

Power Capping: a Prelude to Power Shifting

Charles Lefurgy
1
, Xiaorui Wang

2
, and Malcolm Ware

1

IBM Research, Austin
1
 and University of Tennessee, Knoxville

2

lefurgy@us.ibm.com, xwang@ece.utk.edu, mware@us.ibm.com

Abstract-- We present a technique that controls the peak power consumption of a high-density

server by implementing a feedback controller that uses precise, system-level power measurement to

periodically select the highest performance state while keeping the system within a fixed power

constraint. A control theoretic methodology is applied to systematically design this control loop with

analytic assurances of system stability and controller performance, despite unpredictable workloads

and running environments. In a real server we are able to control power over a 1 second period to

within 1 W and over an 8 second period to within 0.1 W.

Conventional servers respond to power supply constraint situations by using simple open-loop

policies to set a safe performance level in order to limit peak power consumption. We show that

closed-loop control can provide higher performance under these conditions and implement this

technique on an IBM BladeCenter HS20 server. Experimental results demonstrate that closed-loop

control provides up to 82% higher application performance compared to open-loop control and up to

17% higher performance compared to a widely used ad-hoc technique.

1. Introduction

As modern enterprise data centers continue to increase computing capabilities to meet their

growing business requirements, high-density servers become more and more desirable due to space

considerations and better system management features. However, the greatest immediate concerns

about high-density servers are their power and cooling requirements, imposed by limited space inside

the server chassis.

Server products have been traditionally designed to provide for worst-case operating environments

and workloads by over-provisioning the cooling and power delivery systems. Such over-provisioning

adds cost to the system and enlarges the server footprint, but benefits few real environments or

workloads. In response, server designers have started to adopt a “better-than-worst-case” design

approach [22]. Ideally, such servers would dynamically monitor the available operating margin and

adjust the system operating point to run safely at the edge of physical limitations. For example, a

server could dynamically adjust its operation to the highest performance possible that did not violate

power and thermal constraints.

One widely deployed example of “better-than-worst-case” design is Intel’s use of Thermal Design

Power (TDP) [21]. Intel recommends vendors build a cooling system that is sufficient for most

situations, but not for unrealistic workloads. During rare periods when the processor temperature

exceeds the limits of the cooling system, the processor reduces the processor speed to a safe,

predetermined setting. This allows the cooling system capability to be under-provisioned and yet

maintain safety at all times.

Similar techniques for system-level power constraints have been less studied. In this paper, we

demonstrate management of the peak system-level power consumption with a feedback controller that

uses precise system-level power measurements to periodically select the highest performance state that

keeps the server within the desired power constraint. When the server runs at less than the power

supply capacity, it runs at full speed. When the server power would be greater than the power supply

capacity, it runs at a slower speed so that its power consumption matches the available power supply

capacity. This gives vendors the option to use smaller, cost-effective power supplies that allow real-

world workloads to run at nominal frequency, but under exceptional conditions result in a small

performance degradation.

On a different level, power budgeting (or “capping”) a single server will become important for

power-limited data centers. Power capping is a key element for implementing power shifting, which is

the dynamic setting of power budgets for individual servers such that a global power cap for the cluster

is maintained [23][25]. This allows the available power capacity to flow on demand to the servers with

the highest priority workload by reducing the power budget of servers with lower priority. Robust

power shifting solutions will depend on reliable power capping mechanisms to avoid overloading

circuit breakers and power distribution units.

This paper makes the following contributions:

1. We are the first to demonstrate managing the peak system power of a single server to a power

constraint using precision measurement with a closed-loop control system. This differentiates our work

from previous solutions that manage average power, use ad-hoc control, or use estimations of power in

place of real measurement. In addition, we control whole-server power consumption (not only the

power of the processor) and can compensate for power load changes in other components.

