Skilled in the Art of Being Idle:
Reducing Energy Waste in Networked Systems

Sergiu Nedevschi* '

Sylvia Ratnasamy'

Abstract

Networked end-systems such as desktops and set-top
boxes are often left powered-on, but idle, leading to
wasted energy consumption. An alternative would be for
these idle systems to enter low-power sleep modes. Un-
fortunately, today, a sleeping system sees degraded func-
tionality: first, a sleeping device loses its network “pres-
ence” which is problematic to users and applications that
expect to maintain access to a remote machine and, sec-
ond, sleeping can prevent running tasks scheduled dur-
ing times of low utilization (e.g., network backups). Var-
ious solutions to these problems have been proposed over
the years including wake-on-lan (WoL) mechanisms that
wake hosts when specific packets arrive, and the use of a
proxy that handles idle-time traffic on behalf of a sleep-
ing host. As of yet, however, an in-depth evaluation of
the potential for energy savings, and the effectiveness of
proposed solutions has not been carried out. To remedy
this, in this paper, we collect data directly from 250 en-
terprise users on their end-host machines capturing net-
work traffic patterns and user presence indicators. With
this data, we answer several questions: what is the po-
tential value of proxying or using magic packets? which
protocols and applications require proxying? how com-
prehensive does proxying need to be for energy benefits
to be compelling? and so on.

We find that, although there is indeed much potential
for energy savings, trivial approaches are not effective.
We also find that achieving substantial savings requires a
careful consideration of the tradeoffs between the proxy
complexity and the idle-time functionality available to
users, and that these tradeoffs vary with user environ-
ment. Based on our findings, we propose and evaluate
a proxy architecture that exposes a minimal set of APIs
to support different forms of idle-time behavior.

*International Computer Science Institute
"Intel Research

University of California, Berkeley
$Lawrence Berkeley National Laboratories

Jaideep Chandrashekar'

Junda Liu* * Bruce Nordman?

Nina Taft'

1 Introduction

Recent years have seen rising concern over the energy
consumption of our computing infrastructure. A recent
study [19] estimates that, in the U.S. alone, energy con-
sumption for networked systems approaches 150 TWh,
with an associated cost of around 15 billion dollars.
About 75% of this consumption can be attributed to
homes and enterprises, and the remaining 25% to net-
works and data centers. Our focus in this paper is on re-
ducing the 75% consumed in homes and enterprises. To
put this in perspective, this energy (112 TWh) is roughly
equivalent to the yearly output of 6 nuclear plants [14].
Of equal concern is that this consumption has grown —
and continues to grow — at a rapid pace.

In response to these energy concerns, computer ven-
dors have developed sophisticated power management
techniques that offer various options by which to reduce
computer power consumption. Broadly, these techniques
all build on hardware support for sleep (S-states), and
frequency/voltage scaling [21] (processor P-states [4]).
The former is intended to reduce power consumption
during idle times, by powering down sub-components
to different extents, while the latter reduces power con-
sumption while active, by lowering processor operating
frequency and voltage during active periods of low sys-
tem utilization.

Of these, sleep modes offer the greatest reduction in
the power draw of machines that are idle. For example, a
typical sleeping desktop draws no more than SW [2], as
compared to at least SOW [2] when on, but idle — an order
of magnitude reduction. It is thus unfortunate that sleep
modes are not taken advantage of to anywhere close to
their fullest potential. Surveys of office buildings have
shown that about two thirds of desktops are fully on at
night [20], with only 4% asleep. Our own measurements
(Section 3) reveal that enterprise desktops remain idle for
an average of 12 hours/day — time that could, in theory,
be spent mostly sleeping.

Relative to an idle machine, the only loss of functional-
ity to a sleeping machine is twofold. First, since a sleep-
ing computer cannot receive or transmit network mes-
sages, it effectively loses its “presence” on the network.

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

381

This can lead to broken connections and sessions when
the machine resumes (e.g., a sleeping machine does not
renew its DHCP lease and hence loses its IP address)
and also prevents remote access to a sleeping computer.
This loss of functionality is problematic in an increas-
ingly networked world. For example, a user at home
might want to access files on his desktop at work, an
on-the-road user might want to download files from his
home machine to his handheld, system administrators
might desire access to enterprise machines for software
updates, security checks and so forth. In fact, some en-
terprises, require that users not power off their desk-
tops to ensure administrators can access machines at all
times [6]. The second problematic scenario is when users
or administrators deliberately want to schedule tasks to
run during idle times — e.g., network backups that run
at night, critical software updates, and so on. Unfortu-
nately, these drawbacks cause users to forego the use of
sleep modes leading to wasteful energy consumption.

The above observations are not new, having been re-
peatedly articulated (also by some of the authors) in both
the technical literature and popular press [13, 16, 19, 10,
7, 15]. Likewise, there have been two long-standing pro-
posals on how to tackle the problem. The first is to gen-
eralize the old technology of Wake-on-LAN (WoL), an
Ethernet computer networking standard that allows a ma-
chine to be turned on or woken up remotely by a special
“magic packet”. A second, more heavyweight, proposal
has been to use a proxy that handles idle-time traffic on
behalf of a sleeping host(s), waking the sleeping host
when appropriate. Thus both problem (wasted energy
consumption by idle computers) and proposed solutions
(wake-up packets and/or proxies for sleeping machines)
have existed for a while now. In fact, the technology for
WoL has been implemented and deployed although not
widely used (we explore possible causes for this later
in the paper). However the recent focus on energy con-
sumption has led to renewed interest in the topic with
calls for research [7, 13], calls for standardization [12],
and even some commercial prototypes [15]. As yet how-
ever, there has been little systematic and in-depth evalua-
tion of the problem or its solutions — what savings might
such solutions enable? what is the broader design space
for solutions? what, if any, might be the role of standard-
ization? are these the right long-term solutions? efc.

In this paper, we explore these questions by studying
user behavior and network traffic in an enterprise envi-
ronment. Specifically, we focus on answering the follow-
ing questions:

Q1: Is the problem worth solving? Just how much
energy is squandered due to poor computer sleeping
habits? This will tell us the potential energy savings these
solutions stand to enable and hence the complexity they
warrant. Also, is proxying really needed to realize these

potential savings or can we hope that WoL suffices to
maintain network presence while still sleeping usefully?

Q2: What network traffic do idle machines see? Un-
derstanding this will shed light on how this idle-time traf-
fic might be dealt with and, consequently, what protocols
and applications might trigger wake-up packets and/or
require proxying. On the face of it, it would seem like
an idle machine ought not to be engaged in much useful
activity and hence, ideally, one might hope that a small
number of wake-up events are required and/or that a rel-
atively small set of protocols must be proxied to realize
useful savings.

Q3: What is the design space for a proxy? In general,
the space appears large. Different proxy implementations
might vary in the complexity they undertake in terms of
what work is handled by the proxy vs. waking the ma-
chine to do so. In some cases, one might opt for a rela-
tively simple proxy that (for example) only responds to
certain protocols such as ARP (specified by the DMTF
ASF2.0 standard[1]) and NetBios. But more complex
proxies are also conceivable. For example, a proxy might
take on application-specific processing such as initiat-
ing/completing BitTorrent downloads during idle times
and so forth. Likewise, there are many conceivable de-
ployment options — a proxy might run at a network mid-
dlebox (e.g., firewall, NAT, etc.), at a separate machine
on each subnet, or even at individual machines (e.g., on
its NIC, on a motherboard controller, or on a USB-
attached lightweight microengine). Given this breadth
of options, we are interested in whether one can iden-
tify a minimal proxy architecture that exposes a set of
open APIs that would accommodate a spectrum of design
choices and deployment models. Doing so appears im-
portant because a proxy potentially interacts with a diver-
sity of system components and even vendors (hardware
power management, operating systems, higher-layer ap-
plications, network switches, NICs, efc.) and hence iden-
tifying a core set of open APIs would allow different ven-
dors to co-exist and yet innovate independently. For ex-
ample, an application developer should be able to define
the manner in which his application interacts with the
proxy with no concern for whether the proxy is deployed
at a firewall, a separate machine or a NIC.

