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Abstract—This paper presents HeteroMates, a solution
that uses heterogeneous processors to extend the dynamic
power/performance range of client devices. By using a mix of
different processors, HeteroMates offers both high performance
and reduced power consumption. The solution uses core groups
as the abstraction that groups a small number of heterogeneous
cores to form a single execution unit. Group heterogeneity
is exposed as multiple heterogeneity (H) states, an interface
similar to the P-state interface already used for frequency
scaling. An H-state controller governs H-state transitions based
on dynamic policies maximizing performance or minimizing
power consumption, while a ‘core switcher’ transparently mi-
grates tasks to the appropriate core, i.e., the one matching the
chosen H-state. Experimental evaluations use real-world client
applications and a unique experimental testbed comprised of
heterogeneous cores and a shared uncore component. Results
show that core groups can provide significant performance
improvements while also lowering energy consumption for a
diverse set of applications when compared to homogeneous
processor configurations. Also demonstrated is the importance
of ‘uncore’ power in total SoC power consumption and the
need for uncore power scalability when seeking to extend a
platform’s dynamic power range.
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I. INTRODUCTION

The ubiquity of handhelds is causing an unprecedented
increase in the range of performance demands imposed
on mobile platforms, and at the same time, battery life
and energy efficiency remain critical concerns. Yet modern
processors are typically designed to meet only one, not both,
of these two conflicting goals of performance vs. efficiency.
In response, chip vendors have adopted heterogeneous multi-
core processors (HMPs) as their platforms of choice, which
consist of cores with different performance/power charac-
teristics. Examples include Variable SMP from NVIDIA [1]
and Big.LITTLE processing from ARM [6]. HMPs make
it possible for different applications within a diverse mix of
workloads to be run on the ‘most appropriate’ cores [9], [11],
[12], [19]. For example, applications not time critical to the
user can be run on low-power small cores, while applications
with their outputs visible to the user can be allocated to high-
performance big cores.

This paper presents the HeteroMates system, which uses
heterogeneous cores to provide a wider dynamic power
range for client devices, to meet both their high-performance
and low-power demands. Specifically, HeteroMates forms
execution units from core groups, where each group consists
of a small number of (e.g., 2-4) heterogeneous cores. Cores
within a core group are exposed to the system as multiple
heterogeneity (H) states, similar to the P-states used for
voltage and frequency scaling. An H-state controller module
performs H-state transitions based upon workload behavior
and user-defined policies. Depending on the selected H-state,
the workload is transparently migrated to the appropriate
core by a core switcher.

H-state abstraction decouples heterogeneity from schedul-
ing such that the scheduler perceives only homogeneous
cores. The performance/power differences among cores are
transparently handled by a separate H-state driver. H-states
can be implemented in hardware, firmware, or software,
thereby providing a way to hide heterogeneity from the
operating system to support legacy software for wider
adoption. Further, core groups allow the system to easily
accommodate a variable number of different heterogeneous
cores, by adding an H-state for each core. Finally, core
groups can also be useful in thermal-constrained scenarios
(also known as dark silicon [4]) which allow only a fraction
of the chip components to be active simultaneously.

HeteroMates is implemented on top of the Linux ker-
nel. Experimental evaluations use a unique, experimental
heterogeneous multicore platform comprised of both high
and low power cores, along with client applications typi-
cally seen in modern end-user devices. Two different usage
policies are compared: a performance-driven policy favors
high performance for user-facing applications, whereas a
power-driven policy favors reduced power consumption and
longer battery life. Experimental results demonstrate that by
opportunistically utilizing heterogeneous cores, HeteroMates
can provide both improved performance and lowered energy
consumption for various client applications when compared
to homogeneous cores. They also highlight the need for a
scalable uncore in order to fully realize the potential gains
obtained from the use of heterogeneity.

978-1-4673-2154-9/12/$31.00 c© 2012 IEEE



0 5 10 15 20 25
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(a) Intermittent (browse)

0 10 20 30 40 50 60 70 80 90
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(b) Sustained-low (openarena)

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(c) Sustained-high (x264)

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(d) Multi-threaded (mytube)

Figure 1. Diverse client workload profiles (IPC vs. Time)

II. MOTIVATION

Users perform a wide variety of tasks on mobile devices,
resulting in diverse platform demands. Since their battery
capacities are severely restricted due to constraints on size
and weight, energy efficiency is critical to their usability.
To provide extended battery life and at the same time, meet
the rapidly increasing demands of high performance mobile
use cases, a client device must offer a wide dynamic power
range – it must be able to operate both in high-performance
and in power-savings modes. As explained in detail in
Section III, heterogeneous cores can be used to extend the
dynamic power range offered by homogeneous processor
configurations. In that context, this section presents exam-
ples of client workloads (see the list in Table I) and the
usage patterns of client devices that motivate the need for a
wide dynamic power range and discusses opportunities for
exploiting heterogeneous cores.

