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ABSTRACT
Energy efficiency and energy-proportional computing have
become a central focus in enterprise server architecture.
As thermal and electrical constraints limit system power,
and datacenter operators become more conscious of en-
ergy costs, energy efficiency becomes important across the
whole system. There are many proposals to scale energy
at the datacenter and server level. However, one significant
component of server power, the memory system, remains
largely unaddressed. We propose memory dynamic volt-
age/frequency scaling (DVFS) to address this problem, and
evaluate a simple algorithm in a real system.

As we show, in a typical server platform, memory con-
sumes 19% of system power on average while running SPEC
CPU2006 workloads. While increasing core counts demand
more bandwidth and drive the memory frequency upward,
many workloads require much less than peak bandwidth.
These workloads suffer minimal performance impact when
memory frequency is reduced. When frequency reduces,
voltage can be reduced as well. We demonstrate a large op-
portunity for memory power reduction with a simple con-
trol algorithm that adjusts memory voltage and frequency
based on memory bandwidth utilization.

We evaluate memory DVFS in a real system, emulat-
ing reduced memory frequency by altering timing registers
and using an analytical model to compute power reduction.
With an average of 0.17% slowdown, we show 10.4% aver-
age (20.5% max) memory power reduction, yielding 2.4%
average (5.2% max) whole-system energy improvement.

Categories and Subject Descriptors
C.5.5 [Computer System Implementation]: Servers;
B.3.1 [Semiconductor Memories]: DRAM

General Terms
Measurement, Performance

1. INTRODUCTION
Power management has become a critical component of

both mobile and enterprise systems in recent years. In the
data center environment, thermal management and power
budgeting have become significant concerns, especially as
data centers become larger and pack servers more densely.
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The cost of operating a data center increasingly depends
on its energy usage as much as its capital cost. As a result
of these shifting constraints, server power consumption has
become a significant focus of work, stimulating a variety of
research for energy-efficient systems [4, 35].

Most proposed energy efficiency mechanisms autonomous-
ly observe system load or behavior and adjust the system’s
operating point periodically, moving on the performance /
power curve to achieve the best efficiency. Several mech-
anisms operate by shutting down unused servers in clus-
ters [10, 34], placing unused servers in a sleep state and
batching work to minimize sleep transitions [10, 23], or scal-
ing active server power proportionally to load [2]. In this
paper, we focus on the last goal, known as server energy
proportionality, which works by scaling subsystems within
an individual server.

Prior work has focused mostly on CPU energy propor-
tionality, adjusting frequency and voltage according to load
(DVFS, or dynamic voltage/frequency scaling) [36]. While
CPU DVFS, and idle powerdown states in various other
system components, help to achieve scalability, we observe
that the memory system often draws power disproportion-
ate to its load. In modern systems, memory power can be a
significant portion of system power: in our evaluations, 23%
on average. Although modern systems make use of mem-
ory powerdown states during idle periods between mem-
ory requests, significant further opportunity exists. Current
memory systems run at speeds that are balanced with re-
spect to the peak computing power, optimized for memory-
intensive workloads. However, for many other workloads,
the performance impact of running at lower memory fre-
quency is minimal. A slower memory frequency allows for
lower voltage, furthering power reduction. Thus, we pro-
pose memory DVFS to dynamically adapt the memory sys-
tem’s operating point to current needs. We make the fol-
lowing contributions:
• We identify the opportunity for memory DVFS by

presenting a detailed power model that quantifies fre-
quency-dependent portions of memory power, show-
ing that significant reductions are possible.
• We present a control algorithm based on observing

memory bandwidth utilization and adjusting its fre-
quency/voltage to minimize performance impact.
• We evaluate this on real hardware, obtaining perfor-

mance results by emulating memory frequency with
altered timing settings and modeling power reduction
analytically.

The rest of this paper is organized as follows. In §2, we
motivate the opportunity for memory DVFS. In §3, we dis-
cuss the components of DRAM power, and in §4 we present
a model of memory power under voltage and frequency scal-
ing. §5 discusses the impact of frequency scaling on appli-
cation performance. We present our control algorithm in
§6, and evaluate it in §7. We conclude with a discussion of
related work and future directions for memory DVFS.
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Figure 1: Memory system power in a 12-DIMM (48 GB), 2-socket system for SPEC CPU2006 benchmarks.

2. MOTIVATION
In order to motivate memory frequency/voltage scaling

as a viable mechanism for energy efficiency, we must show
(i) that there is significant opportunity for power reduction
with this mechanism, and (ii) that common workloads tol-
erate the performance impact of memory frequency scaling
with minimal degradation.

At a high level, two opposing forces on energy efficiency
are at play when memory frequency is reduced. The effi-
ciency depends both on power consumption and on runtime,
as energy is the product of power and time. Power reduc-
tion alone will increase efficiency. However, performance
also degrades at lower-power operating points, which in-
creases runtime and thus energy. Thus, there is a tradeoff
in reducing memory frequency/voltage. We will show later
that statically scaling memory frequency has little perfor-
mance effect on many lower-bandwidth workloads because
frequency impacts only bus transfer latency, a portion of the
full memory latency. In this section, we motivate that mem-
ory frequency scaling can have an effect on system power
and thus energy (in the next section, we present an analyt-
ical model that incorporates voltage scaling).

2.1 Magnitude of Memory Power
We argue that (i) memory power is a significant por-

tion of full-system power in modern systems, and (ii) the
magnitude of power reduction attainable by memory fre-
quency/voltage scaling is on par with the reduction due to
CPU DVFS. First, Figure 1 shows average memory system
power in a 12-DIMM (48 GB), 2-socket server class system
running 8 copies of each benchmark (see §7.1 for details)
as computed by our power model (see §3). Total average
system power for each run is shown for comparison. Mem-
ory power is 80W in the highest case, and 65W on average,
against a 382W maximum (341W average) system power.

