sensing/actuation methods for managing the po-
wer states of physical hosts. The global controller interfaces
with each hypervisor host to determine the VM inventory
and topology in the cluster, the configurations, performance
and resource requirements of each VM. The core algorithm
of the controller is the DRM policy, which determines the
dynamic VM placement decisions and the host power ac-
tions. After each policy execution, the controller decides on
three sets of potential actions: host power up, VM migra-
tion, and host power down. These are carried out in a spe-
cific order, and across different paths. First, host power-up
actions are carried out as the hosts must already be online
for the VMs to migrate onto them. This is done through
an out-of-band path, by talking to the server service proces-
sors. In our BladeCenter form factor, we accomplish this via
programmatically exercising the BladeCenter Management
Module APIs [6] to turn on specified servers. Second, the
placement actions, i.e., VM migration decisions, are applied
across the set of source and destination hypervisors with
shared network-attached storage. The controller performs
these by coordinating the two involved hypervisors for each
migration to: (i) create the destination listening VM, (ii)
to iteratively migrate live state, and (iii) to stun and termi-
nate the source VM to finalize the migration. All migrations
are completed before the host power down actions, because
all VMs must be evacuated before hosts are powered down.
Once the VM migrations are completed, the controller exe-
cutes the third and final step of the management algorithm
by powering down evacuated hosts. This is done in an in-
band fashion, where the controller interfaces with the host
agents to put hosts into lower power states. There have also
been, however, recent efforts to introduce out-of-band paths
to push hosts into lower S-states.

The hosts in our virtual infrastructure prototype are based
on IBM HS22 blade server configuration with custom mod-
ifications for experimental S-state support. These modifica-
tion include reworked motherboard hardware, custom non-
production firmware and additional OS-level configurations
to support repeatable S3 and S4 cycles. The host systems

Hosts Controller
1 Global Virtualization Power

OS+Hyp and Resource Manager
VM VM { Inventory & perf tracking]
Perf [Power/Perf Manager (Policy)]
qemu || gemu Monitor | | [| C T 1. ___

1_1_‘_] ;{ Placement] Out-of-band
| 1 Actions Host

yoredsig

\
[Host Agent :[S3/S4 Power-on
1 1| Actions Actions
In-band S3/S4

Firmware wiﬂ; S3 support

Management Module

Figure 6: Prototype implementation.

run RedHat Enterprise Linux (RHEL) 6 with KVM/QEMU
based virtualization support [23]. We developed a host agent
and a perf monitor agent that are deployed in each hypervi-
sor host to enable virtualization management and VM per-
formance monitoring functions distributed across the hosts.
The host agents provide a network interface, which the global
controller uses to communicate and track each hypervisor
system. The perf monitors are driven by the host agents
to track performance and resource demand characteristics
of the running VMs on the same system. The perf moni-
tors track the dynamically-varying resource requirements of
the running VMs and any resource contention they expe-
rience. We use raw QEMU and Linux interfaces to carry
out virtualization-related tasks. These include VM inven-
tory discovery, VM configuration, VM start/shutdown, live
migration, creating listening VMs, configuring migration,
checking migration progress. While libvirt abstractions
are commonly employed in current KVM-based systems, we
did not utilize libvirt as some of the QEMU migration con-
figurations we used had not been yet exposed through lib-
virt. The host agents are also the gateways for triggering
in-band suspend actions for pushing the systems into lower
S-states. When the controller requests a system to be pow-
ered down, the host agent passes the request to the appro-
priate Linux handler, invoking the standard shutdown path
for 85 requests, and by using the Linux pm-utils for S3 and
S4 requests [2].

In our experimental prototype, the hosts are primarily
used as hypervisors, hosting VMs, where the VMs are the
only significant source of workload in the cluster. For our
VMs, we use various flavors of Linux distributions, including
Fedora, DSL Linux and RHEL in our experiments.

5.1 Virtualization Management Policy

In our virtualization management framework, the distri-
buted resource management (DRM) policy is at the core of
our global controller. The DRM policy supports two opti-
mization schemes, capacity and capacity+power. Capacity
only management is, in principle, similar to VMware DRS
[45], in that its primary objective is only to optimize re-
source allocation. In this case, no power action is taken and
the cluster is always on. Only the VMs are migrated in case
of contention or in some cases, for rebalancing actions. The
capacity+power scheme introduces dynamic consolidation
and power actions. Depending on the aggregate demand
in the cluster, the physical infrastructure also expands and
squeezes in tune with the overall demand. This scheme is
similar to VMware DPM [46]. For both schemes we have

two modes of operation, recommendation and auto, where
recommendation mode only recommends actions, but does
not execute them, while the auto mode autonomically exe-
cutes the actions. The actuation mechanisms are VM mi-
gration for capacity management, and migration, suspend
and resume actions for capacity+power management. One
configuration parameter used in the DRM policy is the uti-
lization target. This is defined as a percentage of a host’s
capacity, and describes a threshold that the policy strives
to keep each host’s utilization under. For example, if the
utilization target is defined as 90%, the policy aims to keep
each host below 90% utilization.