A. Client Workloads

Client applications exhibit highly diverse behavior in
their processor usage and performance requirements. These
applications can be categorized based on their behavior as
described below.

1) Intermittent Workloads: Client devices like cell phones
and tablets are typically powered-on for long periods of
time, but often perform their heavy processing in short
bursts. Web-browsing is an example of such usage, and
workloads browse and palbum in Table I belong to this
category. A timeline trace of IPC (instructions-per-cycle) for
the browse workload is shown in Figure 1(a). Idle periods
are marked by low IPC periods, while page-loads correspond
to spikes in the graph. Since page-loads generate high IPC
activity, a big core can be used for rendering the pages and
improving page-load performance, while resorting to a small
core during low activity periods to conserve power.

2) Sustained Workloads: These differ from intermittent
workloads in that their behavior is uniform over a longer du-
ration. They can be further classified into two sub-categories:
sustained-high and sustained-low.

Sustained-low: Client applications like gaming and media
playback typically run for a long duration (a few minutes to
hours). Moreover, the wide adoption of accelerators allows
them to offload significant portions of their computation

to accelerators. Figure 1(b) shows the IPC trace of the
openarena gaming benchmark. As the observed IPC is low
for the application, it can be run on a small core without
significant degradation in performance and at lower power.

Sustained-high: Mobile devices are also used for
compute-intensive tasks such as media encoding, video edit-
ing etc. These applications typically have a high IPC (e.g.,
see x264 encoder in Figure 1(c)), and their performance
scales well on a big core. This makes big cores suitable for
these applications when they require high performance, e.g.,
when they are user-facing, while a small core may provide
higher energy-efficiency when they run in background mode
(e.g, virus-scan).

3) Multi-threaded Workloads: With increasing numbers
of cores on mobile devices, parallelization of client appli-
cations is key to further performance enhancement. Such
multi-threaded applications also present opportunities for
exploiting heterogeneity. 7zip, gmagick, and eclipse are
examples of parallel applications. The mytube workload
also uses multiple threads for audio, video decoding, and
rendering, for instance. Since such threads differ in behavior
and needs, their performance will be affected by how they
are mapped to different heterogeneous cores. For example,
Figure 1(d) shows that various threads within the mytube
workload differ significantly in their IPC, which can be
leveraged by task mapping and scheduling methods.

B. Client Devices

1) Mobility Constraints: Mobility means that client de-
vices will either be powered via wall-power or by battery.
Wall-power usage does not impose energy constraints, so
that big cores can provide desired high levels of perfor-
mance. During battery-driven operation, however, a user
may be willing to accept lower performance at the benefit
of higher battery life. Low-powered energy-efficient small
cores may be more suitable under such conditions.

2) Thermal Constraints: Client devices like cell phones
and tablets rely on natural cooling. Therefore, these devices
are quite sensitive to platform thermal constraints that im-
pose limits on the extent to which it is possible to use power-
hungry big cores for sustained periods of time. A small core
can be used for moving the execution away from a big core
when thermal constraints are violated.



III. DYNAMIC POWER RANGE

This section describes the use of heterogeneous cores to
enable a wide dynamic power range, and the role of the
uncore subsystem in achieving the same.

A. Heterogeneous Cores

Modern processors are typically designed to satisfy only
one of the two conflicting requirements: high-performance
and energy-efficiency. Current low-power cores (e.g., Intel’s
Atom processor) are energy efficient, but their performance
is limited. More powerful big cores like Intel Core R© pro-
cessors provide high performance, but at the cost of higher
levels of power consumption. The technological reasons for
this is the fact that the power consumption of a proces-
sor core consists of static (leakage) power and dynamic
(switching) power. During high activity periods, the total
power consumption of the device is dominated by dynamic
power consumption, while during low activity periods, leak-
age power becomes a significant component of the total
power consumption. Current high performance cores are
built from transistors on fast process technologies that have
high leakage power and very fast switching times [1]. Such
big cores, therefore, consume high leakage power under idle
or near-idle conditions, but can provide high performance
without significant increase in dynamic power, as shown in
Figure 2. Conversely, low power small cores are built from
low power process technologies with low leakage power
but slower switching times [1]. Such processors consume
small amounts of leakage power, but significantly increase
dynamic power consumption to provide a high-performance
mode (see Figure 2).
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Figure 2. Big cores are less efficient at low activity points, while small
cores are less efficient at high activity points. Using a heterogeneous
processor provides a wide dynamic power range.