2.2 Potential Memory Power Reduction
Second, having seen that the magnitude of memory power

is significant, we argue that the potential reduction is also
significant. In order to show this, we perform a simple
experiment on real Intel Nehalem hardware (§7.1). For a
fixed workload (mcf from SPEC CPU2006 [32], a memory-
intensive benchmark, with one copy running on each core),
we measure AC power for three configurations. First, we
run both the CPU and memory at full speed (2.93GHz and
1333MHz, respectively). Then, we force CPU DVFS to
scale all cores down statically to 2.4GHz, with core voltage
reduced to the appropriate level (controlled by hardware).
Finally, we force memory speed to 800MHz, the lowest set-
ting supported by our test system. Table 1 presents the re-
sults. Although CPU DVFS has a larger impact on system
power (9.9% reduction), the impact of memory frequency
scaling on system power is also significant (7.6%).

Because of limitations in existing hardware, this sim-
ple scaling experiment does not perform voltage scaling on
memory, even though the CPU DVFS reduces core voltage.
As we will discuss in more detail later, memory running at
lower speed can operate at lower voltage as well, and this

Configuration CPU Mem Avg. Power Reduction

Baseline 2.93GHz 1333MHz 355W
CPU scaling 2.4GHz 1333MHz 320W 9.9%
Mem scaling 2.93GHz 800MHz 338W 7.6%

Table 1: Simple (static) reduction for mcf: AC
power reduction due to CPU and memory fre-
quency scaling, in real Intel Nehalem hardware.

grants additional power reduction. In the remainder of this
paper, we assume voltage as well as frequency scaling.

3. BACKGROUND: MEMORY POWER
In order to effectively improve energy efficiency by scal-

ing memory frequency and voltage, we must first under-
stand how this scaling affects memory system power (and
thus system energy). In this section, we first briefly pro-
vide background on DRAM structure (§3.1). We then break
down the components of DRAM power (§3.2) and discuss
how frequency scaling impacts each component. With this
understanding, we quantify power in terms of operational
power due to memory access (§3.3.1) and background power
that varies with memory sleep states and frequency (§3.3.2).
We next discuss the ability of DRAM to tolerate voltage
scaling, and its effects on power (§3.4). We address the
effects that frequency/voltage scaling might have on time
spent in power-down states (and the consequent trade-offs)
in §3.5. Finally, we discuss some potential implementation
issues for memory DVFS in §3.6. This understanding will
allow us to build an analytical model in §4 in order to ap-
proximate power and energy reduction.

3.1 DRAM Structure Background
Figure 2 (a simplified version of Figure 1 in [26]) gives

a general overview of the structure of a DDR3 DRAM de-
vice. A set of devices placed together on a DIMM comprises
a rank. Within a rank, a number of banks consist of inde-
pendent DRAM storage arrays in each device with associ-
ated decoders and sense amplifiers. These banks share I/O
hardware (drivers and receivers) to interface with the DDR
bus. Each bank is a matrix of storage cells, organized into
rows. The row buffer can hold one active row (or page) at
a time. An activate command brings a row into the buffer,
after which read/write commands can access columns in the
row. A precharge command returns the data to the storage
array and prepares for the next activation. Detailed de-
scriptions of memory operation can be found in datasheets,
technical notes and papers [26, 24, 25, 27].

Various policies govern the way in which a memory con-
troller uses these commands. Two common policies are
page-open and page-closed policies. Page-open keeps the
last-accessed row (page) active in the row buffer. This ben-
efits performance when the next access is to the same row,
because no activate is necessary. Page-closed performs a
precharge as soon as the access is complete. Although this
eliminates row hits, it reduces latency upon a row miss,
because no precharge is necessary, only an activate. Note
that we assume a page-closed policy in this paper. This
is motivated by the observation that in multi-core systems,
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Command Energy (nJ) @
1333MHz

Energy (nJ) @
800MHz

Read (array) 18 18
Write (array) 20 20
Read I/O (1 DIMM/channel) 1 1.7
Write I/O (1 DIMM/channel) 4 7
I/O additional termination (2 DIMMs/channel) 12 20
Activate+Pre-charge (page open+close) 25 25

Average energy/read, page-closed policy, 2 DIMMs/channel 56 64.7
Average energy/write, page-closed policy, 2 DIMMs/channel 61 72

Table 2: Energy per operation for DRAM commands in a DDR3 DIMM, at 1333 and 800MHz. All energy
components shown comprise the energy for a memory access, summarized in the last two rows. Note that
energy is higher at lower frequencies due to the increased bus utilization (the bus is driven for more time).

Power-down State Exit La-
tency to
Read Com-
mand

Power
@ 1333

Power
@ 800

PLL,
Out.
Clk

IBT,
ODT

DLL Clk.
Tree

Page
Buf.

Decod. Input
Buf.

Self
Re-
fresh

SelfRefresh-
Register Off

512 tCK +
6µs

0.56W 0.56W 0 0 0 0 0 0 0 1

SelfRefresh * 512 tCK 0.92W 0.77W 1 0 0 0 0 0 0 1
Precharge Slow
Powerdown -
Register Off

tMRD +
tXPDLL

1.35W 1.16W 1 0 0 0 0 0 0 0

Precharge Slow
Powerdown

tXPDLL 1.60W 1.41W 1 1 1 0 0 0 0 0

Precharge Fast
Powerdown *

tXP +
tRCD

2.79W 2.33W 1 1 1 0 0 0 0 0

Active Power-
down

tXP 3.28W 2.71W 1 1 1 0 1 0 0 0

Precharge
Standby *

tRCD 4.66W 3.87W 1 1 1 1 0 1 1 0

Active Standby 0 5.36W 4.36W 1 1 1 1 1 1 1 0

Table 3: Background Power: power states for a 4GB DDR3 DRx4 R-DIMM. Asterisks mark states our
evaluation system supports. These values incorporate all device power that is not accounted for by per-
operation energy above. Within the table, a 1 indicates that the given component is powered up.
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Figure 2: General overview of DRAM device struc-
ture, simplified from [26].

increasing page-conflict rates due to parallel access by many
threads reduce the benefit of page-open policies [33, 29].