In our current implementation, the DRM policy is trig-
gered at fixed time periods that we refer to as DRM pe-
riod, which we vary from 30s to 5mins in various experi-
ments. At each invocation, the DRM policy starts with a
cluster-level analysis of overall capacity vs. cluster-wide de-
mand. This analysis uses host capacities, utilization target
and each host’s overall resource use and demand gathered
from the perf monitors residing on the hosts. Based on this,
the algorithm decides whether the overall cluster is overcom-
mited or undercommited. Then, the algorithm drills down
to each host and performs a similar overcommit analysis for
each host, using host capacity and demand measures, uti-
lization target and basic demand forecasting [19]. In the
case of capacity-only scheme, if no hosts are overcommit-
ted, no action is needed, and the algorithm terminates. In
the case of capacity+power scheme, after the cluster- and
host-level overcommit analysis, the power-aware policy then
explores any host power-on requirements (if overcommitted)
or power-off opportunities (if significantly undercommitted).
This is done by matching the cluster capacity to the over-
all projected demand by adding hosts to or removing hosts
from the active system pool. This first-round assignment
assumes demand is infinitely divisible across hosts, ignor-
ing VM-level demand fragmentation. Therefore, after VM
placement, some hosts might still remain overcommitted. In
this case, another host is added to the cluster—if available—
and a new placement is computed based on the larger system
pool. The hosts selection for power up and power down ac-
tions are done via two heuristics. For power down, hosts
with the least number of VMs are selected to minimize the
number of migrations. For power up, the hosts are chosen
based on their capacity, to provide the highest capacity delta
with similar power up overheads.

After the host provisioning step, the same VM placement
algorithm is used for both capacity and capacity+power
schemes. The placement algorithm starts with a hypothet-
ical cluster composed of all the active hosts in the system,
plus any new hosts identified for power on. It uses the
current system topology (VM-host mappings) to guide the
placement decisions. In the case of capacity+power scheme,
if any hosts are selected for power down, they are assigned an
infinite initial demand, to avoid any VM placement on them.
All other active hosts are assigned zero demand. After this,
the VMs are ordered and placed onto hosts using a variation
of best fit decreasing packing, where placement is biased to
place each VM back to its current host if it does not overcom-
mit the host. The purpose of this bias is to minimize VM
migrations. The hypothetical placement continues in this
fashion until all VMs are hypothetically placed, or until one
of the hosts get overcommitted, which might trigger a next
round of host power provisioning and VM placement cycle.
After all VMs are placed, the placement algorithm arrives at

Undercommitment -> Power action:

Overcommitment -> Capacity move:

Cluster Stats:
Total Cap. (%) Demand (%)

1600.0 638.50
Host Stats:
Host State Cap.(%) Demand(%)
Host0 oN 800 567.00
Hostl ON 800 71.50

OVERCOMMIT ANALYSIS:
Cluster Undercommitted
Host0 Undercommitted
Hostl Undercommitted

CAPACITY MOVE RECOMMENDATIONS :
All Hosts undercommitted
NO CAPACITY MOVE REQUIRED

CAPACITY+POWER MOVE RECOMMENDATIONS :
Host POWER ACTIONS:

Host0: Keep Powered ON

Hostl: POWER OFF
VM MOVES:

VM fcllNHMccs: Keep on Host0

VM fclINHMO4: Keep on Host0

Cluster Stats:
Total Cap. (%) Demand (%)

1600.0 993.00
Host Stats:
Host State Cap.(%) Demand(%)
Host0 oN 800 700.00
Hostl ON 800 293.00

OVERCOMMIT ANALYSIS:
Cluster Undercommitted
Host0 Overcommitted
Hostl Undercommitted

CAPACITY MOVE RECOMMENDATIONS:
VM £c11NHMOl: Keep on Host0

VM ds1NHMO4: Keep on HO
VM £cllNHMO4: Migrate HostO —-> Hostl

CAPACITY+POWER MOVE RECOMMENDATIONS:
Host POWER ACTIONS:

Host0: Keep Powered ON

Hostl: Keep Powered ON
VM MOVES:

VM £c1INEMO1l: Keep on Host HostO

VM dsINHMOl: Migrate Hostl —> HostO
VM ds1NHMO2: Migrate Hostl -> Host0
VM dsINHM03: Migrate Hostl -> HostO
VM ds1NHMO04: Migrate Hostl —> HostO

VM ds1NHMO4: Keep on Host HostO
VM £cllNHMO4: Migrate HostO —-> Hostl

Table 1: Distributed resource management policy
execution examples.

a target host-VM map. The difference of this with the orig-
inal host-VM map defines the required migration actions.
These migration decisions, together with the identified host
power actions, constitute the DRM recommendations. The
transition from recommendations to actions is done through
the Go/Nogo Logic. This logic can determine whether the
chosen actions are worthwhile to execute, given how aggres-
sive/conservative the system is configured to be. In our
current prototype this logic is implemented as a simple all
or none decision, where either all the actions or none of the
actions are carried out.

Table 1 shows two examples of the application of the DRM
policy in our prototype experiments. The first example
shows a case for significant cluster-level undercommitment,
which enables a host power-down action. The second exam-
ple shows an overcommit scenario and the triggered capacity
move action.