2. We present a novel control design based on feedback control theory to manage system-level

power with theoretic guarantees on accuracy and stability. We show that a P controller is sufficient to

control server-level power in our prototype. Often PI controllers are used to obtain zero steady-state

error, however our system has an integration step in the actuator (as part of a first-order delta-sigma

modulator) such that zero steady-state error can be achieved without resorting to PI controllers.

3. We demonstrate how to derive controller parameters such that the controlled system is

guaranteed to achieve the desired controller performance in the presence of run-time variations that

cause the system to behave differently from the control model.

4. We implement our control system directly in an IBM BladeCenter blade server and evaluate it

using industry standard benchmarks.

5. We show that under a heavy power constraint, our controller can provide much better

performance than simpler open-loop and ad-hoc techniques. Under light power constraints, our

controller often runs workloads at full speed.

6. Our controller allows server designers to safely underprovision the power supply to lower costs

while negligibly affecting performance of real-world workloads. Additionally, the controller provides a

solid foundation for building power shifting solutions across the data center.

In the next section we highlight the distinction of our work by discussing related work. In Section

3, we discuss system-level management of power in conventional systems and those with feedback

controllers. We then demonstrate how we design the controller based on feedback control theory in

Section 4. Next, in Section 5, we analyze the control performance and show how to account for system

variation. In Section 6, we describe the detailed implementation of each component in the feedback

control loop. Our empirical results are presented in Section 7 and followed by a discussion in Section

8. We draw conclusions in Section 9.

2. Related work

Power consumption is one of the most important design constraints for high-density servers. Much

of the prior work has attempted to reduce power consumption by improving the energy-efficiency of

individual server components [1]. In contrast, our paper is focused on providing an effective power

management algorithm to control system-level power. Previous work [2] has shown that processors are

often the dominant consumers of power in servers. This is particularly true in dense blade server

environments. We use processor clock modulation as the actuator in our power controller.

Many researchers use expensive power measurement equipment to instrument servers for their

studies [2]. In our work, we use an inexpensive, yet highly accurate, power measurement circuit built-

in to recent IBM servers [20] which measures power consumed by the entire server. This enables our

technique for power management to be used in ordinary, high-volume servers.

There has been much work done on system-level power management. Zeng et al. [3] and Lu et al.

[4] have developed power management strategies for operating systems. In contrast, our work is at the

system-architecture level. Our feedback controller in the service processor firmware directly controls

the main host processors to keep the system-level power within a power constraint, while requiring no

support from the OS or workloads running on the system and is operational during system boot. Thus,

the power management is more robust and less susceptible to software errors or malicious threats.

Feedback control theory has proven to be an effective way in improving performance and

robustness of computing systems [5]. Skadron et al. [6] use control theory to dynamically manage the

temperature of microprocessors. Likewise, Wu et al. [7] manage power using dynamic voltage scaling

by controlling the synchronizing queues in multi-clock-domain processors. In contrast to their work,

we control peak power for a whole server instead of just the processors and implement it on a

conventional server. For example, we are able to handle unexpected power demand from memory,

disk, and I/O components.

Minerick et al. [8] develop a feedback controller for managing the average power consumption of a

laptop to prolong battery lifetime. Their study relies on experiments to find the best control parameters.

In contrast, we derive parameters based on a systematically built control model. In addition, we not

only design our controller based on feedback control theory, but also analytically model the possible

system variations and provide corresponding theoretic guarantees. We believe our work is the first to

provide such insightful analyses for system-level power management. As a result, our control method

does not assume any knowledge about potential workloads and thus can be generally applied to any

server system. In addition, our controller is designed to meet the tighter real-time constraints for the

overload condition of server power supplies. Femal et al. [9] present a two-level framework for

controlling cluster-wide power. The Local Power Agent (LPA) applies the controller from Minerick et

al. to each server in order to limit the server-level power. The Global Power Agent dynamically re-

allocates the power budgets between the local managers. Our blade server prototype could be used in

place of the LPA to control cluster-wide power with tighter margins.