Q4: What implications does proxying have for future
protocol and system design? The need for a proxy
arises largely because network protocols and applica-
tions were never designed with energy efficiency in mind
nor to usefully exploit, or even co-exist with, power man-
agement in modern PCs and operating systems. While
proxies offer a pragmatic approach to dealing with this
mismatch for currently deployed protocols and software,
one might also take a longer-term view of the problem
and ask how we might redesign protocols, applications

382

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

or even hardware power management to eventually obvi-
ate the need for such proxying altogether.

In this paper, we study the network-related behavior of
250 users and machines in enterprise and home environ-
ments, and evaluate each of the above questions in Sec-
tions 3 to 6 respectively.

2 Measurement data and methodology

We collected network and user-level activity traces from
approximately 250 client machines belonging to Intel
corporation employees, for a period of approximately
5 weeks. The machines, running Windows XP, include
both desktops and notebooks—approximately 10% are
desktops and the rest, notebooks.

Our trace collection software was run at the individ-
ual end-hosts themselves and hence, in the case of note-
books, trace collection continued uninterrupted as the
user moved between enterprise and home, enabling us
to analyze traffic from both of these environments.

Our packet traces were collected using Windump. To
capture user activity, we developed an application that
sampled a number of user activity indicators at one sec-
ond intervals. The user activity indicators we collected
included keyboard activity and mouse movements and
clicks. Noticeable gaps in the traces occur when the host
was turned off, put to sleep, or in hibernation. Thus each
end-host is associated with a trace of its network and user
activity. We then used BRO [9] to reassemble connection-
level information from each packet-level trace.

Thus, for the 5 week duration of our measurement
study, we have the following information for each end-
host:

e a packet-level (pcap) trace capturing packet headers
for the entire duration

e per-second indicators of user presence at the machine
e the set of all connections—incoming and outgoing—
as reconstructed by BRO from the packet traces

The result is a S00GB repository of trace data. To pro-
cess this, we developed a custom tool that extends the
publicly available WIRESHARK [3] network protocol an-
alyzer with different function callbacks implementing
the additional processing required for our study.

3 Low Power Proxying: Potential and Need

In this section, we estimate the energy wasted by home
and office computers that remain powered on even when
idle, i.e., even when there is no human interacting with
the computer. Subsequently, we investigate whether very
simple approaches — e.g., the computer is woken up to
process every network packet and then returns to sleep
immediately after—would suffice in allowing hosts to
sleep more while preserving their network “presence”.

How much energy is squandered by not sleeping?
Virtually all modern computers support advanced sleep
states, S1 - S4 as defined in the ACPI specification [5].

100%

75% H Ooff

O Sleep
EOn
- W Idle

50% -

25% A

0%

1 3 5 7 9 11 13 15 17 19 21 28

Sorted users

Figure 1: Distribution of the split among off, idle and
active periods across users.

These states vary in their characteristics—whether the
CPU is powered off, how much memory state is lost,
which buses are clocked and so on. However, common
to all states, is that the CPU stops executing instructions
and hence the computer appears to be powered down.
Thus although these sleep states conserve energy, the un-
desirable side-effect is that a sleeping computer effec-
tively “falls off” the network—making it unavailable for
remote access and unable to perform routine tasks that
may have been scheduled at particular times. This leads
many users to disable power management altogether and
instead leave machines running 24/7. For example, stud-
ies have shown that approximately 60% of the PCs in of-
fice buildings remain powered on overnight and almost
all of these have power management disabled [20].

To more carefully quantify the amount of wasted en-
ergy (and hence potential savings), we analyzed the trace
data collected at our enterprise machines. To determine
whether a machine has a locally present and active user,
we examine the recorded mouse and keyboard activity
for the machine: if no such activity is recorded for 15
minutes, we say that the machine is idle. We use 15 min-
utes because it is the default timeout recommended by
EnergyStar for putting machines to sleep, and because it
represents a simple (and fairly liberal) approximation for
the notion of idle-ness, for which a standard definition
does not exist. We maintain this definition of idle-ness
for the remainder of the paper.

At any point in time, we classify a machine as being in
one of four possible states: (a) on, and actively used, we
call this active; (b) on, but not used, idle; (c) in a sleep
state such as S3 or S4, and (d) powered down, off. Note
that this notion of “idle” refers here to the user, and not
the machine, being inactive.

In Figure 1 we present this data for our enterprise desk-
tops. We focus here on the desktops since this represents
the potential energy savings an enterprise could garner.
Because the bulk of our traces come from mobile users,
we have a limited number of desktops. We see that the
fraction of time when these machines are active is quite
low, falling below 10% on average. Moreover, the aver-

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

383

OIdle
H Active
=9
<]
o
3
<6
o]
2
Q
£3
0
Home Office ALL

Usage environment
Figure 2: Average number of directed and broad-
cast/multicast packets received on average by a network
host at home and in the office.

age fraction of time when machines are idle is high —
about 50%. Similar to other studies, we note that a small
fraction of our desktops (only 5 out 24) use sleep mode
at all. Overall, this indicates that there is a tremendous
opportunity for energy savings on enterprise desktops.
The opportunity on our corporate laptops exists too, but
is moderate because we found that our laptop users were
more likely to employ aggressive sleeping configurations
that come pre-configured on laptops.

While the sample of the desktop machines in our exper-
iments is small, the results are consistent with existing
studies [20]. We therefore use these measured idle times
to extrapolate the energy that could be saved by sleeping
instead of remaining idle. There are estimated to be about
170 million desktop PCs in the US (data summarized in
[23]). Assuming an 80W power consumption of an idle
PC, and assuming these machines are idle for 50% of the
time, this amounts to roughly 60 TWh/year of wasted
electricity (or 6 billion dollars, at US$0.10 per kWh).

Is low-power proxying needed? Before developing
new solutions to reducing host idle times, we investigate
whether very simple approaches like waking up for ev-
ery packet can deliver these savings while maintaining
full network presence. In this approach, which we denote
(WoP — wake on packet), the machine is woken up for
every packet it needs to receive (directed or broadcast),
and put back to sleep after the packet is served. The per-
formance of such an approach depends on whether the
inter-packet gap (IPG) is smaller or comparable to the
time it takes to transition in and out of sleep. If it isn’t
then there is no gain over simply leaving the machine in
an idle state.

To examine the traffic during idle times, we used both
our desktop and laptop machines. We consider both types
(even though we’re primarily interested in desktops) be-
cause this gives us a significantly larger set of samples.
We separate the idle time traffic into two categories, of-
fice and home. In Figure 2 we plot the average number of
packets/sec for idle traffic both in the office and at home.
In the office environment, the average number of packets

70
60 EHome
50 O Office

% of idle time

20-40
40-60
> 60

Second-long bins for inter-packet gaps

Figure 3: Histogram of the fraction of the idle time made
up of inter-packet gaps of different size.

per second is roughly 3, while at home it is roughly 1.
This indicates a fairly constant level of background chat-
ter on the network, independent of the user’s activity. Be-
cause this number is an average, we need to understand
if these packets occur in bursts or not. If the packets are
bursty most of the time, then there may still be opportu-
nities to sleep as the host can be woken up to service a
burst of packets and then be put to sleep for some reason-
able period of time (certainly more than a few seconds).
If these packets occur fairly evenly spaced, then it is not
worth going to sleep unless the time to transition in and
out of sleep is very small (on the order of 1 to 3 seconds).