6. PROTOTYPE RESULTS

Our experimental results include both base real-system
evaluations and detailed simulations using a data center
simulator. We use our developed experimental platform to
quantify the power-performance trade-offs of our virtualiza-
tion power management approach, leveraging low-latency
server power states. Here, we describe some of our real-
system prototype results, followed by the scale-out simula-
tions of the next section. Our power-aware virtualization
manager implements S3, S4, and S5 power modes. However,
our evaluation mainly focuses on S3 as the low-latency power
state, and S5 as the baseline power management approach.

Our real-system evaluation employs a distributed work-
load with a cyclic demand pattern. The workload is distri-
buted unevenly to running VMs, with varying demand lev-
els and duty cycles. We evaluate a one cycle period of this
workload, starting with the high demand region, followed
by successive ramp-down and ramp-up phases, as different
VMs go through their demand cycles. Over one period, the
average demand is around 60% of its peak value and the
ratio of the highest to lowest demand is approximately 3.
We use a distributed workload generator to distribute work-
load across VMs, which also provides a runtime, application-
level performance feedback for each VM [19]. We use this
to quantify the performance impact of power management.
Figure 7 shows the overall flow of this evaluation, including
the workload behavior, VM topology and demand, end-to-

= 100 I:
S 50
CPU_ALL(1
& o _CPU_ALL(1),
X 100
S 50 U‘
— CPU_ALL(2
Z %l . . cPu_ALL),
§ s Host
S eyt
g% L’ —CPU_ALL(3) | States
S o . . : ,
£ 100 []II
T 50
Power(1
£ o - . . U
- < (7]
£ 100 — 5?2
T g
E %0 @ — Power(2) o 2
0 . . : ,
B
= 100 3
g F~A~M A P
; %0 _\@ — Power(3)
o 0 - It r N N
0 100 200 300 400 500 600 | Demand
Time [s] L[n
123 123 1.2 3 1 12 3 1 wi| = E]
T EN Bl B LN P T
g Z|] g ! = % VM3
® ® ® ® 6 el

Figure 7: Power-aware virtualization management
timeline from the prototype implementation.

end physical resource use, power consumption, virtualization
management and power actions.

The bottom of the plot shows the evolution of cluster
topology (labeled ® to (@) and the distribution of the VMs
into three hosts. The size of the VMs show whether they
have high or low demand. For each VM, high demand is
around 60-80% and low demand is around 5%. We use nmon
for our second-granularity resource use monitoring, includ-
ing all resource components, CPU, memory, network and
disk I/O. We use the service processor APIs for second-
granularity power measurements. The plots show the CPU
and power profile of the three hosts used in the experiment.
The timeline is labeled @ to (1, pinpointing the key events
in the power-aware virtualization management experiments.
We use a 90% utilization target in our experiments. The
highest cluster demand in our experiment reaches to around
240%, which requires distributing the VMs across all hosts,
and the lowest is around 80% enabling all VMs to fit in the
capacity of a single host.

At the beginning of the experiment, most VMs are at high
demand (topology ®) and distributed across hosts. The
cluster is at steady state with no capacity moves or power-
up actions required and no power-down opportunities avail-
able. Then, at time @ VM demand on host3 drops. This is
realized by the DRM policy the next time it is invoked, at
(@. The elapsed time between (D and (2) is the lost power
saving opportunity due to DRM response. Once the policy
is invoked, the change in demand creates a power saving
opportunity. The VM is migrated from host3 to host2, the
short-lived peaks in host utilizations here are indicative of
the ongoing migration processes. Then, at (3 host3 is evac-
uated and is suspended. The elapsed time between (3 and
(@ is the additional lost power savings opportunity due to
migration and suspend overheads. At this point, the clus-
ter topology is as shown in ®), with host3 powered down.
Similarly, steps (@-(6) show a similar pattern for further de-
cline in cluster demand, leading to multiple migrations from
host2 to hostl—as seen with multiple short-lived peaks—
and consolidation of all VMs in host1, with host2 powered
down ((©). This is followed by a ramp up phase after only a
one minute low demand period. At time (?) the demand in
some of the VMs rises in hostl, creating contention in the

host (©®). The DRM policy is invoked at (8, realizing the
contention, identifies the optimal reconfiguration based on
VM demands, and as a result starts resuming host2. After
a short time period, host2 resumes and is readied for incom-
ing migrations, which subsequently start to push some of the
VM load into host2, from host1. The migrations complete at
®, resolving the contention in host1 and the cluster reaches
a well-performing quiescent state again, as in (&. During
the time between (7) and (9, the system remains under con-
tention, and incurs performance degradation. The elapsed
time between and (7 is the source of the performance
degradation due to DRM response; and the time between
(® and (® identifies the performance degradation due to re-
sume and migration latencies. Similar to the first ramp-up
phase, steps (19-(2 highlight a similar round of events for a
second ramp-up phase, which completes the cycle, bringing
the cluster back to its initial state.