The intuitive outcome is that by using both types of
cores, a single platform can be optimized for both high
performance and low power consumption. The objective of
such a system would be to always use its most efficient cores
for the tasks at hand (shown by the solid line in Figure 2).
Such a heterogeneous platform exhibits a higher power-
performance range than individual big or small cores. This
paper explores whether and to what extent the hardware-
based arguments for heterogeneity stated above lead to
realistically achievable gains on client devices.

B. Beyond Core: Uncore
The dynamic power range offered by a platform consisting

of heterogeneous cores can be strongly affected by the
uncore subsystem present on modern multicore processors.
This subsystem consists of components like the last level
cache, integrated memory controller, etc. With growing
cache sizes, increasing complexity of the interconnection
network, and integration of various SoC (system-on-a-chip)
components on CPU die, the uncore is increasingly becom-
ing a major power component in total SoC power [14].
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Figure 3. Effect of uncore power on the dynamic power range of
heterogeneous cores

Figure 3 illustrates the impact of uncore power on the
energy consumption of an application executing on hetero-
geneous cores. A big core running an application finishes
its execution faster and enters a low-power idle state. The
same application when executed on a small core takes longer
(tsmall) to finish, which also keeps the uncore active for
a longer period of time. If uncore power is substantial
in comparison to core power, then the energy gains from
running on a small core are strongly affected by the uncore
power. For such a system, energy-efficiency gains from small
core execution may be offset by the increase in uncore
energy consumption due to longer execution time [7]. This
observation is in line with prior work that highlights the
tradeoff between CPU and system-level power reduction in
the context of frequency scaling [3], [15].

Energy consumption for the big core and small core exe-
cution for such platforms can be modeled using Equations 1
and 2, respectively. Here, E refers to the energy consumed,
t denotes execution time, and Pcore and Puncore represent
average core and uncore power, respectively. Pidle is the idle
platform power, and tidle is the corresponding idle time.

Ebig = tbig ∗ (P big
core + P big

uncore) + Pidle ∗ tidle (1)

Esmall = tsmall ∗ (P small
core + P small

uncore) (2)

To understand the impact of uncore power, the evaluation
in Section VII considers two uncore configurations: fixed
and scalable. The fixed uncore configuration uses the same
uncore subsystem when executing on either big or small
cores. The scalable uncore scenario models an uncore where
certain uncore components such as memory controllers or
cache units are turned off or powered down as we move to
the small core. Hence, in this case, the uncore power scales
along with core power when a workload moves to a different
core.



IV. HETEROMATES DESIGN

HeteroMates enables a wide dynamic power range using
heterogeneous cores. This section describes its key compo-
nents and concepts.

A. Core Groups

A heterogeneous core group is a collection of a small
number of (e.g., 2-4) heterogeneous cores that are grouped
together to form a single execution unit. For example, Fig-
ure 4 shows a core group consisting of three heterogeneous
cores: a big (B), a small (S), and a tiny (T) core. The
core group appears as a single execution unit with mul-
tiple performance/power levels. Depending on application
behavior and user-defined policies, an appropriate core is
dynamically chosen to run the user task in question, by
transparently moving the task’s execution to that core, and
by placing the other inactive cores into a low power idle state
to conserve power. For example, the tiny core can be used
for background tasks like email update checks, the small
core for normal user operation, and the big core is reserved
for performance-critical tasks.
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Figure 4. A core groups consisting of three heterogeneous cores: a big
(B), a small (S), and a tiny (T) core exposed as three H-states.

Different cores within a core group are exposed using
heterogeneity-states (H-states), an interface similar to the
P-state (performance-states) interface defined by the ACPI
standard and used by operating systems to scale the fre-
quency and voltage of processors. Higher P-state numbers
represent slower processor speeds. Thus, P0 is the highest-
performance state, with P1 to Pn being successively lower-
performance states. Similarly, an H-state is assigned to each
type of core in the core group. A high-performance big core
corresponds to a lower numbered H-state, while a low-power
small core corresponds to a higher-numbered H-state. Thus,
a core group exposes a set of H-states (H0 . . .Hn) which
are controlled by an H-state controller module. Depending
on the state transition logic and the resultant H-state, a
core switcher transparently migrates the execution to the
appropriate core. In this manner, applications perceive only
homogeneous cores with larger dynamic power range than
any of the individual cores.