Sharma et al. [10] effectively apply control theory to control application-level quality of service

requirements. Chen et al. [11] also develop a controller to manage the response time in a server cluster.

Although they both use control theory to manage power consumption, power is only used as a knob to

control application-level service metrics. As a result, they do not provide any absolute guarantee to the

power consumption of a computing system. In this paper, we explicitly control the power consumption

itself to adhere to a given power constraint.

Brooks et al. [17] use ad-hoc control to limit processor temperature so cheaper heat-sinks can be

used. In a similar way, one result of our work is that system designers are no longer required to use

over-provisioned power supplies to survive worst-case scenarios.

Felter et al. [18] use open-loop control to shift power between processor and memory components

to maintain a server power budget. In contrast, our solution can operate at smaller design margins

because it uses precision measurement. Our controller could be added to such a system to provide tight

guarantees on the system-level limit and provide a safe environment for power shifting between

components that do not use measurement.

Foxton [19], which is not yet available in products, uses on-chip power measurement to control

power in a single Itanium processor. Our technique is used outside the main application processor and

is therefore applicable to a wider range of architectures. Our power measurement circuit has already

been deployed across multiple server products spanning three processor architectures [20].

Ranganathan et al. propose using processor performance states to control blade server power [23].

However, they rely on ad-hoc control methods that do not guarantee stability across a variety of

workloads.

Our control system design has been previously described in a technical report [15] and conference

paper [24]. This paper adds a detailed discussion of the controller, design implications, and the

relationship between power capping and power shifting.

3. System-level power management

We present a description of the current power management solution in the BladeCenter as an

example of requirements in conventional servers that the control loop must meet in order to satisfy

power supply constraints.

3.1. BladeCenter test platform

Our test platform is a single IBM BladeCenter HS20 blade server with Intel Xeon microprocessors.

The power management architecture of BladeCenter is shown in Figure 1. A BladeCenter chassis has

two power domains and is configured with four 2000 W power supplies total. Each power domain is

redundantly connected to two of the power supplies so that in the event of a single supply failure, the

domain continues operating with the remaining power supply. The first power domain provides power

for six blade servers as well as supporting components shared by the blades including management

modules, fans, the media tray, and network switches. The second power domain holds eight blade

servers. Our discussion and experiments focus on the second power domain because its blades have a

stricter, lower power constraint.

BladeCenter adheres to a policy which specifies that the power supplies must not be in an overload

situation (drawing more power than their rating) for more than 1 second [14]. Overload can happen

when one of the power supplies fails and the load is shifted completely to the remaining supply. If the

load remains too high on the single supply for too long, then the remaining power supply may turn off

and remove power from all blades in the domain. In practice, the one second target is conservative and

the power supply can sustain a power overload for even longer periods of time. In this work, we design

the controller to manage power at this one second time scale. Servers with different overload power

constraints may have different requirements.

Our blade has a label power of 308 W. During overload conditions, the power must be reduced to

250 W. The mechanism to throttle blade power is processor clock modulation (“clock throttling”)

which lowers the effective frequency of the processors. There are 8 performance states which

correspond to effective frequencies of 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, and 100%.

3.2. Feedback control of power

We have developed a feedback control loop which adaptively controls the power consumption of

the server by manipulating the processor clock modulation setting. There are two reasons for us to use

processor throttling as our actuation method. First, processors typically have well-documented

interfaces to adjust performance levels. Second, processors commonly contribute the majority of total

power consumption of small form-factor servers. As a result, the processor power difference between

the highest and lowest performance states is often large enough to compensate for the power variation

of other components. Developing additional power controller for non-processor components would

further extend the power control range for the server. Femal et al. and Ranganathan et al. have adopted

130

150

170

190

210

230

250

270

1
2

.5
%

2
5

.0
%

3
7

.5
%

5
0

.0
%

6
2

.5
%

7
5

.0
%

8
7

.5
%

1
0

0
.0

%

Processor performance setting (effective

frequency)

P
o

w
e

r
(W

)

SPECCPU

2-threads

SPECCPU

1-thread

LINPACK

SPECJBB 2005

P4MAX

Idle

Figure 2: Maximum system-level power measurement for
each processor performance state.