To quantify the burstiness level of our traffic, we group
inter-packet gaps into second-long bins (i.e., 0-1s, 1-2s,
etc.). We then compute the sum of the inter-packet gaps
in each of these bins, and finally compute the fraction
of total idle time represented by each bin. We present
these results in Figure 3, for both home and office envi-
ronments. In the office, over 90% of the time, the IPG
is less than 2 seconds. Although the distribution is more
uniformly spread for the home environment, we still see
that roughly 70% of the time, the IPG is less than 20
seconds. Overall we observe that: (a) neither of the en-
vironments enjoys many long periods of quiet time; (b)
we find this distribution to be very different for the two
environments. In home networks the distribution has a
much heavier tail, the traffic is burstier, and we do see
longer periods of quiet time.

We now translate these observations into actual sleep
time. In order to perform this computation, we must con-
sider a representative value for the time interval it takes
the host to wake up, process the packet and then go to
sleep again—we call this the transition time, denoted ¢,.
Today, typical machines take 3 — 8 seconds to enter S3
sleep, and 3 — 5 seconds to fully resume from S3, as mea-
sured in a recent study [6]. Therefore, it is reasonable to
assume an average transition time ¢, of 10s.

When a packet arrives, the machine is woken up to
serve the packet. After processing a packet, the machine
only goes to sleep again if it knows the next packet will
not arrive before it transitions to sleep. This idealized test

384

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

-

—— Home
—e— Office

0.75 +

o
)
a

User sleep time (fraction of idle time)
o
(9]

o

0 20 40 60 80 100
Sorted users

Figure 4: The fraction of idle time users can sleep if they

wake up for every packet, across different environments

for a transition time ¢, = 10seconds.

thus assumes that the host knows the future incoming
packet stream and captures the best the machine could
do in terms of energy savings.

Figure 4 presents the fraction of idle time for which
users can sleep, assuming the policy described above.
The results are rather dramatically different for across
environments. In the office, there is almost no oppor-
tunity to sleep for the majority of the users. This indi-
cates that the magic packet-like approach will not suc-
ceed in saving any energy for machines in a typical cor-
porate office environment. For the home environment,
we see that roughly half the users can sleep for over
50% of their idle times. Thus in these environments, a
10s transition time coupled with a WoP type policy can
be somewhat effective. However, these estimates assume
perfect knowledge of future traffic arrivals and also fre-
quent transitions in and out of sleep—in practice, we ex-
pect the achievable savings would be somewhat lower.
Nonetheless, this does suggest that efforts to reduce sys-
tem transition times in future hardware could obviate the
need for more complex power-saving strategies in certain
environments.

We conclude that while significant opportunity for
sleep exists, capitalizing on this opportunity requires so-
lutions that go beyond merely waking the host to han-
dle network traffic; we thus consider solutions based on
proxying idle-time traffic in the following sections.

4 Deconstructing traffic

In the previous section we saw that, by just waking up
to handle all packets, our ability to increase a machine’s
sleep time is limited. In particular, we see virtually no
energy savings in the dominant office environments. This
suggests that we need an approach that is more discrim-
inating in choosing when to wake hosts. This leads us to
an alternate solution to the WoL. which is to employ a
network proxy whose job is to handle idle-time traffic on
behalf of one or more sleeping hosts. Packets destined
for a sleeping host are intercepted by (or routed to, de-

100%

75% +

OUcast
B Mcast
M Beast

50% +

25% A

0% | ||
Home ‘ Office Home ‘ Office
INCOMING OUTGOING

Figure 5: Composition of incoming and outgoing traf-
fic during idle times, for home and office environments,
based on communication paradigms

pending on the proxy deployment model) its proxy. At
this point, the proxy must know what to do with this in-
tercepted traffic; broadly, the proxy must choose between
three reactions: a) ignore/drop the packet; b) respond to
the packet on behalf of the machine; or ¢c) wake up the
machine to service it. To make a judicious choice, the
proxy must have some knowledge of network traffic—
what traffic is safely ignorable, what applications do
packets belong to, which applications are essential, and
so forth. In this section, we do a top-down deconstruc-
tion of the idle-time traffic traces aimed at learning the
answers to these questions.

4.1 Traffic Classes by Communication Paradigm

To begin, we look at all packets exchanged during idle
periods, and classify each packet as either being a broad-
cast, multicast or unicast packet. Within these broad traf-
fic classes, we further partition the traffic by whether the
packets are incoming or outgoing, for both the home and
office environments. We separate incoming and outgoing
traffic because we expect them to look different in terms
of the proportion of each class in different directions
(e.g., most end-hosts ought to send little broadcast traf-
fic). Similarly, we look at different usage environments
because it is intuitive that the dominant protocols and ap-
plications used in each environment may differ. Since we
expect these differences, we treat them as such to avoid
mischaracterizations. The breakdown of our traffic ac-
cording to all these partitions in depicted in Fig. 5.

We note that outgoing traffic is dominated by unicast
traffic since, as expected, each host generates little broad-
cast or multicast traffic. We also find that incoming traffic
at a host sees significant proportions of all three classes
of traffic, and this is true in both enterprise and home
environments. This suggests that a power-saving proxy
might have to tackle all three traffic classes to see signif-
icant savings.

So far, we looked at traffic volumes as indicative of the
need to proxy the corresponding traffic type. We now di-
rectly evaluate the opportunity for sleep represented by

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

385

each traffic type. To understand the maximum sleeping
opportunities, we consider for a moment an idealized
scenario in which we use our proxy to ignore all incom-
ing packets from either or both of the broadcast and mul-
ticast traffic classes. A machine always wakes up for uni-
cast packets. Fig. 6 shows the sleep potential in four sce-
narios: a) ignore only broadcast and wake for the rest;
¢) ignore only multicast and wake for the rest; ¢) ignore
both broadcast and multicast. For comparison purposes
we also include the results for a scenario d) in which
we wake up for all packets. This comparison allows us
to compare the benefits derived from these four different
proxy policies. For each user, we computed the fraction
of its idle time that could have been spent sleeping un-
der the scenario in question. We use a transition time of
ts = 10s and the results are averaged over 250 users for
both home and office environments.

We make the following observations:

(i) Broadcast and multicast are largely responsible for
poor sleep. If we can proxy these, then we can recuper-
ate over 80% of the idle time in home environments. And
in the office, where previously sleep was barely possible,
we can now sleep for over 50% of the idle time.

(ii) Doing away with only one of either broadcast or
multicast is not very effective (we suspect this is due to
the periodicity of multicast and broadcast protocols, and
evaluate this in later sections).

More generally, the graph clearly indicates a valuable
conclusion—if we’re looking to narrow the set of traf-
fic classes to proxy, then multicast and broadcast traf-
fic appear to be clear low-hanging fruit and should be
our primary candidates for proxying. That said, proxying
unicast traffic appears key to achieving higher savings
(beyond 50%) in the enterprise and hence should not be
dismissed either. We thus continue, for now, to study all
three traffic types.

Of course, whether these potential savings can actually
be realized depends on whether a particular traffic type
can indeed be handled by a proxy without waking the
host. This depends on the specific protocols and applica-
tions within that class and hence, in the remainder of this
section, we proceed in turn to deconstruct each of broad-
cast (§4.2), multicast (§4.3) and unicast (§4.4) traffic.