This fairly straightforward experiment captures some of
the key aspects of virtualization power management, and
the dramatic difference low-latency power states make in
management efficiency and agility. Overall, end-to-end, the
whole experiment spans around 10 minutes, showing a rela-
tively fast-moving workload—in virtualization management
scales—with multiple ramp-up and ramp-down phases. Ex-
isting virtualization power management schemes cannot re-
act to workloads at such granularity, without risking signif-
icant repercussions in performance. However, here we show
that very simple virtualization management, with no sophis-
ticated risk assessment, cost-benefit analysis can effectively
respond to these fast workload dynamics by leveraging S3-
based low-latency server power states. We also strive to
minimize the other two dimensions of the overheads, DRM
response and migration latency. We run the DRM policy at
a relatively fine 30s interval, and employ additional migra-
tion latency and resource overhead optimizations [20]. As a
result of all these, the entire cycle including the virtualiza-
tion management and power actions is captured in this 10
minute window.

The experimental results clearly depict the three dimen-
sions of overhead, and their substantially different implica-
tions for decreasing and increasing workload patterns. We
quantitatively demonstrate the effects of these on the overall
power-performance characteristics in Figures 8 and 9.

Figure 8 shows the aggregate power savings through the
course of the experiment. The power savings are shown as
a running time average from the beginning of the experi-
ment and are aggregated across all hosts. At the end of
the complete cycle, our prototype virtualization power man-
ager achieves close to 20% power savings compared to a the
baseline case with S5-based power management. We also in-
clude two additional hypothetical savings figures. The “Zero
Overhead” case corresponds to the achievable power savings,
when we delineate the opportunity lost and power overheads
due to suspend, DRM response and migration overheads.
This shows an additional 6% power savings opportunity.
The third curve “Energy Proportional” shows the additional
power savings achieved if the servers were closer to energy
proportionality, with an additional 7% savings. The proto-
type curve shows the additional savings we have extracted
from the cluster by leveraging the low-latency power states.
The zero overhead case highlights the additional recover-
able benefits as we improve the three overhead dimensions
further, and the energy proportional case highlights further
improvements possible by improving power proportionality

60% H Energy Proportional

i=J
E 50% = Zero Overhead

& 40% Prototype
2 30%
o
& 20%
(=)
2 10%
0% <+ T T T T T
0 100 200 300 400 500

Time [s]

Figure 8: Power savings.

c 10% s Resume

2 o mm== DRM Response

§ 8% Migration

:'; 6% = =Overall

=]

T 4%

o

5 2%

= L D —

< 0%+ e s . r T
0 100 200 300 400 500

Time [s]

Figure 9: Performance degradation.

of the hardware itself.

Figure 9 shows the aggregate, time-averaged performance
degradation through the workload cycle, in a similar fashion
as Figure 8. Here, we show the overall end-to-end perfor-
mance degradation is close to 5%. This degradation mainly
stems from the DRM response, resume and migration de-
lays on the ramp-up path, and is decomposed as such in the
plot. As we have argued earlier in our characterization dis-
cussion, with S3 we bring down the power-state overhead on
par with DRM response and migration overheads. As the
decomposition shows, the overheads of the three dimensions
have comparable impact.

In Figure 10 we show a higher-level comparison of our pro-
totyped virtualization power management solution to two
versions of existing, S5-based techniques. The “baseline DPM”
imitates the current behavior of existing power management
schemes, which waits for a breakeven period after a decrease
in demand, before triggering power actions. The “Aggressive
DPM?” is based on the same base DPM technique, but with
aggressiveness tuned to its maximum. With this change, it
responds to dynamic demand changes very quickly, similar
to our prototype, but cannot catch up to the efficiency of
our solution. The heavy-handed power actions weigh down
the entire virtualization management solution and it pays a
serious performance price for being aggressive. We see the
baseline case achieves no power savings, and hence, pays no
performance penalty, as it cannot find enough room to trig-
ger power actions. Aggressive DPM achieves a small amount
of power savings; however, at a very high performance cost.
Our S3 prototype shows the much more desirable power-
performance trade-off point it operates at, with close to 20%
power savings and less than 5% performance degradation.

This set of results highlights the key comparative value
of our agile, efficient virtualization power management with
low-latency power states. We show that we can achieve ag-
ile power management by being able to respond to quickly-
varying workloads that today’s management schemes cannot
respond with their cost-benefit trade offs. Our prototype
can achieve an impressive 20% power savings from minute-
granularity dynamic workload patterns, which is not acces-
sible via existing techniques. The results also show that
existing management schemes do the correct thing by be-
ing cautious in their actions, as the price for aggressiveness
can be quite steep with heavy-handed actions. Our results

20.0%
B Power Savings

16.0% 1 W Performance Degradation
12.0% - Migration+DRM Response

. ‘o

8.0% A

4.0% A . -
0.0% T T

Baseline DPM Aggressive DPM S3 Prototype

Figure 10: Power-performance trade offs in compar-
ison to S5-based virtualization power management.

also show that our solution is very efficient in extracting
the potential power saving opportunities, when compared to
achievable savings with no virtualization management and
power-state change overheads. The 5% performance impact
fares significantly better than the possibilities with exist-
ing approaches. However, in case stricter performance con-
straints are of mandate, the power-performance trade-offs
are tunable via varying the desired utilization target, a prin-
ciple well established in existing virtualization management
schemes.

