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Abstract
Everyone loves a large caching tier in their multi-

tier cloud-based web service because it both alleviates
database load and provides lower request latencies. Even
when load drops severely, administrators are reluctant to
scale down their caching tier. This paper makes the case
that (i) scaling down the caching tier is viable with re-
spect to performance, and (ii) the savings are potentially
huge; e.g., a 4x drop in load can result in 90% savings in
the caching tier size.

1 Introduction
With the advent of cloud computing, web service

providers have the ability to dynamically scale their com-
puting infrastructures to match demand. Further, be-
cause cloud resources are often priced per-use, web ser-
vice providers have a monetary incentive to minimize the
number of resources consumed while still meeting the
Service Level Agreements (SLAs) of the service.

Web services are often composed of multiple tiers; a
common example is shown in Figure 1. The frontend
application tier consists of a set of stateless application
servers that process requests using data from the back-
end. The backend data tier consists of a persistent storage
system, such as a database. To alleviate load at the back-
end, a stateful, but non-persistent, distributed caching tier
is often used to cache data or partial results.

Each tier must be treated differently when scaling. The
application tier is the easiest tier to scale down because it
is stateless [9, 7]. In contrast, because web services often
impose stringent data availability requirements, options
for scaling the data tier are typically limited to adjusting
the replication factor of the storage system [4, 14].

Note that the tiers are typically of different sizes, with
the servers in the application tier often outnumbering
servers in the caching tier at a ratio somewhere around
4:1. While this fact might initially suggest that scal-
ing the caching tier may not lead to significant savings,
note that DRAM is an expensive resource. For exam-
ple, if we were to instantiate our testbed of 28 servers
on EC2 [3], our caching tier would represent 37%1 of
the operational cost, despite the fact that our caching tier
only comprises 5 servers. Further, at times of lower uti-
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1Assuming application servers cost $0.165/hr/high-cpu instance [3]
and cache servers cost $0.45/hr/high-memory instance [3].

Figure 1: Multi-tier cloud service.

lization, after the application tier has been scaled down,
an unscaled caching tier becomes a more significant frac-
tion of the service’s operational cost. In the above exam-
ple, if load were to drop by a factor of 4, and we were
to scale down our application tier from 20 servers to 5
servers, our caching tier would then represent 63%1 of
the operational cost.

Scaling down the number of cache instances as the
load decreases, therefore, could provide cost benefits.
However, two technical concerns come immediately to
mind. First, as the caching tier scales down, the amount
of cached data decreases. Will the cache misses that re-
sult overwhelm the data tier? Second, how should the
caching tier be managed so that “hot” data is preserved
when cache instances are removed and distributed when
cache instances are added?

The key insight in answering the first question is that
when the overall load drops, we can afford a higher frac-
tion of requests going to the data tier; hence, we can
tolerate a lower cache hit rate, and this lower cache hit
rate translates to a vast reduction in the amount of data
cached. To correctly size the caching tier, we work back-
wards – when the load drops, we determine the mini-
mum cache hit rate needed to ensure that the response
time SLA is met (thereby limiting how many requests go
to the data tier). We then calculate the cache size that
would provide that hit rate. A key parameter that de-
termines the degree to which the cache capacity may be
reduced without overwhelming the data tier is the distri-
bution of requests. If the requested data items are uni-
formly distributed, the degree to which cache capacity
may be reduced is small. However, many studies have
shown that web requests follow a very skewed distribu-
tion (often modeled as a Zipf distribution [6, 2]). In such
cases, we will show that significant savings are possible.
In Figure 2, we see that a relatively small change in the
required hit rate – from 0.95 to 0.8 – may result in a sub-
stantial reduction in the cache size needed under a Zipf
distribution (79% to 34% of the data), but a more limited
reduction (95% to 80%) if the distribution is Uniform.



Figure 2: A small decrease in cache hit rate can lead to a
large decrease in the amount of cached data.

In answering the second question regarding cache
management, we first rely on consistent hashing tech-
niques to ensure that excessive data migration is not
needed as instances are added and removed from the
caching tier. However, even with consistent hashing,
naı̈vely adding or removing a cache instance can cause
significant performance problems, because the hot data
is distributed over all instances. In Section 4, we pro-
vide a simple solution that reduces the number of cache
misses during periods of scaling by redistributing cached
items.