3.2 DRAM Power Breakdown
To provide background for this work, we will first describe

the power usage of various components in a DRAM device.
DRAM Array Power: The DRAM array is the core of
the memory. It is asynchronous in operation. Thus, ar-
ray power is not dependent on memory frequency, only on
access count (memory bandwidth). Low-power states also
have no effect on DRAM array power: its power consump-
tion is already low when idle (∼10mW/device in x8 DDR3
DIMMs). The array draws a constant active-state power
when a read, write or precharge command is active.
I/O Power: This component of device power consists of
input buffers, read/write latches, DLL (delay-locked loop),
data bus drivers, and control logic, and is consumed when
the DRAM is idle (not powered down) or actively executing
a command. I/O power is memory-frequency-dependent: it
reduces with lower frequency. The portion of I/O power due
to active command execution scales with bus utilization;
this leads to an indirect effect when considering the energy

impact of frequency scaling, discussed below. I/O power is
reduced in memory power-down states (described below).
Register Power: A registered DIMM consists of input/
output registers on clock and command/address lines; regis-
ter power consists of these components as well as associated
logic and phase-locked loop (PLL). Like I/O power, register
power is related to the bus interface and so is frequency-
dependent. It also scales with low-power states. (Registers
are not shown in Figure 2 for simplicity.)
Termination Power: Finally, modern DRAM devices in-
clude on-die termination (ODT) to properly terminate the
bus during active operation. Termination power is dissi-
pated in on-die resistive elements, and is adjusted to bus
electrical characteristics, depending on DIMM count. With
2 DIMMs per channel, DDR3 termination power can reach
1.5-2.0W per DIMM. Termination power is not directly
frequency-dependent; it depends only on bus utilization.

3.3 Operation and Background Power
In order to understand and model DRAM power quan-

titatively, we split it into two parts: operation power and
background power. Operation power accounts for the effects
of active memory operations in all four components, and is
computed from the energy that each operation comprising a
memory access consumes. Background power accounts for
all other power in the device, and depends only on power-
down state and operating frequency. Taken together, these
two characterizations (given in Tables 2 and 3) describe the
power usage of the memory system.

The energy and power figures given in Tables 2 and 3
are based on measurements of standby and active current
(IDD values) for multiple DIMMs. This process is statisti-
cally rigorous: measurements are taken of multiple vendors’
DIMMs, and the values used here have certain statistical
confidence based on the distributions. More details can be
found in [18].

3.3.1 Operation Power
First, we must understand operation power, or the power

required to execute a command when the device is in an
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active state. We first present operation energy, split into
several subcomponents that comprise a complete access and
data transfer. The average power for a given access rate can
then be determined from these components.

Table 2 shows the energy required for each operation that
comprises a memory access at two operational frequencies,
1333MHz and 800MHz. A single memory access is 64 bytes
(8 data transfer cycles). The first two rows correspond to
actions that occur in the DRAM storage array itself. The
next two table rows correspond to the energy required to
drive the data onto the bus. The fifth table row accounts
for additional I/O power required for bus termination when
two DIMMs are present on the bus. Finally, the sixth ta-
ble row shows the energy for one Activate and Pre-charge
command pair required to bring a new row into the bank’s
row buffer. Note that because we use a closed-page policy,
operation power for a single access always includes an acti-
vate, read/write operation, and precharge. Given this, the
last two rows compute the average energy per read or write
operation as the sum of all components.

Note that I/O and termination energy are higher at lower
frequencies due to increased bus utilization: for a given
transfer size, I/O drivers and on-die termination are active
for longer at lower frequencies. Higher bus utilization at
lower frequency acts to increase energy more than the fre-
quency decrease acts to reduce energy. It is important to
note, however, that this affects only operation power. The
net reduction in energy with frequency scaling comes from
two sources: (i) the reduction in background power, and
(ii) the voltage scaling that reduced frequency enables.

3.3.2 Background Power and Power-Down States
Background power accounts for all DRAM device power

that is not operational power. In other words, it is the
power that the device consumes regardless of which or how
many commands it is executing, dependent only on its cur-
rent state and frequency. Current DDR3 devices support a
variety of power-down states to save power when inactive.
In order to quantify DRAM power during a system’s execu-
tion, we must quantify the power usage in each state, and
then calculate average background power weighted by the
time spent in each state.

As with any power-management technique, DRAM power-
down states present a tradeoff between aggressiveness and
wake-up latency: turning off more of the device will save
power, but wake-up will take longer. Power-down states
are summarized in Table 3. Asterisks (*) mark states that
our evaluation system supports.

DDR3 memory supports three power states with decreas-
ing power consumption: standby, power-down and self-re-
fresh. A CKE (Clock Enable) control signal is de-asserted
in power-down and self-refresh states. When CKE is dis-
abled, no commands can be issued to memory.

When DRAM is in standby, it consumes the highest am-
ount of background power but can accept commands imme-
diately without any latency penalty. There are two standby
modes: active standby and precharge standby, with pre-
charge mode consuming less power. Precharge mode re-
quires all banks to have closed their row buffers (i.e., per-
formed a precharge).

Three power-down states (Active, Precharge Fast, and
Precharge Slow) consume less power than standby states
at the cost of moderate exit latency. DRAM enters Active
Powerdown state only if one of its banks is active when the
CKE signal is de-asserted. Otherwise, DRAM enters one
of the Precharge Powerdown states. In the fast mode, the
DRAM DLL is on, while in the slow mode, it is stopped.
The slow mode offers a trade-off between performance and
power, consuming 40% less power than the fast mode, but
at the cost of increased exit latency (2-4 clocks in DDR3-
1333). Finally, it is possible to turn some register logic

off in Slow Powerdown state, as shown in Table 3. In this
state, called Precharge Slow Powerdown – Register Off, in-
put buffer termination (IBT) and output ODT are turned
off, further reducing DIMM power.

The last DRAM low power state is self-refresh. In this
state, CKE is de-asserted, the DRAM DLL is stopped, and
DRAM devices are in self-refresh mode, consuming 40%
less power than in Precharge Slow Powerdown state. How-
ever, this state has a significantly higher exit latency of 512
DRAM clocks. As with power-down modes, self-refresh has
a special register state, called SelfRefresh – Register Off, in
which register PLL is turned off, reducing power by another
40% at the expense of additional 6µs exit latency.