Another interesting characteristic of our virtualization po-
wer management solution is shown in the performance graphs
of Figure 10, which are further divided into the overhead
components. These show that, in our prototype the cost of
power actions are dialed down such that they are on par with
migration and DRM response costs, the two costs that is
also common to power-agnostic virtualization resource man-
agement, such as VMware DRS [45]. This observation has
significant implications for the widespread adoption of dy-
namic power management in virtualized systems. As power
management with low-latency power states has the same
associated risk factors as base distributed resource manage-
ment, in principle the same acceptance criteria applies for
end users, where comparative cost of enabling power man-
agement is no different from simply enabling base resource
management.

7. SCALE-OUT RESULTS

In order to understand the likely behavior of S3-enabled
dynamic virtualization power management in larger-scale
systems running realistic dynamic workloads, we augmented
DCSim, a discrete-event simulation framework for enter-
prise systems that includes models for servers, data center
topology, workloads and virtualization management middle-
ware [16]. Using DCSim, we can configure the data center
with different scales, server and VM configurations, and with
different virtualization management parameters for resource
management, migration and network characteristics.

We assign a fixed resource capacity to each host and use
DCSim’s scheduling logic to dynamically distribute resources
among running VMs. We mirrored our prototype’s DRM
policy in DCSim and added the server power state latency
and power characteristics from our characterization exper-
iments. We extensively validated DCSim against our real-
system results in both management actions and power/per-
formance characteristics. Some key aspects of this valida-
tion are shown in Figure 11, which repeats our previous
real-system experiment in DCSim. The management actions
created by DCSim perfectly match our prototype results. As
the figure shows, the power and performance profiles closely
match reality not just for the final values, but throughout
the sample-by-sample execution timeline. Throughout the

o 30% 1
£ ° 1 - Prototype .
& 20% 1 —DCSim S
3 10% /
b 4
8 L,
Q0% = T T T T]
600 700 800 900 1000 1100 1200
Time [s]
(a) Power savings.
c
10% 1
] .
E go - —DCSim
'c —
8 6% Prototype P
§’ 4% -
w— 2% 4
£y
2 0%
600 700 800 900 1000 1100 1200

Time [s]
(b) Performance degradation.
Figure 11: DCSim validation.

timeline, DCSim power results are within 3% of real-system
results, while performance is within 2%. The average er-
ror for power and performance is less than 1.5% and 0.5%
respectively.

We use two additional real workloads for our scale-out
evaluations. The first workload is based on a trace of web
traffic directed to a set of servers that supported the 2009
Australian Open web site. This trace exhibits typical cyclic
workload variations with daily periodicity. We also use SPEC-
virt virtualization benchmark, to evaluate the impact of
scale-out with different number of tiles. A tile consists of six
VMs configured as web, mail, application, database, infras-
tructure servers and an idle server. The scaling evaluation is
achieved by adding more tiles to a virtualized system while
meeting the same performance criteria.

Figure 12 shows our first set of evaluations using the Aus-
tralian Open workload. Each of the simulated servers mim-
ics our prototype servers in all aspects, while the VM CPU
and memory usages are drawn from a random distribution
based on the Australian Open workload. In Figure 12(a),
we show the power-performance trade-offs with baseline dis-
tributed power management, similar to the prior aggres-
sive DPM configuration. The aggressive DPM policy here
achieves significant power savings across the cluster, aver-
aging around 30%. However, the cost of aggressiveness is
seen in the significant performance degradation. In con-
trast, Figure 12(b) shows that with our S3-based virtual-
ization power management, we can achieve dramatic im-
provements in power-performance trade-offs. Our approach
achieves 38% power savings, while the system experiences a
minimal performance degradation impact of less than 1%.
In Figure 12(c), we tune down the aggressiveness of baseline
DPM by reducing utilization threshold and adding non-zero
breakeven time for power actions, in order to reduce the
performance impact to levels comparable to our approach.
As the performance is pushed down to 1% the power sav-
ings of the baseline approach diminishes dramatically, to
below 10%. S3-based power management is clearly superior
to both aggressive and less-aggressive DPM-like approaches.

Figure 13 summarizes these observations across a broader
set of configurations. Here, we configure our servers with
varying assumptions about the three latency components
combined together, and evaluate the power savings at a fixed
performance target. For each assumed latency, we evaluate
the system with different levels of aggressiveness and pick
the configuration with the highest power savings that satis-

W Energy Proportional
DOoverall

mmm Resume

== DRM Response
Migration

— -Overall

Perf Degradation

3600 18000 32400 46800 61200 75600
Time [s]

600 18000 32400 46800 61200 75600

(a) Baseline power management.

BEnergy Proportional & = Resume

Doverail "E 5% 4 === DRM Response
B a9 Migration
] — -Overall
5 3%
8 2%
T 1%
& u%h
3600 18000 32400 46800 61200 75600
ime [s] Time [s]
(b) S3-based power management.
2’233’; BEnergy Proportional & 5% | mmm Resume
S Doverall % 5% 1 == DRM Response
= 50% S 4o Migration
o 40% o — -Overall
5 30%
2 20%
O 10%
2 0%
3600 18000 32400 46800 61200 75600 3600 18000 32400 46800 61200 75600
Time [s] Time [s]
(c) Baseline with matching performance.
Figure 12: Australian Open workload results for

power savings (left) and performance degradation
(right).

fies the performance target. As our baseline, we explore the
best static consolidation configuration that meets the same
performance target and normalize dynamic management po-
wer to the observed static consolidation power in each case.
This figure outlines the key advantage, and necessity for
our agile virtualization power management solution. Exist-
ing virtualization power management techniques fall on the
right side of this plot, showing that, for a real workload,
the benefits of power management with high-latency power
states have limited returns over static consolidation, as the
power management policies need to be dramatically throt-
tled down to avoid their high performance impact. On the
other hand, our S3-based approach pushes us closer to the
left end of the graph, showing that very dramatic benefits
can be realized while meeting the same performance goals.
Thus, for any meaningful returns with power-aware virtual-
ization, low-latency power states, together with any welcome
improvements on the DRM response and live VM migration,
play a crucial role.