Our contributions are:
• We demonstrate that the caching tier can be ef-

fectively scaled with load without violating perfor-
mance goals.
• We develop a model to calculate (i) the required

hit rate as a function of load, and (ii) the resulting
savings in the size of the caching tier from scaling
down during low load (see Section 3).
• We validate our theoretical results via implementa-

tion on a 28-server testbed (see Section 3.4).
• We propose a simple cache management mecha-

nism to redistribute cached items as the caching tier
scales up and down, significantly reducing transient
cache misses.

2 Experimental setup
We experiment with a testbed of 28 commodity

servers, which are divided into multiple tiers as in Fig-
ure 1. We employ one of these servers as the load
generator running httperf [11]. Another server is used
as the load-balancer running Apache

TM
HTTP Server,

which distributes PHP requests from the load generator
to 20 application servers. The application servers (Intel R©

Xeon R© E5520 processor-based) parse the incoming PHP
requests and collect the required data from the caching
tier and the data tier. In our experimental setup, we use a

Figure 3: The Zipf popularity distribution.

distributed cache, memcache [10]. The caching tier com-
prises 20 memcache instances, each with up to 10GB of
memory for caching, hosted on 5 servers (Intel R© Xeon R©

X5650 processor-based). The data tier comprises a
server (Intel R© Xeon R© E5520 processor-based) with 5
disks running an Oracle R© BerkeleyDB [12] database
with a billion key-value pairs (250GB).

Each workload (HTTP) request is a PHP script that
runs on the application server, and consists of 20 inde-
pendent key-value fetches. The fetched keys follow a
Zipf [6, 2] distribution. Each of the 20 key-value fetches
either hits in the memcache, or, if it misses, goes to the
database. If a key-value fetch hits in the memcache, its
response time is Tmem = 0.3ms, which is the time to re-
trieve a key-value pair from memcache. If a key-value
fetch goes to the database, its response time is on the or-
der of 8ms, depending on the contention at the database.
In this paper, our performance goals take the form of re-
sponse time SLAs: we require that the average response
time for the entire request (collection of 20 key-value
fetches), which we refer to as Tavg, should be no more
than TSLA = 100ms. Thus, we require:

Tavg ≤ TSLA = 100ms. (1)

3 How much cache can we save?
In this section, we investigate the potential savings that

can be achieved by scaling down the caching tier, with-
out violating the response time SLA. We first describe
our theoretical framework that allows us to estimate these
savings, and then report our experimental results, which
validate our estimates.

3.1 Popularity distribution
Many websites report that their data popularity distri-

bution is far from being Uniform or Random, and is often
very skewed (that is, a small subset of the entire data set
is responsible for most of the traffic) [13, 6, 2, 8]. Assum-
ing that we cache the most popular data items for a given



(a) ppeak = 0.80 (b) ppeak = 0.95 (c) ppeak = 0.99

Figure 4: Theoretical savings in cache for a given peak-to-min ratio. Crosses indicate experimental results.

popularity distribution, we can estimate the amount of
data to be cached to achieve a given hit rate.

Researchers often use a Zipf distribution to represent
the website popularity distribution [13, 6, 2]. Mathemat-
ically, if the data items are sorted in decreasing order of
popularity, the Zipf distribution states that the probability
of seeing a request for data item i, Pr{i}, is:

Pr{i}= C
iα
, (2)

where α is a parameter of the distribution, and C is a nor-
malization constant. For real-world website traffic, α is
typically between 0.6− 1.0 [13, 6]. A higher value of
α corresponds to a more skewed distribution. We can
now use Equation (2) to estimate the amount of data
to be cached to achieve a given hit rate, p. Figure 3
shows these results for a Zipf popularity distribution with
a range of α values. When α is high, say α = 1.0, we can
achieve a hit rate of p = 0.8 by caching only 2% of the
data. However, when α is low, say α = 0.6, we need to
cache almost 60% of the data to achieve the same p= 0.8
hit rate. For a Uniform distribution (α = 0), we would
have to cache 80% of the data to achieve p = 0.8 hit rate.

3.2 Theoretical model
In Figure 3, we saw the relationship between the hit

rate, p, and the amount of data cached. We now investi-
gate the relationship between a given response time SLA,
TSLA, and the minimum required hit rate, p. This allows
us to calculate the amount of cache required to meet TSLA.
The relationship between TSLA and p is given by:

Tavg = 20(p ·Tmem +(1− p) ·TDB)≤ TSLA = 100ms, (3)

where Tmem = 0.3ms is the latency for fetching a key-
value pair from memcache, and TDB is the latency for
fetching a value from the database. Here, we use the
fact that each request in our system is composed of 20
individual key-value fetches.