The design of HeteroMates offers multiple advan-
tages. First, H-state interface decouples heterogeneity from
scheduling such that the scheduler need not deal with per-
formance/power differences among cores. Instead, a separate
H-state driver handles this transparently to the scheduler.
Second, H-states can be implemented either in hardware,
firmware, operating system, or even hypervisors, allowing a
broader applicability. As an architectural solution, it provides
a way to completely hide heterogeneity from the operating
system, which is critical to support legacy software and ap-
plications. Further, core groups provide a unified mechanism
to easily accommodate a variable number of heterogeneous
cores by adding an H-state for each type of core. Finally,
core groups can also be useful when TDP (thermal-design-
point) limits may constrain the number of cores that can
be active simultaneously. As transistor density on modern
processors keep increasing, such TDP limits are proving to
be a critical design constraint in the form of dark silicon [4].

B. H-state Controller

H-states on a core group are controlled by the H-state
controller, in a manner similar to frequency scaling opera-
tions performed by a CPU governor. A CPU governor is a
kernel module that changes core P-states based on a policy.
In a similar manner, the H-state controller performs H-state
scaling operations. However, instead of changing voltage
and frequency as in the case of P-states, a change in H-
state causes the execution to move to a different core. The
functions of the H-state controller and of the traditional P-
state governor complement each other. For example, Figure 5
shows the combined P-state and H-state transition diagram
for a two-core heterogeneous core group. Here, Hk corre-
sponds to the small core, and Hk−1 corresponds to the big
core. P-state changes within a core are performed by the
P-state governor, while cross-core migrations are governed
by the H-state controller.
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Figure 5. H-state and P-state transition state machines. H-state determine
the core for execution, while P-states determine the frequency on that core.

CPU governors available in current operating systems
(e.g., the ondemand governor in Linux [16]) dynamically
change CPU frequency in response to CPU load (utilization).
However, CPU load alone is not sufficient to drive H-state
scaling operations, which also require determining whether
a bigger or smaller core is more suitable for execution.
Previous work on heterogeneous processor scheduling [11],



[12], [19] has identified application IPC (instructions-per-
cycle) as a key metric to select the right core for execution.
Therefore, HeteroMates uses a combination of CPU load and
application IPC to form the H-state transition logic shown
in Figure 6.

The intuition behind the scaling algorithm can be ex-
plained as follows. An application with high CPU load but
low IPC is likely to perform equally well on both big and
small cores due to its low IPC requirements, which can
easily be met on a small core. Applications with high IPC
but small CPU load under-utilize the big core. Moving such
applications to a smaller core results in higher utilization
of the small core, but without a significant penalty in
application performance. When both of these conditions are
violated, the application is likely to gain performance by
executing on a bigger core.
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Figure 6. H-state scaling operations in response to application IPC and
CPU load.

The H-state controller monitors application IPC and CPU
load at periodic intervals and compares them with pre-
defined thresholds to determine the resultant state. If both
the IPC and load are above thresholds IPCHI and LoadHI

respectively, the core group is scaled up, i.e, moved to a
higher-performance or lower numbered state. If either IPC
or load are lower than thresholds IPCLO and LoadLO, the
H-state is scaled down to a lower-performance state. For
values in between these thresholds, no H-state change is
performed. These thresholds are defined for each type of
core in the system. By setting different values for these
thresholds, different policies can be enforced. For example,
low values of thresholds force the execution to big cores,
and thus prefer performance over power. Similarly, a policy
having thresholds with high values picks smaller cores more
often.

An H-state change operation causes the execution to
switch to a different core. This switching overhead could
be substantial due to migration latency and loss of private
cached data if such changes are very frequent. In response,
we use history counters to dampen core switching frequency.
A switch is performed only after a certain number of con-
secutive identical H-state change requests are received. The
history counter is a simple integer counter associated with
each core group, which is incremented whenever consecutive
intervals generate the same requests and reset otherwise.