The power results of Figures 12 and 13 also include the
energy-proportional power profile of the evaluated systems
as a reference point. This shows the potentially achievable
power savings in an ideal system. Our virtualization po-
wer management solution exploits a sizable portion of this
potential, but not all. The gap results, to a large extent,
from granularity effects. The power savings are achieved at
the granularity of hosts (as we turn on and off hosts) and
workload migration is achieved at the granularity of VMs.
This fragmentation effect can be mitigated across the entire
system with increasing scale. As we scale-out virtualized
systems, we expect them to further approach energy pro-
portionality at the cloud scale.

Figure 14 explores this scale-out effect for the Australian
Open and SPECvirt workloads. For each workload, we dis-
play the average performance degradation and the amount
of power saved at each scale. The results for both work-
loads show an interesting trend. Applying the same DRM
policy, the power savings approach energy proportionality
with increasing scale. However, the performance results
grow somewhat worse with scale, most likely because we
introduce significantly more movement (migrations and po-
wer actions) into the virtualized system. One should keep
in mind that our measure of performance degradation rep-

—e— Dynamic Power Management
Static Consolidation
r Energy Proportional Power

100%

15%)

A
26%

o

3

o 80% v

T

g 60%

©

£ 40%

S

Z 2%

o o o o o o [=]

n o 0 [=] n [=]
- [} < © N~ (<]

Total Server and Migration latency [s]

Figure 13: Power savings with different response
latencies.

resents a low-level system view as opposed to a higher-level
application view (e.g. based on a service level agreement)
and may therefore provide a more pessimistic view of perfor-
mance. Nonetheless, the growing performance degradation
with system scale warrants further investigation.

8. RELATED WORK

A wide range of prior work explored data center power
management with server consolidation [9, 35, 36, 38, 42, 46].
Most of these techniques use virtualization or job schedul-
ing abstractions to move workloads across physical systems.
These studies show the significant benefits of distributed po-
wer management in data centers. However, they commonly
resort to detailed cost-benefit analysis, trend forecasting and
other techniques to mitigate the performance impact of their
power actions, particularly in response to a demand surge.
In comparison to these, our work explores the use of low-
latency power states in enterprise servers and demonstrates
their application to agile, efficient power management in vir-
tualized systems.

Other work has explored alternative techniques for im-
proving energy efficiency at the systems and data center lev-
els. PowerNap describes system-wide approach, with distri-
buted sleep modes to dramatically improve power response
characteristics of systems to fine-grain time variations in
workload demand [28]. Parasol [4] and GreenSlot [15] lever-
age renewable energy and low-power server modes to im-
prove data center energy efficiency in combination with work-
load scheduling.

The use of low-latency power states in data center servers
has also attracted attention from recent research. Ghandi
et al. explore the effectiveness of sleep states in data center
servers via simulations modeling a range of effective power
states with different latency and energy trade offs [12, 13,
14]. These studies show the potential of low-latency sta-
tes for distributed power management and demonstrate the
effect of varying conservativeness in management policies
for different workload characteristics. There has also been
prior work in desktop virtualization space for leveraging low-
latency power states for power management. LiteGreen [10]
and Jettison [5] both explore idle desktop migration using
virtualization and pushing these systems into lower power
modes once their state is migrated. LiteGreen uses full desk-
top migration for power management, while Jettison is a fine
grained partial migration approach, where only the desktop
working set is transferred to a server. Additional data is
fetched from the system on demand. Our work, in compari-
son, demonstrates the use of low-latency states in servers for
distributed power management in virtualized data centers.

—#—Power Saving
Perf. Degradation
60 Energy Proportional 30 p

wf g

—#—Power Saving
Perf. Degradation
Energy Proportional

25

0k ././I—"'

Power Saving [%)]
8

Power Saving [%]
o

0 T T T J 0
4 Hosts 8 Hosts 16 Hosts 32 Hosts
24VMs 48VMs 96 VMs 192 VMs

Cluster Scale
(a) Australian Open.

4 Hosts 8 Hosts 16 Hosts 32 Hosts
24VMs 48 VMs 96 VMs 192 VMs

Cluster Scale
(b) SPECuvirt.
Figure 14: Scale-out results for Australian Open and
SPECvirt workloads.

9. CONCLUSION

In this paper we explore the use of low-latency power
states in enterprise servers and demonstrate their dramatic
benefits when applied in power-aware virtualization man-
agement. Compared to today’s virtualization management
solutions, these techniques fundamentally shift the power-
performance trade-offs and enable agile and efficient power
management in virtualized data centers.