Figure 1: BladeCenter chassis.

BladeCenter chassis with 8 blades in second power domain

(Note: figure shows only one blade in the domain)

Chassis front

Chassis rear

12 V power

current

voltage

Management module (power domain 1)

Chassis-level power management SW

RS-485 link

S
ig

n
al

co
n
d
it

io
n

in
g

S
en

se

re
si

st
o
rs

HS20 blade

12 V

H8S Service Processor

Power measurement

and control

A/D

A/D

All blade components

(processors, memory, disks, service

processor, etc.)

Power Supply

the approach of using only processor performance states to limit whole-server power consumption

[9][23].

The key components in the control loop include the monitor, the controller, and the actuator. The

control loop is invoked periodically and its period is decided based on the trade-off between actuation

overhead and system settling time. At each control period, a precision measurement of the real system-

level power consumption is input to the controller. The controller computes the new performance state

and sends it to the actuator. The actuator sets the processors to the new performance state. A detailed

description of each component is given in Section 6.

4. Controller Design and Analysis

The core of our feedback control loop is the controller. First, we mathematically model the system

through the process of system identification. Based on the system model, the controller is then

designed systematically using feedback control theory. Finally, the control performance of the model is

analyzed and the impact of variation between the model and real systems is discussed.

We first introduce the following notation:

T: The control period.

p(k): The power consumption of the server in the k
th

 control period.

Ps: The power set point of the server, namely, the desired power constraint.

t(k): The performance state of the processors in the k
th

 control period.

d(k): The difference between t(k+1) and t(k). Specifically d(k)= t(k+1)-t(k).

The goal of the controller is to guarantee that p(k) converges to Ps within a given settling time.

For this paper, we construct a control loop that can be used for our particular blade at nominal

temperatures. Constructing a control loop for an actual product is similar, but involves taking

measurements from many blades to account for manufacturing variation and taking the measurements

Figure 4: Pseudo-code for P controller

Figure 3: System diagram for power control

// Controller code

error = setpoint – power_measurement;

ideal_throttle = throttle + (1/A) * error;

// Actuator code

// First-order delta-sigma modulation

throttle = truncate(ideal_throttle);

frac = ideal_throttle – throttle;

total_fraction = total_fraction + frac;

if (total_fraction > 1) {

 throttle = throttle + 1;

 total_fraction = total_fraction – 1;

}

// Actuator saturation handling

if (throttle > 7) throttle = 7;

if (throttle < 0) throttle = 0;

Real throttle level

∑
Integrator Server

-

On-board server-level power measurement from power monitor

Quantizer

Power set point First-order delta-sigma modulator

Ideal

throttle

level

Controller

of the BladeCenter under thermal stress to account for different machine room environments, which is

beyond the scope of this paper.

4.1. System Modeling

We have observed the power consumption changes immediately (within a millisecond) as the

performance state changes without regard to the previous performance state. That means the power

consumption of the server for a given workload is determined exclusively by the performance setting

and is independent of the power consumption in previous control periods. Although temperature also

affects system-level power, it operates on a much slower timescale and can be modeled as a

disturbance input to the controller. Figure 2 plots the relationship between the processor performance

setting and the maximum 1 second power consumption. A linear model fits well (R
2
 > 99%) for all

workloads. Hence, our system model of power consumption is:

BkAtkp +=)()((1)

The dynamic model of the system as a difference equation is:

)()()1(kAdkpkp +=+ (2)

4.2. Controller Design

The goal of the controller design is to meet the following requirements:

Stability: The power should settle into a bounded range in response to a bounded reference input.