4.2 Deconstructing Broadcast

Our goal in this section is to evaluate individual broad-
cast protocols, looking for: (1) which of these protocols
are the main offenders in terms of preventing hosts from
sleeping and, (2) what purpose do these protocols serve
and how might a proxy handle them. Answering the first
question requires a measure of protocol “badness” with
respect to preventing hosts from sleeping. We use two
metrics for our evaluation. The first is simply the total
volume of traffic due to the protocol in question. While
high-volume traffic often makes sleep harder, this is an

-
o
o

N
(%]

°

£ 75]

> B Wake all

=

.% s O1Ignore mcast
= l Ignore beast
& O Ignore both
Q

7]

Office

Figure 6: Average sleep opportunity when ignoring mul-
ticast and/or broadcast traffic, for different environments

Home

imperfect metric since the (in)ability to sleep depends as
much on the precise temporal packet arrival pattern due
to the protocol as on packet volumes. Nonetheless, we re-
tain traffic-volume as an intuitive, although indirect mea-
sure of protocol badness. Our second metric—which we
term the half-sleep time, denoted t s _50 — more directly
measures a protocol’s role in preventing sleep.

We define the half-sleep time for a protocol (or traffic
type) P as the largest host transition time that would be
required to allow the host to sleep for at least 50% of its
idle time, under the scenario where the machine wakes
up for all packets of type P and ignores all other traffic.
In effect, t s_50 quantifies the intuition that, if we ignore
all traffic other than that due to the protocol of interest,
then a protocol whose packets arrive spaced far enough
apart in time is more conducive to sleep since the host
has sufficient time to transition in and out of sleep.

In more detail, ts_50 is computed from our traces as
follows. We measure the total time a given host can sleep
assuming it wakes up for all the packets of the protocol
under consideration and ignores all others. We compute
this number for all hosts and take the average. This gives
us an upper bound on achievable sleep if the protocol
is handled by waking the host. We estimate this sleep
duration for different values of the host transition time ¢,
ranging from 0 seconds (ideal) to 15 minutes. The largest
of these transition times ¢4 that allows the host to sleep
for over 50% of its idle time is the protocol’s ts_50 .

Intuitively, t s_50 indicates the extent to which a pro-
tocol is “sleep friendly” since protocols with large val-
ues of ts_50 could simply be handled by allowing the
machine to wake up; whereas those with low values of
ts_50 imply that (to achieve useful sleep) the proxy
must handle such traffic without waking the host.

For our evaluation, we classify each packet by protocol
and rank them by both metrics: traffic volume and the
half-sleep time. We begin by measuring traffic volume,
we then establish the top ranking protocols by volume,
and use these as candidates for our second metric, the
half-sleep time. When presenting the top ranking proto-
cols by each of the metrics, we consider : (1) the proto-
cols whose traffic volumes represents more than 1% of

386

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Office Home

Protocol % of traffic |Protocol % of traffic
ARP 46.13 ARP 42.56
NBNS 22.89 SSDP 19.63
PX 10.12 NBNS 9.48
NBDGM 591 CUPS 5.6
LLC 3.28 LLC 4.4
ANS 2.85 UNISTIM 4.07
RPC 2.46 1PX 3.8
BOOTP 2.01 NBDGM 2.3
NTP 1.13 BOOTP 1.02
Other 3.22 Other 7.14
Total 100 Total 100

Figure 7: Protocol composition of incoming broadcast
traffic, in both office and home environments, ranked by
per-protocol traffic volumes.

Office Home
All Bcast 1-2s All Bcast 10-20s
ARP 2-3s ARP 1-2min
NBDGM 10-20s NBDGM 2-4min
NBNS 2-4min NBNS 4-8min
IPX 4-8min

Figure 8: Protocol composition for broadcast protocols
ranked by ts_50 .

the total traffic at the host and (2) the protocols with a
half-sleep time of less than 15 minutes. Table 7 and 8
present our results for broadcast traffic. For complete-
ness, we also present the value of ts_50 when consider-
ing all broadcast traffic together.

In terms of traffic volumes, we see that the bulk of
broadcast traffic is in the cause of address resolution and
various service discovery protocols (e.g., ARP, Netbios
Name Service — NBNS, the Simple Service Discovery
Protocol used by UPnP devices — SSDP). These proto-
cols are well represented in both home and office LANS.
A second well-represented category of traffic is from
router-specific protocols (e.g., routing protocols imple-
mented on top of the IPX).

In terms of the half-sleep time, we see that broadcast
as a whole allows very little sleep in the office: achiev-
ing 50% sleep would require very fast transitions (be-
tween 1 and 2 seconds), not feasible with today’s hard-
ware support. The situation in home LANs is signifi-
cantly better (ts_50 = 10s). In terms of protocols, we
see that the greatest offenders are similar to those from
our traffic-volume analysis, namely: ARP, Netbios Data-
grams (NBDGM) and Name Queries (NBNS), and IPX.

On closer examination, we find that most of these of-
fending protocols could be easily handled by a proxy:
for example, IPX is safely ignorable, ARP traffic that is
not destined to the machine in question is likewise safely
ignorable; for ARP queries destined to the machine, it
would be fairly straightforward for a proxy to automati-
cally construct and generate the requisite response with-
out having to wake the host.

Office Home

Protocol % of traffic [Protocol % of traffic
HSRP 59.58 SSDP 94.4
SSDP 2491 HSRP 2.31
PIM 6.04 IGMP 1.84
IGMP 5.05

EIGRP 1.88

Other 2.54 Other 1.45
Total 100 Total 100

Figure 9: Protocol composition for incoming multicast
traffic, in both office and home enviroments, ranked by
per-protocol traffic volumes.

Office Home
All Mcast 0-1s All Mcast 1-2min
HSRP 0-1s SSDP 4-8min
PIM 8-9s HSRP >15min
IGMP 20-30s IGMP >15min
SSDP 20-30s

Figure 10: Protocol composition for incoming multicast
traffic, in both office and home environments, ranked by
ts_50.

4.3 Deconstructing Multicast

Table 9 and 10 present our protocol rankings for
multicast traffic. Again, we also present the value of
ts_50 when considering all multicast traffic taken to-
gether. We see that, multicast traffic (as a whole) can
be a bad offender in enterprise environments with an
ts_50 = 0— 1s. It turns out that this is largely caused by
router traffic—the Hot Standby Router Protocol (HSRP),
Protocol Independent Multicast (PIM), EIGRP, etc.

This traffic is either absent (e.g., PIM) or greatly re-
duced (e.g., HSRP) in home environments which ex-
plains why multicast is much less problematic in homes,
with an ts_50 = 1 — 2 minutes (compared to 10 — 20s
for broadcast).

The good news is that all router traffic (HSRP, PIM,
IGRP) is safely ignorable. In fact, many modern Ether-
net cards already include a hardware multicast filter that
discards most unwanted multicast traffic.

As with broadcast traffic, we also see significant traffic
contributed by service discovery protocols: in this case
SSDP, the Simple Service Discovery Protocol used by
UPnP devices. Once again, for protocols such as SSDP
and IGMP, it is fairly straightforward for a proxy to auto-
matically respond to incoming traffic without waking the
host; doing so would require some amount of state at the
proxy such as the list of multicast groups the interface
belongs to and the services running on the machine.

4.4 Deconstructing Unicast

Finally, we present our protocol ranking for unicast traf-
fic in Tables 11 and 12. Because much of unicast traf-
fic is either TCP or UDP, and this level of classifica-
tion is unlikely to be informative, we further break each

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

387

Transport [Session % of traffic
Protocol Protocol
TCP 94.73
DCE/RPC 2491
NBSS 14.85
HTTP 12.31
TPKT 3.82
SSL 2.68
VNC 2.45
Other 33.71
UDP 3.75
DNS 1
Other 2.75
ICMP 1.29 1.29
Other 0.23 0.23
Total 100 100

Figure 11: Protocol composition of incoming unicast
traffic in office enviroments, ranked by per-protocol traf-
fic volumes.

Office Home
All Ucast 10-20s All Ucast 50-60s
TCP 10-20s UDP 1-2min
UDP 1-2min DNS 1-2min
DCE/RPC 1-2min TCP 8-15min
DNS 2-4min
SMB 4-8min
NBNS 4-8min
HTTP 8-15min

Figure 12: Protocol composition of incoming unicast
traffic in office environments, ranked by ts_50 .