We build multiple experimental prototypes to enable S-
states in server platforms and describe our experiences with
the challenges and requirements of supporting these states
across the stack, including hardware, firmware and the op-
erating system. Despite these challenges, our quantitative
evaluations show the significant potential returns in making
these power modes also ubiquitously available in servers. We
present a characterization of the power-performance trade
offs with different server power states, which underlines the
dramatically better operating point with S3-based power
management, compared to other commonly-used power sta-
tes. We build a power-aware virtualization management
framework, leveraging these low-latency power states, and
show its superior power and performance efficiency com-
pared to current approaches. Our real-system evaluations
show that this agile, efficient virtualization power manage-
ment approach can improve data center power efficiency by
more than 30% by being able to respond to quickly-varying
workload patterns with minimal performance impact, and
with comparable power efficiency to deeper, more heavy-
handed power states. Our scale-out evaluations further em-
phasize the benefits of this technique, approaching closer to
energy proportionality with increasing system scale.

Our work demonstrates a promising path to substantial
improvements in data center energy efficiency for virtual-
ized systems. There remain, however, many interesting chal-
lenges in achieving energy efficiency at scale, which require
more than a single technique isolation, but rather a con-
certed effort across the stack, from hardware and architec-
tures to systems and management middleware.

Acknowledgments

We would like to thank Dipankar Sarma, Makoto Ono, Zeydy

Ortiz, Freeman Rawson, Matthew Eckl, Max Asbock, Vaidy-

anathan Srinivasan, Takaaki Shiozawa, Irene Zubarev, Gaines
McMillan, Thomas Pahel, Paul Bashor, Mike Scollard, Jim

Hamilton, Karthick Rajamani and Jack Kouloheris for their

help and for many useful discussions during various stages

of this project. We also thank our anonymous reviewers for

their very insightful comments that helped shape the struc-

ture and contributions of this work.

10.

(1]

(2]
(3]

(4]

[5

(6]

(7]

(8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

REFERENCES

M. Annavaram, E. Grochowski, and J. Shen. Mitigating Am-
dahl’s Law Through EPI Throttling. In Proceedings of the 32nd
International Symposium on Computer Architecture (ISCA-
82), 2005.

Arch Linux. Pm-utils. https://wiki.archlinux.org/index.php/Pm-
utils, 2012.

L. A. Barroso. The Price of Performance. ACM Queue, 3(7):48—
53, Sept. 2005.

R. Bianchini, I. Goiri, K. Le, and T. Nguyen. Parasol: A solar-
powered datacenter. In ACM FEwuropean Conference on Com-
puter Systems (Eurosys), 2012.

N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla, M. Hiltunen,
and M. Satyanarayanan. Jettison: Efficient Idle Desktop Consol-
idation with Partial VM Migration. In European Conference on
Computer Systems (Eurosys), 2012.

T. Brey, B. Bigelow, J. Bolan, H. Cheselka, Z. Dayar, J. Franke,
D. Johnson, R. Kantesaria, E. Klodnicki, S. Kochar, et al. Blade-
Center Chassis Management. IBM Journal of Research and De-
velopment, 49(6):941-961, 2005.

L. Brown, A. Keshavamurthy, D. S. Li, R. Moore, V. Pallipadi,
and L. Yu. ACPI in Linux. In Linuz Symposium (OLS), 2005.
M. Cardosa, M. Korupolu, and A. Singh. Shares and Utilities
based Power Consolidation in Virtualized Server Environments.
In IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2009.

J. S. Chase, D. C. Anderson, P. N. Thakar, A. N. Vahdat, and
R. P. Doyle. Managing energy and server resources in hosting
centers. In Proc. 18th Symposium on Operating Systems Prin-
ciples (SOSP), 2001.

T. Das, P. Padala, V. Padmanabhan, R. Ramjee, and K. Shin.
LiteGreen: Saving energy in networked desktops using virtual-
ization. In USENIX ATC, 2010.

A. Gandhi, M. Harchol-Balter, R. Das, J. Kephart, and C. Le-
furgy. Power Capping via Forced Idleness. In Workshop on
Energy-Efficient Design (WEED), 2009.

A. Gandhi, M. Harchol-Balter, and M. Kozuch. The Case for
Sleep States in Servers. In SOSP /jth Workshop on Power-
Aware Computing and Systems (HotPower 2011), 2011.

A. Gandhi, M. Harchol-Balter, and M. Kozuch. Are sleep states
effective in data centers? In 2012 International Green Comput-
ing Conference (IGCC), 2012.

A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. Kozuch.
AutoScale: Dynamic, Robust Capacity Management for Multi-
Tier Data Centers. Transactions on Computer Systems, 30(4),
2012.

I. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart,
J. Torres, and R. Bianchini. GreenSlot: Scheduling Energy Con-
sumption in Green Datacenters. In 2011 International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis (SC 2011), 2011.

J. Hanson, I. Whalley, M. Steinder, and J. Kephart. Multi-aspect
Hardware Management in Enterprise Server Consolidation. In
IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2010.

Hewlett-Packard, Intel, Microsoft,
Advanced configuration and power
http://www.acpi.info, September 2004.
C. Isci, G. Contreras, and M. Martonosi. Live, Runtime Phase
Monitoring and Prediction on Real Systems with Application
to Dynamic Power Management. In Proceedings of the 39th
ACM/IEEE International Symposium on Microarchitecture
(MICRO-39), 2006.