Zero steady state error: The power should settle to the set point which is the power constraint.

Short settling time: The system should settle to the set point by a specified deadline.

Following standard control theory, we design a proportional (P) controller [12], which has a Z-

transform of:

A
zC

1
)(=

 (3)

We used a P controller instead of a more sophisticated PI controller because the actuator includes

an integration step (as part of the first-order delta-sigma modulator) such that zero steady-state error

can be achieved without resorting to a PI controller.

Figure 3 shows the system diagram.

The time-domain form of our P controller is:

))((
1

)(kpP
A

kd s −= (4)

It is easy to prove that the controller is stable and has zero steady state error. Satisfying these

requirements means that when the power level or set point is changed, the controller will converge

precisely to the desired set point. Due to space limitations, we skip the detailed derivation which can

be found in standard control textbooks [12].

The desired performance setting in period k+1 is:

)()()1(kdktkt +=+ (5)

5. Performance Analysis for Model Variation

Our controller is designed to achieve the control performance specified in Section 4.2 when the

system model is accurate. However, the real system model is usually different from the nominal model

(Equation 1) we used to design the controller. This variation could have several causes. For example,

the server may have different components and configurations from the modeled system, the workload

could be different from the ones used in system identification, or manufacturing differences in the

microprocessors may cause them to have different power levels. Since developing a different controller

for every server and every workload is infeasible, it is very important to analyze the impact of model

variation to control performance, before we deliver any theoretical guarantees.

An important observation from our measurements is that the workloads always exhibit a linear

relationship between power consumption and the performance state, even running on different servers.

Based on this observation, we mathematically analyze the impact of model variation on control

performance. Without loss of generality, we model the real system as

BgkAtgkp 21)()(+= (6)

where AAg '1 = and BBg '2 = are system gains and are used to model the variation between the

real system model (Equation 6) and the nominal model (Equation 1). Since our controller is designed

based on the difference equation (Equation 2) of the system model, g2 has no effect on the performance

of the controller. The closed-loop transfer function for the real system is

)1()1/(

)(

1

1

gz

g

zzP

zP

s −−

=

−

 (7)

Now we investigate each control performance metric.

1. Stability

The closed-loop system pole in Equation 7 is 1- g1. In order for the system to be stable (i.e.

converge to the desired set point), the pole must be within unit circle [12], namely |1- g1| < 1. Hence

the system will remain stable as long as 0 < g1 < 2. This result means that if the slope (i.e. A’ or g1A in

Equation 6) of the real model is less than twice that of the nominal model, the system is still stable.

The stability range serves as an important reference when applying our controller to different systems

and running different workloads.

2. Steady state error

The steady state error of the real system can derived as

ss
zz

PP
gz

zg
zPz =









−−

=−
→→)1(

lim)()1(lim
1

1

11

 (8)

Equation 8 means that as the system proceeds, the power will settle to Ps which is exactly the set

point. Hence, as long as the system is stable (i.e. 0<g1<2), we can achieve the desired power value.

This established stability range is an important guideline for us to choose the control parameter A.

3. Settling time

By transforming the closed-loop response (Equation 7) to the time-domain, the power variation

model becomes

sPgkpgkp 11)()1()1(+−=+ (9)

As commonly defined in control theory, the system settles when p(k) converges into the 2% range

around the desired set point Ps. Hence, the required number of sampling periods, k, for the system to

settle can be calculated as:

11ln

02.0ln

g
k

−

≥
 (10)

Based on our required settling time of 1 second from Section 3.1, we can use Equation 10 to derive

a range of g1. When g1 is within this range, the system is guaranteed to achieve the required settling

time.

5.1. Controller parameters

The lower bound to which power can be controlled is constrained by the most power consuming

benchmark, running at the lowest performance state. For our blade, the maximum power consumed by

any workload at the 12.5% performance state was 170 W. This means that using a set point less than

170 W risks a violation of the power constraint for some workloads. Therefore, the practical range of

the set point is from 170 W to 308 W (label power).