Port App ts_50
TCP keep |many 1-2min
alives

UDP 53 DNS 2-4min
TCP 1025 [DCE/RPC (2-4min
TCP 445 SMB/CIFS [4-8min
TCP 63422 |Bigfix 4-8min
TCP 53 DNS 4-8min
TCP 80 HTTP 8-15min
UDP 63422 |Bigfix 8-15min
TCP SYNs |many > 15min

Figure 13: Protocol composition for unicast traffic based
on TCP and UDP ports, ranked by ts_50

down by session-layer protocol with an additional map-
ping from ports in Table 13. Unfortunately, unlike the
case of broadcast and multicast, with unicast, it is harder
to deduce the ultimate purpose for much of this traffic
since even the session or application-level protocol iden-
tifiers are fairly generic. (One exception is the “BigFix”
application listed in Fig. 13. BigFix is an enterprise soft-
ware patching service that checks security compliance of
enterprise machines; based on the frequency and volume
of BigFix traffic we see, it appears to have been config-
ured by an over-zealous system administrator.)

Stymied in our attempts to deconstruct unicast traffic
based on whether and how it might be proxied, we try

100% — —
75%
O Unknown
50% 1 B Ougoing
connections
25% M Incoming
connections
0% -
IN ‘ ouT IN ‘ ouT

Office

Home

Figure 14: Fraction of packets generated by incoming vs.
outgoing connections. For home and office, both received
and transmitted packets.

an alternate strategy. We classify TCP and UDP pack-
ets based on the connections they belong to and catego-
rize connections as incoming vs. outgoing. Our interest
in this classification is because we suspect that a large
portion of packets are likely to belong to outgoing con-
nections. And while a host might wake for incoming con-
nections, waking for outgoing connections might well be
avoidable (for reasons discussed below). From the results
in Fig. 14, we see that outgoing connections do indeed
dominate. Now for a sleeping machine, there are three
possibilities for these outgoing connections: (1) the con-
nection was initiated by the host before the idle period—
in this case, such traffic might not be ignorable if the
host/proxy wants to maintain this connection, hence we
hope this percentage of traffic is small, (2) the connec-
tion was initiated but failed (3) the connection was ini-
tiated by the host after the start of the idle period; for
a sleeping host, these connections would either simply
never have been initiated (if the connection were deemed
unncessary) or, the host would be deliberately woken to
initiate these connections (if the connection were deemed
necessary, as for services scheduled to run during idle
times). For the former, the traffic can simply be ignored
from our accounting and, in the latter case, such sched-
uled processing is easily batched and hence needn’t dis-
rupt sleep. Hence for all but the first case, waking the
machine might be avoidable. We plot this breakdown of
outgoing connections in Figure 15. We see that only a
relatively small percentage of outgoing connections — al-
ways less than 25% — belong to the first category which
might require waking the host. Based on this, we specu-
late that, it might be possible to eliminate or ignore much
of even unicast traffic.

Early in this section, we asked whether one might iden-
tify a small set of of protocols or proxy behaviors that
could yield significant savings. We find that, the answer
is positive in the case of multicast and broadcast but less
clear for unicast traffic. In the next section we consider
the implications of our traffic analysis for proxy design.

388

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

100

75 4
O New
50 7 connections
B Failed
25 connections

Home Office ALL

Figure 15: For outgoing connections: the fraction of
incoming packets that belong to new connections and
failed connection attempts.

5 A Measurement-driven Approach to
Proxy Design

Having studied the nature of idle-time traffic, we now ap-
ply our findings to the design of a practical power-saving
proxy. We start in Section 5.1 by extracting the high-level
design implications of our traffic analysis from the previ-
ous section. Building on this, in Section 5.2, we illustrate
the space of design tradeoffs by considering four specific
examples of proxies. In Section 5.3, we distill our find-
ings into a proposal for a core proxy architecture that of-
fers a single framework capable of supporting the broad
design space we identify.

5.1 Design Implications

At minimum, a power-saving proxy should: (a) allow the
host to sleep for a significant fraction of the time, and
(b) maintain the basic network presence of the host by
ensuring remote entities can still address and reach the
machine and the services it supports. Beyond this, we
have a significant margin of freedom in choosing how a
proxy might handle the remaining idle-time traffic and
applications. Viewed through this lens, our results from
Section 4 lead us to differentiate idle-time traffic along
two different dimensions. The first classifies traffic based
on the need to proxy the traffic in question:

(1) don’t-wake protocols: these are protocols that gen-
erate sustained and periodic traffic and hence, ideally,
would be dealt with (by a proxy) without waking the host
since otherwise the host would enjoy little sleep. Exam-
ples of such protocols identified in the previous section
include IGMP, PIM, ARP. Table 1 lists a set of protocols
we classify as don’t-wake.

(2) don’t-ignore protocols: these are protocols that re-
quire attention to ensure the correct operation of higher-
layer protocols and applications. For example, we must
ensure the DHCP lease on an IP address must be main-
tained and that a machine must respond to NetBIOS
name queries to ensure the services it runs over NetBIOS
remain addressable. The protocols we identified as don’t-
ignore are listed in Table 1. Note that the list of don’t-
wake and don’t-ignore protocols need not be mutually

Don’t HSRP, ARP, PIM, NBDGM, ICMP, IGMP,
wake SSDP

Don’t ARP (for me), NBNS, DHCP (for me)

ignore

Table 1: Protocols that shouldn’t cause a wake up (too expen-
sive in terms of sleep), and protocols that should not be ignored
(for correctness).

Ignorable HSRP, PIM, ARP (for others), IPX, LLC,
EIGRP, DHCP
Protocol | State
ARP IP address
. NBNS NB names of machine and
Mechanical .
Response local services
SSDP Names of local plug-n-play
services
IGMP Multicast groups the inter-
face belongs to
ICMP IP address
NBDGM| NB names of machine and
local services. Ignores pkts.
not destined to host, wakes
host for rest

Table 2: Protocols that can be handled by ignoring or by me-
chanical response. We classity DHCP as ignorable because we
choose to schedule the machine to wake up and issue DHCP
requests to renew the IP lease — an infrequent event.

exclusive; for example, ARP traffic is both frequent and
critical and hence falls under both categories.

(3) policy-dependent traffic: for the remainder of traf-
fic, the choice of whether and how a proxy should handle
the traffic is a matter of the tradeoff the user (or soft-
ware designer) is seeking to achieve between the sophis-
tication of idle-time functionality, the complexity of the
proxy implementation and energy savings. We shall ex-
plore these tradeoffs in the context of concrete proxy im-
plementations in Section 5.2.

A complementary dimension along which we can clas-
sify traffic is based on the complexity required to proxy
the traffic in question:

(A) ignorable (drop): this is traffic that can safely be
ignored. Section 4 identified several such protocols and
the top ranked. of these are listed in Table 2. Comparing
Tables 1 and 2, we see that (fortunately) there is a sig-
nificant overlap between don’ t-wake and ignorable
protocols. Policy-dependent traffic/applications that are
deemed unimportant to maintain during idle times could
likewise be ignored while don’ t-ignore protocols
obviously cannot be.

(B) handled via mechanical responses: this includes in-
coming (outgoing) protocol traffic for which it is easy to
construct the required response (request) using little-to-
no state transferred from the sleeping ho.nction is some-
what subjective, based For example, a proxy can easily
respond to NetBIOS Name Queries asking about local
NetBIOS services, once these services are known by the

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

389

proxy. Table 2 lists key protocols that can be dealt with
through mechanical responses.