Note that TDB in Equation (3) is not a constant, and
depends on the request rate into the database, λDB. As
λDB increases, so does TDB. We model this relationship
using an M/M/1 queueing model with load-dependent
service rates. This gives us TDB as a function of λDB.

If λ denotes the total arrival rate of requests into the
system, then λDB is:

λDB = 20 ·λ · (1− p). (4)

If the request rate into the database, λDB, is too high, then
TDB grows to infinity. Thus, it is important to limit the
request rate to the database by keeping (1− p) small (the
hit rate, p, should therefore be high). Also, since Tmem
is orders of magnitude smaller than TDB, it is desirable to
keep p high so as to make Tavg less than TSLA. While both
these goals point towards making p as high as possible,
our objective in this paper is to find the lowest possible
p which still meets the desired TSLA constraint (this is
because low p implies low cache size from Figure 3).

Given the arrival rate into the system, we can solve
Equation (3) for p, which in turn is used to calculate the
desired cache size from Figure 3.

3.3 Theoretical results
Web services often exhibit huge variations in their re-

quest rates, mostly due to the diurnal/periodic nature of
traffic. Assuming that the system is well provisioned to
meet TSLA for peak request rate, we are interested in the
potential for decreasing the cache size when the request
rate decreases. We refer to the ratio between the peak
request rate and the lower request rate as the peak-to-
min ratio. We pick a range of peak-to-min ratios (1−10)
and use our theoretical model to calculate the possible
reduction in cache size. We also show results across
different values of α: 1.0 (heavily skewed), 0.8, and
0.6 (less skewed). Lastly, we vary the hit rate at the
peak request rate: ppeak = 0.80 (Figure 4(a)), ppeak =
0.95 (Figure 4(b)), and ppeak = 0.99 (Figure 4(c)). We
choose these parameter values based on recent stud-
ies [13, 5, 6, 2].

Figure 4 indicates that significant cache reductions (up
to 90%) are possible even for a 2:1 peak-to-min ratio. In
general, the potential savings in cache size are higher
when α is high. This is because a higher value of α

indicates a more skewed popularity distribution, which
allows for more aggressive reduction in cache size (see
Figures 2 and 3). Also, the observed potential savings



(a) Remove memcache instance (b) Add memcache instance

Figure 5: Gradual is significantly better than Naı̈ve for (a) scaling down and (b) scaling up the caching tier. Here, the
dashed line indicates TSLA = 100ms.

in cache size are higher when ppeak is low. This can
be explained as follows. If the request rate into the sys-
tem, λ , drops by a factor of (say) 2, then Equation (4)
tells us the miss-rate, (1− p), can increase by a factor
of 2 while maintaining the same request rate into the
database, λDB. For example, when the peak hit rate is
low, say, ppeak = 0.8, the miss-rate (1− ppeak) = 0.2. If
the request rate now drops by a factor of 2, our final hit
rate can be as low as p= 0.6, since the miss-rate, (1− p),
can now be as high as 2 · (1− ppeak) = 0.4. However,
when the peak hit rate is ppeak = 0.99 and the request
rate drops by a factor of 2, our final hit rate can only be
as low as p = 0.98. This implies that when the peak hit
rate is low, we can afford a larger drop in hit rate, which
in turn implies larger cache savings via Figure 3.

These large cache savings translate to huge cash sav-
ings. Consider an application hosted on EC2 [3] re-
quiring a 4:1 ratio between application instances (cost-
ing $0.165/hr/high-cpu instance [3]) and cache instances
(costing $0.45/hr/high-memory instance [3]). Suppose
load drops by a factor of 4. If we only scale the applica-
tion tier (by a factor of 4), then we can save 45% of the
peak operational cost. But if we also scale the caching
tier (assuming a modest 50% cache reduction based on
Figure 4), then we can save 65% of the peak operational
cost. This is an additional 37% savings relative to only
scaling the application tier.

3.4 Experimental results
In order to validate our theoretical results, we exper-

imentally determine the lowest memcache size that we
can afford without violating our SLA. We do this by
monitoring the mean response time, Tavg, for different
memcache sizes, and then picking the smallest mem-
cache size which keeps Tavg below TSLA. The crosses
in Figure 4 show our experimental results, which agree
with the theoretical results.

We also investigated 99th percentile response times
and preliminary results show similar cache savings as in
Figure 4.