The value for A is chosen by considering the range for A’ as shown in Figure 5. The maximum

value for A’ is the slope of P4MAX, from Figure 2, which is 125.7, the maximum of all workloads.

The minimum value for A’ depends upon the minimum set point value discussed above. We can

estimate a safe lower bound for A’ within which the control loop will work. For the minimum A’ we

take the slope of the imaginary line connecting (138 W, 0%) to (170W, 100%). The reasoning is that if

the processor were to slow down to near 0% speed, then the power of the workload would be near that

of the idle power of 138 W. Therefore, a workload that can go beyond 170W must have a slope greater

than 32. Workloads that have slopes less than 32 cannot reach 170 W and therefore, always run at full-

performance as the control loop selects the 100% performance state in an attempt to raise the power to

the set point. We calculate A as the average between the minimum and maximum slopes to guarantee

stability even in extreme cases. Therefore, A is 78.85 and 0.406 < g1 < 1.594.

Our goal is for system power to settle within 1 second to the set point power. If we use the

conventional 2% target for the set point in Equation 10, then power could still be several Watts away

from the set point, given that the maximum power measured by P4MAX is 273 W. Therefore, we

modify Equation 10 to consider how many intervals are required for the power to settle within 0.5 W:

11ln

273

5.0
ln

g
k

−

≥
 (11)

Equation 11 uses 0.5 W out of 273 W to calculate the minimum percentage of the set point to

which we need to converge. We calculate that k is at least 12.1 which means the power will settle in 13

periods. Dividing 1 second by 13 periods tells us the control period should be less than 76.9 ms. For

the P controller, we use a slightly more conservative interval of 64 ms.

6. System Architecture and Implementation

The power control architecture in our server has three pieces. A power monitor (hardware and

firmware) and a controller (firmware) are two new pieces added to the blade that measure power at

1000 samples per second and decide on a throttle setting for the processors every 64 ms. The actuator

piece providing performance state selection is already available in processors today. We augment the

actuator by modulating between the available performance states to effectively produce a finer range of

0

20

40

60

80

100

120

140

P
4
M

A
X

L
IN

P
A

C
K

S
P

E
C

J
B

B
g
z
ip

-2
v
p
r-

2
g
c
c
-2

m
c
f-

2
c
ra

ft
y
-2

p
a
rs

e
r-

2
e
o
n
-2

p
e
rl
b
m

k
-2

g
a
p
-2

v
o
rt

e
x
-2

b
z
ip

2
-2

tw
o
lf
-2

w
u
p
w

is
e
-

s
w

im
-2

m
g
ri
d
-2

a
p
p
lu

-2
m

e
s
a
-2

g
a
lg

e
l-
2

a
rt

-2
e
q
u
a
k
e
-2

fa
c
e
re

c
-2

a
m

m
p
-2

lu
c
a
s
-2

fm
a
3
d
-2

s
ix

tr
a
c
k
-2

a
p
s
i-
2

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

e
o
n

p
e
rl
b
m

k
g
a
p

v
o
rt

e
x

b
z
ip

2
tw

o
lf

w
u
p
w

is
e

s
w

im
m

g
ri
d

a
p
p
lu

m
e
s
a

g
a
lg

e
l

a
rt

e
q
u
a
k
e

fa
c
e
re

c
a
m

m
p

lu
c
a
s

fm
a
3
d

s
ix

tr
a
c
k

a
p
s
i

Workload

S
lo

p
e
 f

ro
m

 F
ig

u
re

 2

A'=125.7

A'=32

A=78.85

g = A'/A

0.406 < g < 1.594

Figure 5: Selection of A and g1. “2” in workload name denotes 2 threads. Y-axis is the slope of the lines from Figure 2.

performance states. The pseudo-code used on the service processor for the controller and the actuator

components is shown in Figure 4.