(C) require specialized processing: this covers proto-
col traffic that, if proxied, would require more complex
state maintenance (transfer, creation, processing and up-
date) between the proxy and host. For example, consider
a proxy that takes on the role of completing ongoing p2p
downloads on behalf of a sleeping host — this requires
that the proxy learn the status of ongoing and sched-
uled downloads, the addresses of peers, efc. and more-
over that the proxy appropriately update/transfer state at
the host once it resumes. In theory, specialized process-
ing would be attractive for policy-dependent traf-
fic that is both important and frequently-occurring (since
otherwise we could simply drop unimportant traffic and
wake the host to process infrequent traffic).

Of course, in addition to the the above (classes A-
C), for traffic that a proxy doesn’t ignore but doesn’t
want/know to handle a proxy always has the option of
waking the host. Essentially the decision of whether to
handle desired traffic in the proxy versus waking the host
represents a tradeoff between the complexity of a proxy
implementation and the sleep time of hosts.

5.2 Example Proxies

We now present four concrete proxy designs derived
from the distinctions drawn above. We select these prox-
ies to be illustrative of the design tradeoffs possible but
also representative of practical and useful proxy designs.

proxy_1 We start with a very simple proxy that: (1)
ignores all traffic listed as ignorable in Table 2 and (2)
wakes the machine to handle all other incoming traffic.
Besides clearly ignorable protocols, we choose to also
ignore traffic generated by the Bigfix application (TCP
port 63422) , which we previously identified (Section 4)
to be one of the big offenders. We do so because this traf-
fic is a) not representative for non-Intel machines, and b)
the application is very badly configured — sending very
large amounts of traffic for little offered functionality —
making sleep almost impossible.

This proxy is simple — it requires no mechanical or spe-
cialized processing. At the same time, because it makes
the conservative choice of waking the host for all traf-
fic not known to be safely ignorable, this proxy is fully
transparent to users and applications, in the sense that
the effective behavior of the sleeping machine is never
different from had it been idle (except for the perfor-
mance penalties due to the additional wake-up time).

proxy_2 Our second proxy is also fully transparent, but
takes on greater complexity in order to reduce the fre-
quency with which the machine must be woken. This
proxy: (1) ignores all traffic listed as ignorable in Table 2,
and (2) issues responses for protocol traffic listed in the
same table as to be handled with mechanical responses

and (3) wakes the machine for all other incoming traffic.
Since this proxy needs more state to generate mechani-
cal responses (e.g., the NetBIOS Names of local services,
needed to answer NBNS queries), it can also use this ex-
tra information to selectively ignore more packets than
proxy_2 (e.g., ignore all NetBIOS datagrams not des-
tined for local services).

proxy_3 Our third proxy generates even deeper savings
by only maintaining a small set of applications, (chosen
by the user) operable during idle times, while ignoring all
other traffic. We use telnet, ssh, VNC, SMB file-sharing
and NetBIOS as our applications of interest. This proxy
performs the same actions (1) and (2) as implemented by
proxy-2 (ignore and responds to the same set of proto-
cols), but it (3) wakes up for all traffic belonging to any
of telnet, ssh, VNC, SMB file-sharing and NetBIOS and
(4) drops any other incoming traffic. Relative to our pre-
vious example, proxy_2 is less transparent in that the
machine appears not to be sleeping for some select re-
mote applications, but is inaccessible to all others.

proxy 4 All the above proxies implement functionality
related to handling incoming packets. In our final proxy,
we also consider waking up for scheduled tasks initiated
locally. This proxy behaves identically to proxy_3 with
respect to incoming packet, but supports an additional
action: (5) wake up for the following tasks (for which
we assume that the system is configured to wake up in
order to perform them): regular network backups, anti-
virus (McAfee) software updates, FTP traffic for auto-
matic software updates, and Intel specific updates.

Evaluating tradeoffs In the following we compare the
sleep achievable by our 4 proposed proxies, and com-
pare it with the baseline WoP case. We perform this eval-
uation for both office and home environments, and in
each case we evaluate 3 possible values for transition
times ¢s: 5, 10, and 60 seconds. The first of these (5s)
is a very optimistic transition time, not achievable today
using S3 sleep states, but foreseeable in the near future
(today, Microsoft Vista specifications require computers
to resume from S3 sleep in under 2s [18]). The second
(10s) is representative of the shortest transitions achiev-
able today [6], and the last (1min) is representative of a
setting that allows almost a minute for processing sub-
sequent relevant network packets before going to sleep
again. The advantage of using a very short timer before
going to sleep is the increased achievable sleep. The dis-
advantage is that the delay penalty for waking the host
will be incurred at more packets. In the extreme case of
very short sleep timers, this could make remote appli-
cations sluggish and un-responsive. For the wake events
generated by scheduled tasks, we use a longer transition
time (and thus a longer sleep timer value) of 1min, since
such tasks usually take longer time to complete.

390

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

100

B Wake all
W Proxy_1
50 OProxy_2
W Proxy_3
O Proxy_4

75

25

Sleep (% of idle time)

ts=10s
a) Office environment

ts=1min ts=5s

B Wake all
HProxy_1
OProxy_2
B Proxy_3
OProxy_4

Sleep (% of idle time)
2

ts=1min ts=10s ts=5s

b) Home environment

Figure 16: Savings achieved by different proxies in home
and office environments.

Examining the performance of our proxies, we make
the following high-level observations: a) At one end of
the spectrum, proxy_1(the simplest) is inadequate in
office environments, and borderline adequate in home
environments. b) At the other end of the spectrum we
have proxy_3, which only handles a select number of
applications, but in return achieves good sleep in all sce-
narios — more than 70% of idle time even in the office
and with a transition time of Iminute. ¢) The efficiency
of proxy 2 depends heavily on environment. While the
additional complexity (compared to proxy 1) makes it
a good fit in home environments (sleeping close to 60%
even for ts = 1main), having to handle all traffic makes
it a worse fit for the office (sleeping ~ 12% for the same
transition time). This shows that, unless they support a
large number of rules, transparent proxies are a better fit
for home, but not the office. d) The best tradeoff between
functionality and savings, and therefore the appropriate
proxy configuration, depends on the operating environ-
ment. e¢) Since scheduled wake-ups are typically infre-
quent, the impact they have on sleep is minimal — in our
case, proxy_4 sleeps almost as much as proxy_3 in all
considered scenarios.

5.3 A strawman proxy architecture

Our study leads us to propose a simple proxy architecture
that offers a unified framework within which we can ac-
commodate the multiplicity of design options identified
above. The proposal we present is a high-level one since
our intent here is merely to provide an initial sketch of
an architecture that could serve as the starting point for
future discussion on standardization efforts.

The core of our proposal is a table—the power-proxy
table (PPT)—that stores a list of rules. Each rule de-
scribes the manner in which a specified traffic type
should be handled by the proxy when idle. A rule con-

sists of a trigger, an action and a timeout.

Triggers are either timer events or regular expressions
describing some network traffic of interest. When a trig-
ger’s timer event fires or if an incoming packet matches a
trigger’s regular expression, the proxy executes the cor-
responding action. If the action involves waking the host,
the timeout value specifies the minimum period of time
for which the host must stay awake before contemplating
sleep again. To resolve multiple matching rules, standard
techniques such as ordering the rules by specificity, pol-
icy, etc. can be used. The proxy table must also include a
default rule that determines the treatment of packets that
do not match on any of the explicitly enumerated rules.
We propose the following actions:

e drop: the incoming packet is dropped.

e wake: the proxy wakes the host and forwards the pack-
ets to it. Other packets buffered while waiting for the
wake will be forwarded as well.

e respond(template, state): the proxy uses the
specified femplate to craft a response based on the in-
coming packet and some state stored by the proxy. This
action is used to generate mechanical responses as de-
scribed below.

e redirect(thandle): the proxy forwards the packet to
a destination specified by the handle parameter. This
is used to accommodate specialized processing as de-
scribed below.