C. Isci, J. Hanson, I. Whalley, M. Steinder, and J. Kephart. Run-
time Demand Estimation for Effective Dynamic Resource Man-
agement. In IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2010.

C. Isci, J. Liu, B. Abali, J. Kephart, and J. Kouloheris. Im-
proving Server Utilization Using Fast Virtual Machine Migra-
tion. IBM Journal of Research and Development, 55(6), 2011.
Jeffrey Nowicki and Andy Arhelger. Optimizing Virtual Infras-
tructure with PowerVM and the IBM Systems Director VM Con-
trol. Whitepaper, IBM Systems and Technology Group, 2010.
H. Jiang, M. Marek-Sadowska, and S. R. Nassif. Benefits and
Costs of Power-Gating Technique. In IEEFE International Con-
ference on Computer Design (ICCD), 2005.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. Kvm:
the linux virtual machine monitor. In Ottawa Linuz Symposium
(OLS), 2007.

and Toshiba.
specification.

Phoenix,
interface

(24]

(28]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]
[44]
(45]
[46]

[47]

J. G. Koomey. Estimating total power consumption by servers
in the U.S. and the world, 2007.

D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and
G. Jiang. Power and Performance Management of Virtualized
Computing Environments Via Lookahead Control. In Proceed-
ings of the International Conference on Autonomic Comput-
ing, 2008.

E. Le Sueur and G. Heiser. Slow Down or Sleep, That is the
Question. In USENIX Annual Technical Conference, 2011.

J. Lee and N. Kim. Optimizing Throughput of Power and ther-
mal Constrained Multicore Processors Using DVFS and Per-core
Power Gating. In Design Automation Conference (DAC), 2009.
D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Elim-
inating Server Idle Power. In International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS), 2009.

D. Meisner and T. Wenisch. DreamWeaver: Architectural Sup-
port for Deep Sleep. In International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS), 2012.

X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pen-
darakis. Efficient resource provisioning in compute clouds via vim
multiplexing. In IEEE International Conference on Autonomic
Computing (ICAC), 2010.

J. Moore, J. Chase, and P. Ranganathan. Making scheduling
“cool”: Temperature-aware workload placement in data cen-
ters. In Proc. 2005 USENIX Annual Technical Conference
(USENIX ’05), 2005.

R. Muralidhar, H. Seshadri, V. Bhimarao, V. Rudramuni,
I. Mansoor, S. Thomas, B. Veera, Y. Singh, and S. Ramachan-
dra. Experiences with Power Management Enabling on the Intel
Medfield Phone. In Linuz Symposium (OLS), 2012.

A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabuk-
swar, K. Krishnan, and A. Kumar. Power and thermal manage-
ment in the intel core duo processor. Intel Technology Journal,
10(2):109-122, 2006.

D. Snowdon, E. Le Sueur, S. Petters, and G. Heiser. Koala: A
platform for OS-level Power Management. In 4th ACM European
Conference on Computer Systems (Eurosys), 2009.

S. Srikantaiah, A. Kansal, and F. Zhao. Energy Aware Consoli-
dation for Cloud Computing. In USENIX Conference on Power
Aware Computing and Systems (PACS), 2008.

M. Steinder, I. Whalley, J. Hanson, and J. Kephart. Coordi-
nated management of power usage and runtime performance. In
Proceedings of the Network Operations and Management Sym-
posium (NOMS), 2008.

K. Tian, K. Yu, J. Nakajima, and W. Wang. How Virtualiza-
tion Makes Power Management Different. In Linuz Symposium
(OLS), 2007.

N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and
X. Zhu. Delivering Energy Proportionality with Non Energy-
proportional Systems—Optimizing the Ensemble. In HotPower,
2008.

B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking
and application profiling in shared hosting platforms. In the 5th
symposium on Operating systems design and implementation
(OSDI), 2002.

R. Urgaonkar, U. Kozat, K. Igarashi, and M. J. Neely. Dynamic
Resource Allocation and Power Management in Virtualized Data
Centers. In IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2010.

U.S. Environmental Protection Agency ENERGY STAR Pro-
gram. Report to congress on server and data center energy effi-
ciency, 2007.

A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and Migra-
tion Cost Aware Placement of Applications in Virtualized Sys-
tems. In Proceedings of the ACM Middleware Conference, 2008.

VMware Inc. VMware Capacity Planner,
http://www.vmware.com/products/capacity-planner/.
VMware Inc. VMWare vCenter CapacityIQ,

http://www.vmware.com/products/vcenter-capacityiq/.

VMware Inc. Resource Management with VMware DRS.
‘Whitepaper, VMware Inc., 2006.
VMware Inc. VMware Distributed Power Management: Con-

cepts and Use. Whitepaper, VMware Inc., 2010.

M. S. Ware, K. Rajamani, M. S. Floyd, B. Brock, J. C. Rubio,
F. L. R. III, and J. B. Carter. Architecting for Power Manage-
ment: The IBM POWER Approach. In Proceedings of the 12th
International Symposium on High-Performance Computer Ar-
chitecture (HPCA-16), 2010.