6.1. Power monitor

The power monitor measures the blade’s power at its 12 V bulk power supply interface. The power

supply interface is attached to sense resistors and a signal conditioning circuit to obtain the current and

voltage levels. The conditioning circuit attaches to analog-to-digital converters on the service

processor. Every millisecond, the power monitor firmware in the service processor (a 29 MHz Renesas

H8) converts the current and voltage signals into a calibrated power measurement for the entire blade.

After every 64 readings, the power monitor calculates the average power over the previous 64 ms

interval which is sent to the controller.

The absolute measurement is accurate to within 2% due to a calibration feature realized between

the hardware and service processor firmware and due to the 1% accuracy rating of the sense resistors.

The calibration step reduces a number of additional circuit thermal, aging, and precision issues that

would otherwise have led to measurements that varied by 5% or worse as temperatures changed inside

the chassis and as a blade’s components aged over time. It is fundamental to the entire server system to

build its power measurement and management around precision dynamic measurements. The quality

of the power measurement is constrained by the cost of the measurement circuit. For a high-volume,

low-cost server, we use a low-cost circuit that meets a 2% maximum error goal and a 0.1 Watt digital

resolution representation of the discrete power signal.

6.2. Controller

At each 64 ms control interval, the average power during the last 64 ms is used to select the

processor performance state. The output of the controller is an ideal throttle value represented as a

floating-point number. The value 0 represents the 12.5% performance state and 7 represents the 100%

performance state. It is possible to represent effective performance states that are not strictly available

in the processor. For example, 6.2 represents a performance state of 90%. The actuator is responsible

for approximating this value.

6.3. Actuator

Since the output of the controller is a floating-point value, the actuator code must resolve this to a

series of discrete performance state settings to approximate the value. For example, to approximate 6.2,

the modulator would output the sequence 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, etc. To do this, we implement a

first-order delta-sigma modulator [16], which is commonly used in analog-to-digital signal conversion.

If the modulator outputs a performance state that was different from the previous control interval,

the service processor affects the actuation by activating a BIOS routine on the host processor. This

routine sets the IA32_CLOCK_MODULATION register in the Xeon processor to invoke the

performance state. All processors in the server are set to the same performance state.

In the worst case, the controller may actuate every control period. In our two processor server, the

BIOS takes 40 microseconds to change the performance state. Therefore, the effect of actuation

overhead on system performance is no more than 0.07% (40 microseconds/64ms). In situations where

the performance state does not change (e.g. server requires less than the power constraint), there is no

actuation overhead.

6.4. Power budget

In Section 5, we found the minimum value for the controller set point to be 170 W. Considering we

have a 2% maximum error in power measurement, we must subtract the measurement error from the

desired power budget to form the set point used in the controller. For example, if the desired power

budget is 250.0 W, then we use 245.0 W as the controller set point to ensure that the real power is

below the budget even with the worst case measurement error. Accounting for the worst-case

measurement error means the lowest power budget we can guarantee is 173.4 W. When the server

power consumption is below the set point the controller saturates at the highest performance state

which allows the system to operate at full performance. Selection of the highest performance state is

desired because we want the system to run at full performance in normal situations.

7. Results

In this section, we present the experimental results of using closed-loop control of power on a

single IBM BladeCenter blade. We first describe the experimental environment and benchmarks used

in our experiments. Then we introduce the open-loop and ad-hoc controllers to compare with the P

controller. Finally we present results evaluating common benchmarks under several power budgets.

7.1. Experimental Environment

Our test environment is an IBM BladeCenter HS20 blade which was introduced in Section 3.1.

This server is fully populated with two 3.6GHz Intel Xeon Irwindale SMP processors with hyper-

threading, 8GB memory, two 36 GB SCSI hard-disks, dual 1 Gb Ethernet interfaces, and a Fibre

Channel daughter card.