A response template is a function that computes the
mechanical response based on the incoming packet and
one or more immutable pieces of state. This means that
our function does not maintain or change any state. There
is no state carried over between successive incoming
packets (such as sequence numbers), and no state trans-
fer between the proxy and the host upon wake-up. We
choose to support this functionality because a) it is rel-
atively simple to implement in practice and b) it covers
most of the non-application specific traffic, as shown in
Section 4, and illustrated in our proxy examples.

To accommodate more specialized processing, we as-
sume developers will write application-specific stubs and
then enter a redirect rule into the proxy’s PPT, where
the handle specifies the location to which the proxy
should send the packet. Such stubs can run on machine
accessible over the network (e.g., a server dedicated to
proxying for many sleeping machines in a corporate
LAN), or on a low-power micro-engine supported on
the local host (e.g., a controller on the motherboard, or
a USB-connected gumstick). In all these cases, the han-
dle would be specified by its address, for example a (IP
address, port) combination. The redirect abstraction thus
allows us to accommodate specialized processing with-
out embedding application-specific knowledge into the
core proxy architecture.

The external API to this proxy is twofold: (1) APIs to

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

391

—————— 1
INPUT [From Network Card

E 2 Learning State ||
Address Classifier Module Querier
Unicast Unicast T
to Host Bcas ‘Mcast from Host Otl|1er State &
I 1 Info
1
orop oY Keeper Staty
Broadcast Triggers \
Bcast Cl.

—ﬂ‘ ARP Solver |

1: ARP Query
2: NBNane Query |

 ——
NBNS Solver

4

/ nicast Default: Host State Host State
Triggers Classifi Classifier
ASLEEP | Other ASLEEP | Other
Host State I T
Classifier

ASLEEP | Other |H

|

Cl; Y
Ucast Response Generator
1: TCP Syn = Response
. Template DB

0,
Iz

Delayed Per
Notifications
To Network Card | OUTPUT

from StateKeeper
Figure 17: Example Click implementation.

Default:

(&

lDrop

activate/deactivate the proxy as the host enters/exits sleep
and (2) APIs to insert and delete rules. The process by
which to install and execute stubs is outside of the core
proxy specification which only provides the mechanism
to register and invoke such stubs. The architecture is ag-
nostic to where the proxy runs allowing implementations
in hardware (e.g., at host NICs), in PC software (e.g., a
proxy server running on the same LAN) or in network
equipment (e.g., a firewall, NAT box).

Finally, the use of timer events to wake a host already
exists today. Our contribution here is merely to integrate
the mechanism into a unified proxy architecture.

5.4 Proxy Prototype Implementation

To illustrate the feasibility of our architecture, we build
a simple proxy prototype using the Click modular
router [17]. We choose to deploy the proxying function-
ality in a standalone machine responsible for maintaining
the network presence of several hosts on the same LAN.
To allow our proxy (let us call it P) to sniff the traffic for
each host, we ensure that PP shares the same broadcast
domain with these hosts. This can be achieved either by
connecting the proxy and the machines to a common net-
work HUB, or by configuring the LAN switch to forward
all traffic to the port that serves P.

In our initial design, we don’t implement proxies that
involve transferring state between the host and the proxy.
Instead, P learns the pieces of state required (e.g. the IP
address and the Netbios name for each host) by sniff-
ing host traffic and extracting the state exchanged (e.g.
ARP and NBNS exchanges). This design circumvent the
need for any end-host modifications, and support proxy-

ing for machines with different hardware platforms (new
and old) and operating systems. The proxy requires min-
imal configuration (a list of the MAC addresses of the
hosts that need to be proxied), and can be incremen-
tally deployed as a low-power stand-alone network box.
Once low-power proxying standards are developed [12],
the design can be extended to support state transfer, and
achieve even deeper energy savings.

Our prototype implements very basic proxying func-
tionality, but the software architecture (presented in Fig-
ure 17) can be easily extended to more protocols and
use cases. Currently, we support three types of actions:
wake, respond and drop. The proxy awakes its hosts for
TCP connection requests (incoming TCP SYN packets)
and incoming Netbios Name Queries for the host’s NB
name. If such a “wake packet” for a sleeping host arrives,
P buffers the request, sends a magic packet to wake the
host, and relays the buffered packet once the host be-
comes available. The proxy responds automatically to
incoming ARP requests, and drops all other incoming
packets. In relation to the examples discussed in Sec-
tion 5.2, this prototype has a simple and non-transparent
design. To determine whether a host is awake, the proxy
sends periodic ARP queries to each host; if these queries
receive no response, the host is assumed to be asleep.
When the proxy attempts to wake a host and fails repeat-
edly, the host is assumed to be off, rather than just asleep,
and the proxy ceases to maintain its network presence.

Figure 17 presents the software architecture of our
Click proxy, and highlights the mapping between Click
modules and the generic categories of triggers, actions
and state, discussed in the strawman proxy architecture.

We test our Click-based proxy implementation by in-
stalling it on one of our enterprise desktops, and con-
figuring the proxy to maintain the network presence of
several IBM ThinkPad laptops. We use this deployment
to measure the delays experienced by applications wak-
ing a sleeping host, and find these to be surprisingly low:
2.4s on average, and 4s at maximum — much lower than
the 30s TCP SYN timeout. These delays includes the
host wake-up delay (= 1.4s), and the additional time re-
quired for the proxy to detect the state change and relay
the buffered packet causing the wake (= 1s). We defer
a comprehensive deployment-based evaluation to future
work.

6 Power-Aware System Redesign

In this section we consider approaches that might assist
in reducing idle-time energy consumption by either sim-
plifying the implementation of proxies or altogether ob-
viating the need for proxying.

6.1 Software Redesign

Our idle traffic analysis shows that solutions relying
on Wake-on-LAN functionality face the following chal-

392

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

lenges: (i) It is difficult to decide if various packets and
protocols warrant a machine wake-up.(ii) Hosts receive
many packets even when idle (3 per second on average).
(iii) Many protocols exchange packets periodically, pre-
venting long quiet periods when hosts could sleep. These
challenges could be dealt with at both application and
protocol level:

Power-aware application configuration Today, appli-
cations and services are typically designed or configured
without taking into account their potential impact on the
power management at end-systems. For example, in Sec-
tion 4.4 we discussed a tool called Bigfix, that checks if
network hosts conform to Intel’s corporate security spec-
ifications. This application was configured to perform
these checks very aggressively, continuously generating
large amounts of traffic. Under a WoL approach, this ap-
plication alone would have made prolonged sleep virtu-
ally impossible.

This is a perfect example of the behaviour that could be
avoided by configuring applications to be more power-
aware, and perform periodic tasks less frequently, reduc-
ing the volume of network traffic seen by hosts.

Protocol Specification The decision to ignore or wake
on a packet can be difficult, and involves protocol pars-
ing, maintaiing a long set of filters and rules, and for
some protocols host or application-specific state.

To eliminate the complexity of this decision, and al-
low hosts to sleep longer even when using very simple
rules for waking, protocols could be augmented to carry
explicit power-related information in their packets. An
example of such information would be a simple bit indi-
cating whether a packet can be ignored.

Protocol Redesign We believe these principles should
be followed when designing power-aware protocols.

Consideration when using broadcast and multicast: We
saw earlier that broadcast and multicast are mainly re-
sponsible for keeping hosts awake. This type of traffic
could be substantially reduced by redesigning protocols
to use broadcasts sparingly. Some protocols are partic-
ularly inefficient in this respect. For example, all Net-
BIOS datagrams are always sent over Ethernet broadcast
frames. These frames are received by all hosts on the
LAN, and then discarded by most of them. This ranks
NBDGM as one of the top “offenders”, yet this could be
easily avoided by using unicast transmissions when pos-
sible. Another approach is based on the observation that
many service discovery protocols have redundant func-
tionality. This redundant functionality could conceivable
be replaced by a single service that can be shared by a
multiplicity of applications.