C. Uncore-aware Operation
As discussed in Section III-B, the energy-efficiency of a

platform is not only determined by the type of core used
for execution, but also by the power consumption of the
shared uncore subsystem. Workloads for which execution
on a bigger core provides both higher performance and bet-
ter energy-efficiency due to improved performance scaling,
should always be run on big cores as small core degrades
both performance and efficiency. HeteroMates addresses this
issue by adding the energy override condition in Equation 3
to the heuristic described earlier. If the energy consumption
of the current H-state (Hcur) is greater than the energy
consumption of the next higher state (Hcur−1), a scale up
operation is performed to move the execution to the bigger
core.

if
Energy(Hcur−1)
Energy(Hcur)

< 1 then Hnext = Hcur−1 (3)

For energy-aware operation, Equation 3 requires the en-
ergy consumption of the application to be estimated on
a different core (H-state). This task can be divided into
two components: processor power prediction and application
behavior (e.g., execution time, IPC) prediction. CPU power
visibility to the operating system is becoming increasingly
important, with multiple CPU vendors providing hardware
counters to measure the power of different components on
the platform [24]. Further, previous work has developed
light-weight models to accurately predict per-core power
using existing performance events [5]. Using a similar
approach, this work also uses power models, described in
Section VI-D, to obtain core and uncore power consumption.

In order to understand the impact of a core transition on
application behavior, hardware assistance can be provided.
For example, HeteroScouts [22] proposes hardware perfor-
mance counters to predict workload behavior on a remote
core (after-transition) from the parameters available on the
local core (before-transition). Due to unavailability of such
counters in current processors, simple prediction models are
developed using experimental data. The following section
provides details of the modeling methodology.
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Figure 7. Modeling IPC scaling as a function of IPC

D. Remote Behavior Prediction
To model the relationship between application IPC on a

big and a small core in our experimental platform (see Fig-



ure 8), the client workloads in Table I and SPEC CINT2006
benchmarks are executed on both types of cores. Figure 7
plots the obtained IPCscaling data, defined as the ratio of
the big core IPC and the small core IPC, as a function of
the IPC on the big core. We omit the corresponding scaling
data for the small core due to lack of space. As evident from
the figure, a linear curve fits the data well, with the resultant
model given by the equations below.

IPCscaling = 0.6 ∗ IPCbig + 1.01 (4)
IPCscaling = 1.31 ∗ IPCsmall + 0.94 (5)

The impact of IPC scaling on the execution time of an
application is workload dependent. CPU-bound workloads
show a proportional relationship between IPC scaling and
execution-time scaling. However, this does not hold true
for many client workloads with significant idle phases,
e.g., media and graphics workloads. For such workloads,
execution time is not affected by the core performance.
Instead, a change in core performance translates into change
in core idle state residency. These conditions are modeled by
applying the scaling function to the product of core active
state (Ractive) residency and execution time (t), as shown
in Equation 6. The equation was experimentally verified
using all of the client workloads in Table I as majority of
the workloads closely follow the modeled relationship. In
the online model, sampling interval is substituted for the
execution time.

(Rsmall
active ∗ tsmall) = IPCscaling ∗ (Rbig

active ∗ tbig) (6)

Further, the change in core idle residency (Ridle) impacts
package idle state (Uidle) residency in an application depen-
dent manner. Applications for which the package becomes
idle as soon as the core becomes idle, show a strong
correlation between core and package idle states. On the
other hand for multi-threaded applications and graphics-
intensive applications, a core’s idle state does not necessarily
translate to the package idle state since the package can
still be busy due to activity in another core or the graphics
processor. Such applications show a weak or negligible
correlation between core and package idle states. These two
scenarios are modeled in Equation 7 where a difference of
20% between Uidle and Ridle is assumed as an indicator of
weak correlation. For such cases, Uidle is assumed to be the
same irrespective of the type of core used for execution.

Usmall
idle =

{
U big

idle if U big
idle � Rbig

idle,

Rsmall
idle otherwise

(7)

Using the models presented above and the power models
described later in Section VI-D, an application’s relative en-
ergy consumption on two different H-states can be obtained.
These values are used to perform energy override operations
as defined earlier by Equation 3.

V. IMPLEMENTATION

HeteroMates is implemented for the Linux kernel. The
current implementation considers systems involving pairs
of heterogeneous cores. H-states are implemented by cus-
tomizing the P-state tables on each core to expose two P-
states corresponding to each core in a pair. H-state changes
work in lock-step on both of these cores to avoid conflicting
operations. An H-state change causes execution to switch
cores instead of performing DVFS. Our current implemen-
tation does not consider traditional voltage and frequency
scaling. This is because there is substantial previous work
on DVFS [15], [17], [20], [25], which can be used to perform
P-state scaling in addition to H-state transitions.