4 Managing the caching tier
Thus far, we have investigated how small the cache

can be, assuming it contains the most popular data items.
However, it is not obvious how to retain the most popu-
lar data items when scaling the caching tier because the
cached objects are distributed over the cache instances
for good load balancing. When the number of cache in-
stances is reduced, popular items may be lost. We use
consistent hashing in the libMemcached library [1] to en-
sure that only the data in the newly added/removed cache
instance needs to change.

4.1 Scaling down
If we naı̈vely remove a cache instance, we immedi-

ately lose all the cached data that was stored on the in-
stance. This causes a drop in hit rate, which increases
the request rate to the data tier as well as the average
response times. For example, consider the case in Fig-
ure 5(a) where we scale down from 4 to 3 cache in-
stances at the 1 minute mark. In this experiment, we
choose α = 1.2 to limit the amount of cached data that is
lost. We also pessimistically force cache misses to result
in database disk accesses by avoiding the database page
cache. As observed in Figure 5(a), the Naı̈ve solution
(the circles) creates a spike in average response time.

To avoid this spike in response times, we propose
gradually migrating the most popular data off of the in-
stance to be removed. Conceptually, we treat the instance
to be removed as a second level cache for some period of
time. If we miss in the rest of the cache, then we query
this instance before going to the database. This will nat-
urally migrate the popular items from this “retiring” in-
stance to the rest of the caching tier.

This leads to the question of how long to keep an in-
stance in this retiring state. Intuitively, we want to stay
in this retiring state until the probability of querying this
instance is low enough that we can achieve our target
hit rate, as calculated from Equation (3), even after this
instance is removed. For each item i residing on this in-
stance, let pi denote the probability of requesting that



item. Suppose we have received N requests since en-
tering this retiring state. Then the probability that item
i has not yet migrated to the rest of the caching tier is
(1− pi)

N . Thus, the probability that the (N+1)th request
queries this instance is:

∑
item i ∈ instance

pi(1− pi)
N . (5)

Assuming all items are equally distributed among the
instances, we can reasonably predict how large N needs
to be so that the probability of querying this instance is
low enough to achieve our target hit rate.

In Figure 5(a), we see that the Gradual solution (solid
line) eliminates the spike in response times. Here, the
retiring instance acts as a “second-level cache” between
the 1 minute and 5 minute marks, approximated by Equa-
tion (5), at which point it is entirely removed.

4.2 Scaling up
If we naı̈vely add a cache instance, it has a “cold”

cache and all requests to that instance result in misses.
For example, consider the case in Figure 5(b) where we
scale up from 3 to 4 cache instances at the 1 minute
mark. We see that the Naı̈ve solution (the circles) cre-
ates a spike in average response time.

To avoid this spike in response times, we propose
gradually migrating the most popular data from the rest
of the caching tier to this new instance. That is, when
we miss in this new instance, we query the rest of the
caching tier. This will naturally warm up the “hot” data
without needing to go to the database. In Figure 5(b), we
see that the Gradual solution (solid line) eliminates the
spike in response times. Here, the new instance warms
up between the 1 minute and 5 minute marks, approxi-
mated by Equation (5), using the rest of the caching tier.

Importantly, using the Gradual solution for both
adding and removing a cache instance keeps our re-
sponse times below the 100ms SLA.

We also find the same behavior when looking at 99th

percentile response times. The 99th percentile response
time under the Naı̈ve solution increases to about 16 sec-
onds, but stays below 700ms under the Gradual solution.

4.3 Alternative approaches
While our proposed solution is very simple, addi-

tional benefits may be realized through more dramatic
re-architecting of the caching tier. For example, by ex-
posing the LRU lists of cached keys at each memcache
instance, more intelligent adding/removing of cache in-
stances may be possible. Further, integration of non-
volatile storage, such as flash, may allow removing a
cache instance without requiring the migration of hot
data from other instances on reactivation. However, this
approach will require additional functionality to deter-
mine the consistency of cached data upon reactivation.

5 Conclusion
While scaling of the stateless application tier has been

proposed in many research papers, there has been al-
most no discussion of scaling the stateful caching tier.
The “seemingly small” benefits associated with scaling
the caching tier coupled with the fear of severe perfor-
mance degradation due to cache misses has deterred this
research. In this paper we demonstrate that, given the
skewed popularity distribution for data accesses, signifi-
cant cost savings can be obtained by scaling the caching
tier under dynamic load patterns (see Section 3). Further-
more, performance problems associated with scaling the
stateful caching tier can be avoided via a simple Grad-
ual algorithm (see Section 4). By combining our stateful
scaling solutions with existing stateless scaling solutions,
one can realize fully load-proportional cloud systems.
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