3.4 Voltage Scaling
Now that we have discussed the baseline power character-

istics of DRAM, including those portions that are sensitive
to frequency, we are interested in understanding how power
can reduce when voltage scales. DRAM devices require a
certain minimum supply voltage (Vdd) for stable operation
at a given frequency. This voltage scales with frequency; at
lower frequencies, a lower supply voltage is necessary. Note
that DRAM power has components that scale by both V
and V 2. Specifically, the internal DRAM array is powered
by an on-chip low-dropout linear regulator [19], and so its
current is not dependent on external supply voltage. Its
power thus scales linearly with V (since P = IV and I re-
mains constant). The I/O and register circuitry, however,
draws current in proportion to supply voltage, and so its
power scales with V 2. This, in turn, allows for significant
power reduction.

In order to understand the potential for voltage scaling
in real DDR3 devices, we performed tests on 8 DIMMs in
our evaluation system (detailed in §7) while manually con-
trolling the memory voltage regulator output. The results
are shown in Figure 3. At 1333, 1066, and 800MHz re-
spectively, we observed average minimum stable voltages of
1.280V, 1.203V, and 1.173V respectively, and a maximum
across the 8 DIMMs of 1.35V, 1.27V and 1.24V respectively.
Thus, we conclude that the required supply voltage reduces
with frequency. Later, in §4.1.2, we will model power re-
duction by conservatively assuming Vdd of 1.5V, 1.425V and
1.35V shown in this figure. Note that these voltages are well
above the minimum stable voltages for the tested DIMMs.
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Figure 3: Minimum stable memory voltage as a
function of frequency for 8 tested DDR3 DIMMs.

3.5 Indirect Effects of Frequency on Power-
Down State Residency

Scaling down memory frequency can lead to another trade-
off that we have not yet discussed. Because the memory bus
runs more slowly, data transfers take longer. This could re-
duce the idle time between transfers, eliminating or reduc-
ing opportunity to place the DRAM into low-power sleep
states. Frequency scaling could thus cause average memory
power to increase in the worst case. In such cases, it would
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be better to run the bus at a higher frequency so that the
DRAM can be placed into a low-power sleep state sooner.

However, we observe that in many real workloads, there
are idle periods between data transfers that are not long
enough to enter a sleep state even at the highest memory
frequency. In these cases, slowing the data transfers by re-
ducing frequency will fill the time between transfers without
reducing the time spent in sleep states.

To test how sleep state residency changes with frequency,
we measured the change in time spent in sleep states (CKE-
low residency) from 1333MHz to 800MHz in three represen-
tative workloads: gcc, mcf and GemsFDTD from SPEC CPU-
2006. We also measured CPU core C0 (active state) resi-
dency to address concerns about reduced energy improve-
ments due to increased runtime. The results show small
deltas from 1333MHz to 800MHz: in gcc, time spent in
a sleep state actually increases from 3.6% to 4.0%, and
C0 residency (CPU utilization) increases from 93.6% to
94.0%. For mcf, sleep-state residency decreases from 25.2%
to 23.8%, and C0 residency increases from 72.7% to 73.8%.
For GemsFDTD, sleep-state residency decreases from 2.2% to
1.3%, and C0 increases from 95.9% to 97.8%. In all cases,
these deltas are within the bounds of experimental error.
Of course, the final confirmation that increased residency
in higher-power states does not cancel power reduction at
lower frequencies comes with our evaluation results in §7,
which incorporate memory sleep-state information into the
power model, and CPU utilization into the measured sys-
tem power.

3.6 Potential Complexities of Scaling
Finally, we will briefly discuss the impact of DVFS on

memory controller complexity, and discuss potential imple-
mentation difficulties. There are three general categories
of problems that must be solved in order to make memory
DVFS practical: ensuring that memory will operate cor-
rectly over the range of frequency/voltage points, actually
implementing the run-time switching of frequency and volt-
age, and ensuring data stability across voltage changes.

Our DIMM voltage tests summarized in Figure 3 address
the first point, validation: we observed the evaluation sys-
tem to be stable over the range of voltages and frequencies
that we propose. Initial implementations of memory DVFS
could stay within voltage and frequency ranges that have
been validated on existing DIMMs. In the future, DIMMs
could also be validated at other operating points for poten-
tially more power reduction.

Second, the procedure to switch frequency and voltage
at run-time must be implemented in the memory controller
and properly validated. This procedure can occur as fol-
lows: (1) freeze memory traffic, (2) put the memory into
self-refresh, (3) stop the DIMM clock, (4) start ramping
voltage toward the new setting, and re-lock the memory
controller’s clock PLL at the new frequency, (5) re-start the
DIMM clock when voltage stabilizes, (6) re-lock the regis-
ter PLL on registered DIMMs (this takes tSTAB = 6µs), (7)
take memory out of self-refresh, (8) re-lock the DLL in the
DRAM (this takes 512 clocks, as shown in Table 3 for exit
from Self-Refresh), and (9) re-start the memory traffic. We
note that the only part of this procedure not possible on ex-
isting platforms is a configurable multiplier on the memory
controller clock PLL. Even the memory voltage is already
programmable: DRAM voltage regulators can be adjusted
from BIOS settings. This procedure in total should take
less than 20µs if the voltage regulator has a comparable
slew rate to those used for CPU DVFS.

Finally, when switching voltage, data stability in the DRAM
cells could be reduced. Because DRAM stores values as
charges on capacitors, altering the DRAM core voltage will
change the detection threshold when reading these capaci-
tors, and might reduce margins. However, as noted above,

internal DRAM arrays in modern devices are powered by a
linear voltage regulator [19]. Thus, Vcore will be unaffected
by changes in Vdd, and no changes to the DRAM core or
the refresh strategy are required to accommodate voltage
scaling.

4. ANALYTICAL MEMORY POWER MODEL
As described previously, we aim to evaluate memory DVFS

in real hardware. However, current hardware cannot dy-
namically scale memory frequency and voltage (although
we can emulate the performance effects of frequency scal-
ing by changing timing parameters of the DRAM). Thus,
we are limited to analytical modeling to compute power
and energy reduction in this regard. In this section, we
present our analytical model for DRAM power, based on
the power breakdown and figures presented in §3. First, in
§4.1, we will present a baseline model that assumes nomi-
nal frequency and voltage (i.e., the maximum speed, since
our mechanism scales frequency and voltage down). Then,
we will model the effects of frequency scaling (§4.1.1) and
voltage scaling (§4.1.2).