The H-state controller is implemented as a kernel module
which runs on each active core as a kernel thread. It
periodically (40ms) reads various hardware performance
monitoring counters (PMCs), applies models, and performs
any H-state changes depending on the policy and thresholds
chosen. The overhead of running models is measured to be
small (approximately 2% increase in core active and 5%
increase in package active residency). The core switcher is
implemented in the OS kernel by changing the runqueue
pointer for the tasks in the source runqueue to point to
the destination runqueue. The overhead of this operation is
minimal when run-queue length is not large, which we have
observed as being the case for the typical client workloads
used in our experiments. We note that similar functionality
can be provided by hardware, to further reduce overheads.
Also, only active cores are made available for scheduling
to the Linux CFS scheduler. Inactive cores are put into an
offline mode using a lightweight mechanism. A value of
three is used for history counters.

VI. EXPERIMENTAL EVALUATION

A. Experimental Platform

Our experimental platform consists of a quad-core Intel
i7-2600 client processor. To create heterogeneity, we use
an Intel proprietary tool to defeature and emulate the per-
formance of low-powered small cores for a subset of the
cores [11]. A block diagram of the platform configuration is
shown in Figure 8. An on-die graphics processor is used to
accelerate graphics workloads. All of the cores operate at a
frequency of 2.6 GHz and share an LLC of size 8 MB. All
the workloads are run using Linux kernel 3.0 and automated.
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Figure 8. Experimental heterogeneous platform



Workload Category Description Metric
7zip utility a parallelized version of 7zip is used to compress a text file Time

applaunch operation launches and executes a series of graphics-intensive applications Load time
browse web loads a set of web-pages at an interval of 3s to emulate user’s think time Load time
canvas web HTML5 benchmark performs browser canvasing tests FPS
eclipse utility Java based benchmark runs performance tests for the Eclipse IDE Time

gmagick media GraphicsMagick image editing application is used to resize a set of images Time
javascript web Javascript benchmark performs a series of standard browser operations Load time
lightsmark graphics renders scenes from a 3D game and measures graphics performance FPS

mplayer media a H/W accelerated version of mplayer plays an HD movie clip (60s) FPS
mytube web-media plays an H.264 streaming video inside the browser for 60s FPS

openarena gaming plays a benchmarking demo from a 3D first-person-shooter game FPS
palbum web photo album application that flips through photographs at 0.5s interval Load time
strike web-gaming replays a demo session of a web-based 2D game (60s) FPS
x264 media x264 media encoder is used to encode a media file Time

Table I
CLIENT WORKLOAD SUMMARY

B. Client Workloads

To assess the viability of using heterogeneity for client
systems, a diverse set of real-world applications are chosen
which are typical of modern end-user devices since prior
server-centric research on heterogeneous processors [11],
[12], [19] does not directly address the needs and processor
usage models seen on client devices. Table I provides a
summary of the applications used in our analysis which
include browsing, gaming, media, etc. and relevant perfor-
mance metrics which are different from server workloads.

C. Methodology

Two different policies are used, one performance-driven,
the other power-driven. This is done by choosing different
threshold values, obtained after experimenting with several
combinations of thresholds. Table II summarizes the various
thresholds used to cater to these policies. For a paired-core
system, small cores can only perform scale up operations and
not scale down, therefore, only HI thresholds are relevant
for small cores. Similarly, only LO thresholds are relevant
for the big cores. The first performance-driven policy favors
performance over power by using big cores for execution in
an aggressive manner. This is achieved by choosing smaller
thresholds in the table. The power-driven policy, on the other
hand, focuses on power by choosing bigger thresholds and
forcing the execution to small cores more often. The evalua-
tion is carried out by comparing the performance and energy
consumption of the performance-driven policy with only big
core execution and of the power-driven policy with just small
core execution. These two comparison points provide us a
perspective of the advantage of using heterogeneous cores
over homogeneous configurations.

Small Core Big Core
IPCHI LoadHI IPCLO LoadLO

Performance-driven 0.5 70% 0.8 40%
Power-driven 0.7 80% 1.25 50%

Table II
THRESHOLDS FOR PERFORMANCE- AND POWER-DRIVEN POLICIES

D. Power Model

The emulated heterogeneous platform mimics the per-
formance of small cores. However, it does not match the
power characteristics of an actual small core built using a
different process technology for low power consumption. We
therefore, rely on power models to obtain core and uncore
power consumption.

1) Core Power: The average power consumption of a
CPU core can be modeled using the following equations:

Pcore = Ractive ∗ P core
active + Ridle ∗ P core

idle (8)
P core

active = Cdyn ∗ V 2 ∗ f (9)

Here, Ractive and Ridle denote core active and idle state
residencies (%), and P core

active and Pidle are the correspond-
ing power values. Cdyn is the dynamic capacitance, V
denotes the operating voltage, and f represents the switch-
ing frequency. Big core Cdyn is modeled as a function
of IPC in Equation 10, as shown and validated by other
researchers [21]. Similarly, Equation 11 models the capaci-
tance for a small core having three-times smaller area than
the big core.