Synchronization of periodic traffic: One way to in-
crease the number of long periods of network quies-
cence would be to identify protocols that use periodic

updates/message exchanges, and try to synchronize, or
bulk these exchanges together. This would allow ma-
chines to periodically wake up, process all notifications
and request, and resume sleep.

Complementing soft state: Many protocols (e.g., SSDP,
NetBIOS, etc.) maintain and update state using peri-
odic broadcast notifications/ For such protocols (and
for similar applicatios), it would be essential to make
them disconnection-tolerant, by providing complemen-
tary state query mechanisms that could be used quickly
build up-to-date copies of the soft state upon waking.
This would enable ignoring any soft state notifications.
Today, such query mechanisms exist only for some of
these protocols, and they are often inefficient.

6.2 Hardware Redesign

A general goal of energy saving mechanisms, especially
hardware designs, is to lead the industry towards energy
proportional computing [8]. If energy consumption of a
machine would accurately reflect its level of utilization,
the energy would be zero when idle. Sleep states are a
step in this direction, P-states (low power active opera-
tion) are another. Related to this, it would be very desir-
able to expose power saving states (S states) that feature
better transition times, even if they offer smaller savings.
Given the small inter-packet gaps, these states will come
in handier than the deep-sleep ones.

7 Related Work

The notion that internetworked systems waste energy
due to idle periods has been frequently reiterated[14,
13, 16, 19, 10, 7, 15]. Network presence proxying for
the purpose of saving energy in end devices was first
proposed over ten years ago by Christensen et al.; in
follow-up work [11] the authors quantify the potential
savings using traffic traces from a single dormitory ac-
cess point and in [13] examine the traffic received at a
single idle machine to identify dominant protocols and
discuss whether these can be safely ignored. Our work
draws inspiration from this early work extending it with
a large-scale and more in-depth evaluation of idle-time
traffic in enterprise and home environments. A more re-
cent proposal [7]. postulates the notion of “selective con-
nectivity”, whereby a host can dictate or manage its net-
work connectivity, going to sleep when it does not want
to respond to traffic.

There is an extensive literature on energy saving tech-
niques for individual PC platforms. Broadly, these aim
for reduced power draws at the hardware level and faster
transition times at the system level. These offer a com-
plementary approach to reducing the power draw of
idle machines; if and when these techniques lead us to
perfectly “energy-proportional” computers, the idle-time
consumption will be less problematic and proxying will

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

393

fade in importance. So far however, achieving such en-
ergy proportionality has proved challenging.

In parallel work [6], the authors build a prototype proxy
supporting BIT-TORRENT and IM as example applica-
tions. Our work considers a broader proxy design space,
evaluating the tradeoffs between design options and the
resultant energy savings informed by detailed analysis
of network traffic. In relation to our design space, their
proxy supports BT and IM using application stubs.

8 Conclusions

In general, the question of how a proxy should handle
the user-idle time traffic presents a complex tradeoff be-
tween balancing the complexity of the proxy, the amount
of energy saved, and the sophistication of idle-time func-
tionality. Through the use of an unusual dataset, collected
directly on endhosts, we explored the potential savings,
requirements and effectiveness of technologies that aim
to put endhost machines to sleep when users are idle.
For the first time here, we dissect the different categories
of traffic that are present during idle times, and quan-
tify which of them have traffic arrival patterns that pre-
vent periods of deep sleep. We see that broadcast and
multicast traffic constitute a substantial amount of the
background chatter due to service discovery and routing
protocols. Our data also revealed a significant amount of
outgoing connections, generated in part by enterprise ap-
plications. We tried to identify which traffic can be ig-
nored and found that most of the broadcast and multicast
traffic, as well as roughly 75% of outgoing connections,
appears safely ignorable. Handling unicast traffic is more
involved because it harder to infer the intent of such traf-
fic, and often needs some state information to be main-
tained on the proxy.

After having studied our traffic and the sleep poten-
tial those patterns contain, we discuss the design space
for proxies, and evaluate the savings offered by 4 sam-
ple proxy designs. These cases reveal the tradeoffs be-
tween design complexity, available functionality and en-
ergy savings, and discuss the appropriateness of vari-
ous design points in different use environments, such as
home and office.

Finally, we present a general and flexible strawman
proxy architecture, and we build an extensible Click-
based proxy that exemplifies one way in which this ar-
chitecture can be implemented.

Aknowledgments

We thank Robert Hays, Ken Christensen, Gianluca Ian-
naccone, Eric Mann, Rabin Patra and Kevin Fall for their
suggestions, and Eve Schooler for her help collecting
trace data. We also thank the anonymous reviewers and
our shepherd Yuanyuan Zhou for their useful feedback.

References

(1]

(2]
(3]
(4]
(5]
(6]

(7]

(8]

(9]
[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

(19]

[20]

(21]

Alert Standard Format (ASF) Specification, v2.0,
DSPO0136, Distributed Management Task Force. http:

//www.dmtf .org/standards/ast.
ENERGY STAR Program Requirement for Computers.

Version 4.0. http://www.eu-energystar.org.
The Wireshark Network Protocol Analyzer. http://

www.wireshark.org/.
Power and Thermal Management in the Intel Core Duo

Processor. In Intel Technology Review, Vol.10, 2006.
Advanced configuration and power interface. http://

wWww.acpi.org.

Y. Agarwal, S. Hodges, J. Scott, R. Chandra, P. Bahl, and
R. Gupta. Somniloquy: Augmenting Network Interfaces
to Reduce PC Energy Usage. In NSDI, 2009.

M. Allman, K. Christensen, B. Nordman, and V. Paxson.
Enabling an energy-efficient future internet through se-
lectively connected end systems. In HotNets, 2007.

L. A. Barroso and U. Holzle. The case for energy-
proportional computing. Computer, 40(12):33-37, 2007.
BRO IDS. http://www.bro-ids.org.

K. J. Christensen and F. B. Gulledge. Enabling power
management for network-attached computers. Interna-
tional Journal of Network Management, 1998.

K. J. Christensen, C. Gunaratne, B. Nordman, and A. D.
George. The next frontier for communications net-
works: power management. Computer Communications,
27(18):1758-1770, 2004.

ECMA International. ~TC32-TG21 — Proxying
Support for Sleep Modes. http://www.
ecma- international.org/memento/
TC32-TG21-M.htm.

C. Gunaratne, K. Christensen, and B. Nordman. Man-
aging Energy Consumption Costs in Desktop PCs and
LAN Switches with Proxying, Split TCP Connections,
and Scaling of Link Speed. International Journal of Net-
work Management, October 2005.

M. Gupta and S. Singh. Greening of the internet. In ACM

SIGCOMM, Karlsruhe, Germany, August 2003.
Intel remote wake technology. http://support.

intel.com/support/chipsets/rwt/.

J. Klamra, M. Olsson, K. Christensen, and B. Nord-
man. Design and implementation of a power manage-
ment proxy for universal plug and play. Proceedings
of the Swedish National Computer Networking Workshop
(SNCW), Sep 2005.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Transac-
tions on Computer Systems, 18(3):263-297, Aug. 2000.
Microsoft Window Vista Logo Program Requirements
and Policies. http://www.microsoft.com/

whdc/winlogo/hwrequirements . mspxX.
B. Nordman. Networks, Energy, and Energy Efficiency.

Cisco Green Research Symposium, March 2008.

C. Webber, J. Roberson, M. McWhinney, R. Brown,
M. Pinckard, and J. Busch. After-hours power status of
office equipment in the usa. Energy, 31(14):2823-2838,
Nov 2006.

B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner. Theo-

retical and practical limits of dynamic voltage scaling. In
DAC, 2004.

394

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