4.1 Baseline Model
Our analytical model of memory power is based on back-

ground power, or power that is consumed regardless of mem-
ory operations performed and depends only on power-down
state (Table 3), and operation power, according to the com-
mands executed by the device (Table 2).

To model background power, we record time spent in
each power-down state: active (tCKEH), fast powerdown
(tCKEL) and self-refresh (tSR), such that tCKEH +tCKEL+
tSR = 1. We weight power in each state by time spent in
that state to arrive at average background power. Opera-
tion power is modeled by determining power per unit band-
width, based on energy per operation, and multiplying it by
bandwidth consumed. Together, background and operation
power comprise memory power:

MemPower = (PSR ∗ tSR

+ PCKEL ∗ tCKEL + PCKEH ∗ tCKEH)

+ (PBW,r ∗ RBW + PBW,w ∗WBW )

where RBW and WBW indicate read and write band-
width, respectively, to this memory channel. PSR, PCKEL,
and PCKEH come from Table 3; specifically PSR = 0.92W ,
PCKEL = 2.79W , PCKEH = 4.66W . PBW,r and PBW,w

come from per-operation energy in Table 2: we compute
PBW,r = 0.939W/(GB/s), PBW,w = 1.023W/(GB/s) (for 2
DIMMs/channel). These two parameters are computed as
follows: 1 GB of transfer is 16M operations, since each read
or write moves 64 bytes. Then, multiplying 16M by the en-
ergy per operation gives energy per GB of transfer. Taking
this value as a rate relates GB/s (bandwidth) to energy per
time, or power.

4.1.1 Frequency Scaling
Next, we model the effects of frequency scaling. As dis-

cussed above, the background register and I/O power are
frequency-dependent, and will decrease with frequency. How-
ever, the operation energy due to I/O and termination in-
creases at lower frequencies, because the bus is active for
a longer time for a given transfer. For a given bandwidth,
this increases operation power. Said another way, bus uti-
lization goes up at lower frequencies, increasing I/O and
termination power.

We model the power reduction due to frequency scaling
by taking both of these opposing effects into account. We
model both effects linearly, according to the number of fre-
quency steps Nf below nominal (maximum). For Nf fre-
quency steps below nominal, DIMM power scales to:

5



MemPowerf = MemPower

− (Nf ∗ (PSR,save ∗ tSR

+PCKEL,save ∗ tCKEL

+PCKEH,save ∗ tCKEH))

+ (Nf ∗ PIO,adder,r ∗ RBW + PIO,adder,w ∗WBW ))

For our modeled devices and system setup, we are inter-
ested in three operating points: 1333MHz (0 steps), 1066MHz
(1 step), and 800MHz (2 steps). Our model derives from
real measurements at 1333 and 800MHz; we assume linear
scaling to derive the 1066MHz point, calculating a per-step
delta that is half of the 800MHz-1333MHz power difference.
We compute this background-power reduction per step from
Table 3: PSR,save = 0.075W/step (from the “SelfRefresh”
row), PCKEL,save = 0.23W/step (from the “Precharge Fast
Powerdown” row), and PCKEH,save = 0.395W/step (from
the“Precharge Standby”row). We then compute the“adder”
factors from Table 2: PIO,adder,r = 0.073W/(GB/s)/step
(from the second-to-last row), and PIO,adder,w = 0.092W/
(GB/s)/ step (from the last row), corresponding to in-
creased operation energy at lower frequencies.
4.1.2 Voltage Scaling

As we described earlier, DRAM devices require lower
voltage at lower frequencies. Thus, we assume that mem-
ory voltage will scale as the DRAM devices move between
voltage steps, and model the power reduction here. De-
tails of this mechanism are beyond the scope of this paper;
however, we note that existing memory voltage regulators
have software-configurable voltage settings, and slew rates
should be fast enough that transition times are amortized
over reasonable-length epochs (as with CPU DVFS).

In §3.4, we measured minimum stable operating voltage
for 8 DIMMs at our three frequency operating points. From
those figures, we add some margin and choose voltages that
are commonly available on existing motherboards: 1.5V,
1.425V and 1.35V for 1333, 1066 and 800MHz respectively.
As noted earlier, I/O circuitry scales power as V 2, and the
storage array power scales as V . With V 2 scaling, these
voltage steps correspond to 10% reduction per step; with V
scaling, 5%. From our background and operational power
figures, we derive the percentage of power drawn by I/O
circuitry (V 2 scaling). At 800MHz with two registered
DIMMs per channel, the combination of I/O power and
register power (estimated at 0.67W from a DDR register
data sheet [17]) ranges from 25% (at 2GB/s bandwidth)
to 29% of power (at both idle and maximum bandwidth);
we assume that the remainder of power scales linearly with
V . Total power reduction per voltage step is thus at least
25% ∗ 10% + 75% ∗ 5% = 6.25%. We conservatively take
a value of 6%. Thus, the power reduction due to memory
voltage scaling is as follows, with Pvstep = 0.06:
MemPowerf,v = MemPowerf −MemPowerf ∗ Pvstep ∗Nf

5. PERFORMANCE IMPACT OF
FREQUENCY SCALING

We have quantified the power implications of memory fre-
quency and voltage; in order to develop a dynamic control
algorithm that adjusts memory frequency based on band-
width demand, we now aim to understand how workload
bandwidth demand varies across a spectrum (§5.1), how re-
duced memory frequency increases memory latency for dif-
ferent bandwidth demands (§5.2), and how this increased
latency due to frequency scaling affects performance (§5.3).
These insights will lead directly to a simple, intuitive con-
trol algorithm.

5.1 Memory Bandwidth Utilization
Figure 4 shows memory bandwidth for SPEC CPU2006

applications running on our evaluation system (see §7.1).