Cbig = 0.499 ∗ ipcbig + 0.841 (10)
Csmall = 0.472 ∗ ipcsmall + 0.176 (11)

2) Uncore Power: Similar to core power, uncore power
can be modeled using package idle state residencies (Ux) as
shown in Equation 12.

Puncore = Uactive ∗ Puncore
active + Uidle ∗ Puncore

idle (12)
Puncore

active = Pwake + Pactivity ∗ LLCrate (13)

Further, uncore active power (Puncore
active ) is modeled as a func-

tion of the LLC activity in Equation 13 where Pwake is the
fixed power cost of waking up various uncore components,
while the Pactivity component scales with the LLC access
rate LLCrate (relative to peak access rate including both
cache hits and misses).

The analysis uses a value of 0.9 V for the voltage (V),
and frequency (f) is kept at 2.6 GHz. For this platform,
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Figure 9. A comparison of the behavior of several client workloads on big vs. small cores

the average big core and small core power for all our
workloads is obtained to be 2.37 W and 0.95 W respectively.
A comparable uncore is modeled using a value of 1.2 W
for Pwake and Pactivity in case of a fixed uncore and
scaled down to half for a scalable uncore. Core and uncore
idle power are assumed to be 0.1 W and a 1.5 W power
component is attributed to the on-die graphics processor
which also scales with the LLC activity.

VII. EXPERIMENTATION RESULTS

A. Client Workload Characterization

The results shown in Figure 9 provide a comparison of
the behavior of various client applications on heterogeneous
cores. Specifically, they compare average IPC (instructions-
per-cycle), core idle residency, and package idle state res-
idency for all of the workloads in Table I for big and
small core execution. As evident from Figure 9(a), most
of the applications observe a significant decrease in their
IPC when running on the small core as compared to the big
core. This reduction in IPC results in the small core being
active for longer durations, thereby causing a decrease in
core and package idle residency (see Figures 9(b) and 9(c)).
Further, many applications are seen to have almost negligible
package idle residency. These applications either heavily use
the graphics processor (e.g., openarena, lightsmark), or they
always keep one of the CPU cores busy (e.g., 7zip, gmagick,
x264), and do not allow the uncore to enter into an idle state.

B. Performance-driven Policy

Figure 10 provides results comparing the performance
and energy consumption of the performance-driven policy
with execution on big cores. Specifically, Figure 10(a) shows
performance loss (%) with respect to the maximum perfor-
mance achievable by using big cores for the entire execution,
and Figure 10(b) shows corresponding energy savings by
using small cores for partial execution when big core is not
energy-efficient. Performance is measured based upon the
metrics in Table I, with inverse of latency as the metric for
latency-oriented workloads. As evident from the figures, this
policy is able to achieve performance within 15% of the big
core performance for all the workloads except browse and

palbum. This high performance loss for these two workloads
is due to their bursty nature, i.e., these applications exhibit
sudden bursts of high activity during page-rendering. Het-
eroMates uses history counters to dampen core switching
frequency, which requires multiple consecutive state change
requests to be received before actually making the change.
Due to this reason, these bursty applications observe a short
delay before they are moved to the big core which incurs
a higher performance degradation. However, the absolute
increase in the latency for these applications may not be
user-perceivable.

Figure 10(b) shows corresponding energy savings results
for three scenarios: core-only savings (C), SoC-wide savings
(C+UC) with a fixed uncore, and SoC-wide savings with a
scalable uncore. As seen from the figure, it is able to save
significant energy for several applications with a small per-
formance degradation. Workload openarena achieves highest
gains with 39% core energy savings. However, these savings
are strongly affected when the power consumption of the
uncore is taken into account. On the other hand, when a
scalable uncore is used, these savings increase and become
comparable (25%) to core-only energy savings.

To elaborate on the importance of uncore power in total
SoC power, Figure 10(c) shows the distribution of core
and uncore energy consumption for various applications.
Core energy component dominates for CPU-intensive appli-
cations like 7zip, eclipse, gmagick, and x264, while uncore
component is significant for other applications including
lightsmark, mplayer, and openarena. These results highlight
the growing importance of uncore power in the processor
power consumption and motivate the need for a scalable
uncore design when seeking to obtain large gains from
heterogeneous multicores.