As is shown, memory bandwidth is highly variable, and
depends on many factors: memory access rate, LLC resi-
dency, memory- and bank-level parallelism (MLP [13] and
BLP [28]) and the ability to tolerate memory latency, for
example. An application that is entirely resident in last-
level cache will have zero memory bandwidth; at the other
extreme, an application that exhibits perfect streaming be-
havior, accessing memory continually with no dependent
loads, and that has enough outstanding memory accesses in
parallel, should be able to maximize memory-system band-
width.
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Figure 4: Memory system bandwidth utilization for
SPEC CPU2006 applications.

5.2 Impact of Frequency on Memory Latency
It is important to understand the performance-energy

tradeoff across the range of bandwidth. So far, we have in-
troduced multiple memory-frequency operating points and
discussed the power implications of frequency/voltage scal-
ing. By evaluating the ability of each operating point to
handle a given bandwidth, we can choose the best operat-
ing point for optimal efficiency.

We characterize memory latency as a function of memory
frequency. We measured actual latency using a carefully-
constructed microbenchmark that exhibits cache misses with
dependent loads (i.e., MLP of 1) at an adjustable rate. The
resulting bandwidth-latency curves for three memory fre-
quencies are shown in Figure 5 (for closed-page mode).
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Figure 5: Memory latency as a function of band-
width demand.

Note that latency remains nearly flat as bandwidth in-
creases up to some point. At that point, the average queue
length begins to add a non-negligible wait time to each re-
quest before it becomes the active request. Eventually, as
the request rate (benchmark bandwidth) rises toward the
peak service rate (memory system bandwidth), the average
queue length grows, and memory latency increases superlin-
early. As shown by the fitted curves in Figure 5, we found
that the measured points closely matched the curve pre-
dicted by the queueing equation for a single-queue, single-
server system [3]:

MemLatency = IdleLatency + slope ∗
BW

PeakBW − BW
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where the parameters IdleLatency, slope and PeakBW
are fixed for a given system configuration and memory fre-
quency.

5.3 Impact of Frequency on Performance
By varying memory frequency, and thus peak bandwidth,

we alter the memory latency perceived by user workloads.
As memory latency increases, an out-of-order core is less
able to hide the latency, and stall time increases, yield-
ing reduced performance. Ultimately, this effect depends
on the application characteristics. However, as we will
show below, knowing the bandwidth demand of an appli-
cation suffices in most cases to bound performance impact
for workloads in SPEC CPU2006, which consists of CPU-
and memory-intensive applications. This is due to the fact
that a bandwidth-based scaling mechanism with properly
set thresholds will transition to a higher frequency, with a
lower latency curve and higher saturation point, as soon as
queueing delay starts to become significant.

Figure 6 shows performance degradation for SPEC CPU-
2006 when memory runs at 800MHz and 1066MHz (de-
graded from baseline 1333MHz). Benchmarks are sorted
by baseline average bandwidth utilization (Fig. 4). In gen-
eral, benchmarks with higher baseline bandwidth experi-
ence more performance degradation at lower memory fre-
quencies, because the baseline bandwidth is closer to (or be-
yond) the peak bandwidth at the lower frequency. As the la-
tency curves in Figure 5 show, latency rises considerably as
utilization approaches maximum bandwidth. These bench-
marks show a reduction in actual bandwidth at lower mem-
ory frequencies as execution slows due to memory through-
put limits.
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Figure 6: Performance degradation as memory
is varied statically from 1333MHz baseline to
1066MHz and 800MHz. Benchmarks with high
bandwidth demand show greater degradation.

6. FREQUENCY CONTROL ALGORITHM
As the previous section has shown, benchmarks with lower

bandwidth demand are, in general, more tolerant to lower
memory frequency. We can reduce average power by scaling
down memory frequency when it has little effect; because
runtime is not affected, or at worst impacted only a little,
energy efficiency will improve.

The key insight our control algorithm builds on is that
at low bandwidth demand, memory latency is not signifi-
cantly affected by memory frequency. This is because only
bus transfer latency is impacted by frequency; other compo-
nents of memory access latency do not change. By choosing
a lower memory frequency at low bandwidth demand, we
have little impact on performance, as Figure 6 shows. As
bandwidth demand increases, we scale up frequency. This
effectively creates a piecewise latency curve as a function
of bandwidth demand that approximates the shape of the
highest memory frequency latency curve.

To implement this, we simply pick a fixed bandwidth
threshold for each frequency transition. A controller al-
gorithm runs periodically, at fixed epochs, and measures
average bandwidth usage for the previous epoch. Based

on this measurement, it picks the corresponding memory
frequency. Algorithm 1 implements this functionality. For
our evaluations, we need to specify two thresholds: for the
800 to 1066MHz transition, and the 1066MHz to 1333MHz
transition. We evaluate two threshold settings: BW (0.5, 1)
transitions to 1066 and 1333MHz at 0.5GB/s and 1.0GB/s
per channel, respectively, and BW (0.5, 2) transitions at
0.5GB/s and 2.0GB/s. These thresholds are conservative
in that they are below the knees on the latency curves in
Fig. 5. Rather, they are chosen based on the range of av-
erage per-channel bandwidth measurements in Fig. 4. As
our results show in §7, these parameter choices result in
minimal performance impact.

Algorithm 1 Bandwidth-based Frequency Selection Policy
while true do

wait for tsample

sample average memory bandwidth per thread as BW
if BW < Tf1

then
set memory frequency to f1

else if Tf1
≤ BW < Tf2

then
set memory frequency to f2

else if Tf2
≤ BW then

set memory frequency to highest frequency f0
end if

end while

7. EVALUATION
7.1 Methodology

We evaluate our proposed memory-frequency scaling al-
gorithm on real hardware, described in Table 4. We emulate
the performance effects of dynamically-variable memory fre-
quency by altering internal memory controller timing regis-
ters: in particular, tRCD (RAS-to-CAS delay) and tB2BCAS

(back-to-back CAS delay) are set so that the effective mem-
ory latency and bandwidth approximate those at the em-
ulated memory frequency. We prefer this methodology to
simulation because allows full-length runs of benchmarks
and captures full-system behavior.

SPEC CPU2006 benchmarks are run to completion in our
evaluation. Table 4 shows the evaluation system’s parame-
ters. In each run, effective memory frequency is either static
or is controlled by our algorithm. Memory always physi-
cally runs at 1333MHz. Dynamic control is implemented in
a userspace daemon, with a custom kernel module to read
bandwidth counters and set timing registers in the memory
controller.

Power and energy results are computed using real-system
measurements and analytically-modeled power reduction.
Because memory frequency does not actually change, mem-
ory will show no power reduction as we emulate lower mem-
ory speeds. However, by taking periodic measurements
from an AC power-meter attached to the evaluation system,
and subtracting our analytical model’s predicted power re-
duction (based on our model in §4), we compute full-system
power for the frequency-scaled runs. We compensate for
85% AC-DC PSU efficiency and 85% voltage-regulator ef-
ficiency by scaling our memory power reductions to corre-
spond to AC power reductions. From average AC power
and runtime, we compute energy per workload, in order to
evaluate energy efficiency as energy per fixed work unit (one
benchmark run).

7.2 Performance Impact
Fig. 7 shows slowdown from baseline for two bandwidth-

based policies, BW (0.5, 1) and BW (0.5, 2), alongside static
800MHz and 1066MHz-memory slowdowns for comparison.
All slowdowns are relative to a 1333MHz-memory baseline.
Additionally, Fig. 8 shows this memory frequency distribu-
tion shift as bandwidth decreases. Fig. 9 shows frequency-
switching behavior over time for two representative work-
loads, bzip2 and gcc.

Our bandwidth-based policy is successful in limiting per-
formance impact: at the high-bandwidth end (left), mem-
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Processor two Intel Xeon Nehalem (X5500-series), 4 cores each (8 cores total)
SMT disabled (one logical thread per core) for repeatability
Power management settings TurboBoost disabled for repeatability
Memory controllers three on-chip per 4-core CPU, 6 total, DDR3, 1333MHz (timing altered to emulate

the performance effects of frequency scaling)
Memory timing registers 1333 baseline: tRCD = 9, tB2BCAS = 3; 1066 emulated: tRCD = 12, tB2BCAS =

6; 800 emulated: tRCD = 14, tB2BCAS = 9
Memory 12x 4GB DIMMs, registered, dual-rank x4, PC10667 (1333MHz), two per channel
Motherboard Intel server platform reference board
Hard drive 500GB SATA
OS Fedora Core 9 (GNU/Linux), single-user mode
SPEC CPU2006 Compiled with Intel C++ compiler 11.0, base optimization, rate run-type, ref

input sets (8 copies)
Power supply Redundant server power supply, 650W, 120V
Instrumentation Yokogawa WT210 power-meter, 1 sample/second

Table 4: System configuration parameters for evaluation.
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Figure 7: Performance degradation, power reduction, and energy reduction with our memory DVFS policy
compared to static-frequency baselines.

ory bandwidth is easily above the threshold, and memory
runs at 1333MHz most or all of the time. As the static
scaling shows, the performance impact of lower memory fre-
quencies with these workloads would be catastrophic. As
memory bandwidth decreases to the right, frequency scal-
ing starts to choose lower settings, and slowdowns become
nonzero. However, because thresholds are chosen conserva-
tively, the worst-case slowdown is also minimal, under 2%.
For the middle benchmarks, slowdown is still less than that
for static scaling, because memory spends only some time
in lower frequency states. Finally, for the lowest-bandwidth
benchmarks, slowdown again decreases to negligible levels,
because these benchmarks are almost completely unaffected
by lower memory frequency. As the frequency distribution
shows, these workloads spend most or all of their time in
the lower-frequency states.

Note that in several cases, measurement errors inherent in
a real-system evaluation yield a slightly negative slowdown.
We ran each application five times to minimize this error.

7.3 System Power and Energy
Our fundamental goal is to improve energy efficiency while

minimally impacting performance. To this end, we deter-
mine the total energy (whole-system) taken to run each
benchmark. As described above in §7.1, full-system power
is computed by subtracting (analytical) memory-power re-
duction from measured full-system power. We compute en-
ergy by multiplying average power with runtime.

Figure 7 shows energy reduction under our control al-
gorithm as well as static frequency reduction for compar-
ison. The results show that the bandwidth-based policy
is able to attain as much energy-efficiency improvement as
static frequency reduction for low-bandwidth benchmarks,
while avoiding the significant efficiency reductions (due to
increased runtime and thus inflated total energy) when run-
ning high-bandwidth benchmarks. Fig. 7 shows average sys-
tem power reductions: at low bandwidth, the reduction is
significant, proportional to time spent at lower frequencies.

On average, across SPEC CPU2006, the BW (0.5, 2) pol-
icy reduces memory power by 6.05W (11.31W max) (DC
power) for 0.17% average (1.69% max) slowdown. Taking
only benchmarks including and to the right of gcc when
sorted by bandwidth (that is, with bandwidth roughly less
than 1.1GB/s per channel), we reduce memory system power
by 9.62W on average. This is significant when average
memory system power at 1333MHz is 65.1W .

In a whole-system context, BW (0.5, 2) provides 2.43%
average (5.15% max) energy-efficiency improvement. It is
important to note that (i) power reduction and thus energy-
efficiency improvements due to DVFS in memory can give
similar power reductions to CPU DVFS (§2.2), and (ii) this
reduction comes with negligible performance reduction.

8. RELATED WORK
Memory Power Management: MemScale [8], work done
concurrent to ours, proposes DVFS in memory systems

8
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the right, the distribution generally shifts toward lower memory frequencies.
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as well. While Deng et al. in [8] evaluated memory fre-
quency/voltage scaling in simulation, the primary distinc-
tion of our work is the real-system evaluation methodol-
ogy. By emulating the effects of lower memory frequency
on a real hardware platform, we captured the performance
effects across the full software stack and thus accurately
measured the opportunity for memory DVFS. Our proposal
also differs in algorithm design: MemScale estimates perfor-
mance impact with a model, while our mechanism switches
frequency based on memory bandwidth utilization.