C. Power-driven Policy

Results for the power-driven policy are presented in
Figure 11, where Figures 11(a) and 11(b) respectively, show
performance gain and energy loss (SoC-wide) in comparison
to small-core-only execution. As results show, this policy
is able to achieve significant performance gains for many
applications by selectively using big cores. Further, it is able
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Figure 10. Comparison of performance-driven policy with big core execution
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Figure 11. Comparison of power-driven policy with small core execution

to do so with only a small to moderate increase in energy
consumption. For example, the browse and canvas workloads
observe the highest increases in energy consumption of 31%
and 28% respectively, while most of the other applications
show a smaller increase. However, these two applications
also show a 31% and 54% performance gain for the in-
creased energy consumption due to their usage of big cores.
We note that some applications like lightsmark, mplayer, and
openarena exhibit negligible performance improvement due
to poor scalability.

Results in Figure 11(c) show the percentage residency on
big and small cores for all of the applications. Different
applications exhibit different degrees of big and small core
usage. For example, applications like 7zip, eclipse, and x264
with good performance scalability spend the majority of
their execution on big cores. On the other hand, applications
like lightsmark, mplayer, and palbum remain on small cores
for a significant portion of their execution time. Other
applications like applaunch, canvas, and strike make use
of both types of cores during their execution. To illustrate
this further, the big and small core usage profiles of the
applaunch and strike workloads are shown in Figure 12.
The applaunch workload launches and executes a series
of graphics-intensive applications. The launch operation is
CPU-intensive and performs better on a big-core, while the
execution phase is accelerated using the on-die graphics
processor and a small core provides comparable performance

to the big core at a lower power. Therefore, this workload
transits between big and small cores during launch and
execution phases (see Figure 12(a)). Similarly, Figure 12(b)
shows the execution profile for the strike gaming workload.
This workload exhibit several phases with high activity (e.g.,
bots shooting) when big cores are used and phases with low
activity (e.g., bots aiming and moving) when small cores
may suffice. In this manner, the appropriate core is used
depending on the activity.

0 20 40 60 80 100 120 140 160
Time (s)

S

B

(a) applaunch

0 5 10 15 20 25 30
Time (s)

S

B

(b) strike

Figure 12. Big (B) and small (S) core usage profile (x-axis: time(s))

VIII. RELATED WORK

Heterogenous chip multiprocessors (CMPs) have been
proposed to achieve higher energy-efficiency than symmetric



multicore processors. Using a mix of big and small cores,
different phases within an application can be mapped to the
core which can run them most efficiently [12]. Similarly,
heterogeneous cores can be used to improve the performance
of parallel applications by speeding up sequential phases
within the application [9], [23]. Researchers have also de-
veloped appropriate scheduling algorithms to efficiently run
applications on heterogeneous cores [10], [11], [13], [19].
In addition, previous work has proposed mechanisms to ef-
fectively manage functionally heterogeneous multicores [18]
and virtualize accelerator-based systems [8].

There is also substantial previous work on dynamic volt-
age and frequency scaling (DVFS). Several techniques have
been developed to dynamically select appropriate voltage
and frequency for maximum efficiency [15], [17], [20], [25].
However, others have questioned the effectiveness of DVFS
on modern processors [2], [3].

In comparison, our work targets client devices where
energy is a premium resource, with diverse application
behavior and performance metrics. In that context, we extend
the existing DVFS mechanisms to go beyond homogeneous
cores and support core heterogeneity to enable a wide
dynamic power range on these client devices. In addition,
we highlight the significance of uncore power in total SoC
power and motivate the need for a scalable uncore for
exploiting maximum gains from heterogeneous CMPs.

IX. CONCLUSIONS & FUTURE WORK

This paper presents the HeteroMates solution, which
utilizes heterogeneous multicores in order to provide a
wide dynamic power range on client devices. It proposes
core groups, an abstraction that groups together a small
number of heterogeneous cores to form a single execution
unit. Cores within a core group are exposed as multiple
heterogeneity (H) states. H-state transitions are governed by
an H-state controller, while a core switcher transparently
migrates the task to the appropriate core depending on the
resultant H-state. Using a diverse mix of client applications
and an experimental heterogeneous platform, we show that
heterogeneous CMPs can be used to provide a superior
solution for client devices. We also highlight the growing
importance of uncore power in total SoC power consumption
and the need for a scalable uncore design to completely
realize the intended gains.

As part of future work, we plan to investigate scenarios
when cores are shared across core groups. Another interest-
ing venue for research would be to investigate the ideal ratio
of the number of big and small cores for client systems.
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