Other work also examines memory power management
in various ways. First, Puttaswamy et al. [31] examined
voltage/frequency scaling of an off-chip memory in an em-
bedded system. Although this work makes use of the same
opportunity that we do, it differs in two key ways: (i) most
importantly, it evaluates only static voltage/frequency op-
erating points, with no mechanism for dynamic switching;
and (ii) it uses SRAM, while we use DRAM, with different
power and performance characteristics. Several works have
examined the tradeoffs inherent in memory sleep states, and
how to manage the system to increase opportunity for them.
Fan et al. in [11] give an analytical model for sleep-state
benefit, and Lebeck et al. in [20] explored the interaction
of page placement and memory sleep states. Hur and Lin
in [16] present several techniques to increase opportunity for
DRAM power-down states, and [1] presents a mechanism to
judge when speculative DRAM accesses are power-efficient.
All of these techniques are orthogonal to frequency/voltage
scaling, and could be combined with our approach.

Another body of work examines power-limiting as the
primary constraint, either for thermal reasons or for power-
management in dense server environments. Lin et al. [21,
22] propose two thermal-motivated mechanisms, both of
which throttle the CPU to reduce memory traffic. The
first, adaptive core gating, uses clock-gating on processor
cores when memory nears its thermal limit; the second, co-

ordinated DVFS, uses DVFS to slow the cores in the same
situation. David et al. in [5] describe RAPL (running av-
erage power limit), in which memory power is explicitly
modelled and limited by throttling. Their power model is
similar to ours. However, it is used for a different purpose:
while we require a model only for evaluation of memory
DVFS, RAPL’s power model is at the center of its algo-
rithmic control loop (to maintain an average power limit).
Therefore, RAPL calibrates its weights against measure-
ments from an in-system memory power meter. Diniz et
al. [9] propose several algorithms to limit power by turning
off a subset of the memory devices in a system that can
control each device individually. Felter et al. [12] propose
power shifting, in which throttling is used to manage power
consumption across the system, including the memory sub-
system. All these approaches differ from ours by taking a
power target/limit as the first-order constraint; we optimize
for energy-efficiency instead, aiming to minimally impact
performance. However, throttling could be combined with
frequency/voltage scaling when scaling alone does not meet
a power budget. Or, frequency/voltage scaling alone could
be used to meet a power budget, likely yielding better per-
formance than throttling due to long-latency delays when
DRAM access is throttled.

Additional work examines how software-level decisions,
in particular how software allocates and accesses memory,
can affect memory system power. Delaluz et al. in [6] de-
scribe how compiler analysis of workloads to direct mem-
ory mode control can lead to better energy efficiency; in [7],
they propose controlling DRAM power states from the OS
scheduler. Huang et al. [14] integrate awareness of DRAM
power states into the OS virtual memory system, allocat-
ing pages intelligently from different banks. Huang et al.
in [15] take VM integration a step further by migrating
frequently-accessed pages to “hot” ranks, concentrating uti-
lization there and allowing “cold” ranks to enter sleep states
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more frequently. Pandey et al. in [30] examine memory ac-
cesses due to I/O DMA activity, and propose alignment
and data-placement techniques to increase efficiency. All
of these higher-level techniques are orthogonal to our work,
and could be combined; we mention them simply to show
that memory power management is not limited to hardware-
level (software-transparent) mechanisms.
Energy Efficiency Techniques: As described previously,
energy-proportional computing [2] is the broad research di-
rection that characterizes this work: scaling energy use
proportionally to workload demand. Beyond component-
specific approaches in the CPU and memory, several works
approach energy-proportionality on a larger scale. Power-
Nap [23] proposes a full-system sleep state in lieu of finer-
grain power management. The work demonstrates that for
server workloads with idle time between requests, it is more
efficient to serve requests quickly and then enter the low-
power sleep state than to scale performance down. While
this approach is valid when such idle time exists, workloads
that run continuously but for which the system is imbal-
anced (e.g., heavily CPU-bound or memory-bound) do not
contain such idle periods. Our approach specifically tar-
gets such CPU-bound workloads that underutilize memory
bandwidth. However, the techniques are compatible: Pow-
erNap can take advantage of idle periods, while memory
frequency scaling can help to achieve energy efficiency while
the system is active.

At the datacenter scale, Elnozahy et al. [10] propose scal-
ing the size of a server cluster according to load. By con-
centrating load onto fewer, more highly-utilized servers, this
technique approximates energy proportionality by reducing
idle-time waste. Tolia et al. [34] optimize a cluster through
a combination of CPU DVFS and consolidation. As above,
this general approach solves the problem for a different class
of workload, but is compatible with our proposal.

9. FUTURE WORK
We have introduced the basic tradeoffs in memory fre-

quency scaling, and performed an initial evaluation using
a simple and intuitive algorithm. However, more work re-
mains to be done. First, our mechanism is simple, and there
is a large design space, both in predicting and measuring
performance impact and on predicting the future impact of
memory frequency changes. Further work can investigate
both the measurement and prediction aspects of this prob-
lem, and characterize how various types of workloads re-
spond to increased memory latency. Additionally, the inter-
action between memory scaling and CPU frequency/voltage
scaling (DVFS) has not been examined in this work. Cer-
tainly, the two mechanisms could supply hints to each other.
It could also be the case that better efficiency improve-
ments are possible through coordinated control than when
the two operate independently. Finally, we considered only
SPEC CPU2006 in this work; further evaluations are nec-
essary to quantify performance impact in other workloads.

10. CONCLUSIONS
In this work, we propose and evaluate memory voltage/

frequency scaling in order to reduce memory power and in-
crease energy efficiency. Starting from the observation that
a significant portion of memory-system power is frequency-
dependent, we present a control algorithm that reduces
memory frequency while limiting performance impact. The
key observation is that at low memory bandwidth utiliza-
tion, lowering memory frequency does not significantly alter
memory access latency. By observing memory bandwidth
utilization, our proposed control algorithm increases mem-
ory frequency when utilization crosses a threshold, bound-
ing the performance impact. We conclude that memory
DVFS can be an effective energy efficiency technique, espe-
cially when memory bandwidth utilization is low.
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