We compare our P controller to an open-loop controller and an ad-hoc controller that both

represent common solutions found in industry. We evaluate each of these three power management

policies using power budgets ranging from 210 W to 250 W. The 250 W budget corresponds to the

case in which the BladeCenter has lost a single redundant 2000 W power supply. Each measurement

presented is the average value of three runs.

Our evaluation workloads are listed in Table 2. Some of the workloads are run under SUSE Linux

Enterprise Server 9 SP 2 and others are run under Windows Server 2003 Enterprise x64 Edition. In our

evaluation, we do not show results for single thread SPEC CPU2000 because the power consumption

is typically below the power budgets we evaluate and would result in no application slowdown. The

P4MAX workload is a program designed to produce the maximum power consumption on the Intel

Xeon microprocessors [13].

7.2. Open-loop control

The open-loop controller, referred to as open-loop, selects a fixed performance setting for a given

power budget. It assumes that the system could be running any workload and therefore must lower the

performance state to the point that even the most power-consuming workload could be run. For this

study we take the highest power load to be P4MAX running at normal machine room temperatures.

The performance state used for a specific power budget is shown in Table 1 which comes from our

power measurements of P4MAX in Figure 2.

7.3. Ad-hoc control

We also compare the P controller with an ad-hoc controller that is representative of typical industry

solutions to control power and temperature. We use this to motivate our use of control theory and

demonstrate that ad-hoc controllers do not generally have the desired properties that make them safe

and reliable. Our ad-hoc controller actuates every 64 ms just like the P controller. However, it simply

raises or lowers the performance state by one step depending on whether the measured power is lower

or higher than the power set point.

Power

budget

Open-loop processor

performance setting

Improved Ad-

hoc set point

P control

set point

250 W 75% 238.9 W 245.0 W

240 W 62.5% 229.1 W 235.2 W

230 W 62.5% 219.3 W 225.4 W

220 W 50% 209.5 W 215.6 W

210 W 37.5% 199.7 W 205.8 W

Table 1: Controller set points used in application
performance measurements. The open-loop performance
setting is determined by the finding the highest
performance setting that runs P4MAX without a violation of
the power budget. P controller set point is calculated by
reducing the power budget by 2% measurement error. Ad-
hoc controller set point is 6.1 W lower than P controller set
point to account for safety margin due to steady-state error
in the ad-hoc controller.

Workload OS Notes

P4MAX Windows Run for 3 minutes on both

processors using 100% setting

(4 threads total).

SPEC

CPU2000

Linux Compiled with Intel Compiler

9.0 (32-bit). Performance

results are only shown for rate

mode (2 users).

SPECjbb2005 Windows JVM is BEA JRockit JRE 5.0

Update 3 (RR25.2.0-28). Run

4 warehouses only.

Intel Optimized

LINPACK

Linux Version 2.1.2. Run with two

threads. 15000x15000 matrix.

Table 2: Workloads.

A simple example of the P controller and ad-hoc controller shows how they are different from each

other. First, consider the LINPACK benchmark shown in Figure 6 which runs at up to 245 W with no

power management. In Figure 7, a power constraint of 211.0 W is introduced at t=39 s.

The ad-hoc control responds by stepping down the performance state of the processors until the

power is lower than the set point. Afterwards, the controller oscillates between the 62.5% and 75%

performance states because the set point power is between the power consumption levels at these

performance states for LINPACK. The power consumption never settles to the set point and has a

steady-state error of 5 W. Even if the ad-hoc controller used a shorter control period, it would still

oscillate and have a steady-state error.

The P controller initially responds by lowering the performance state by several steps in the first

control interval. One important benefit of proportional control is that it can react quicker than the ad-

hoc method. It initially overshoots the set point, but then settles within 1 second as designed to the set

point power. The first-order delta-sigma modulator in the P controller modulates performance states to

run the processors at an effective frequency of 65.8% to meet this set point.

One is tempted to think that the delta-sigma modulator could easily be added to the ad-hoc

controller to improve its steady-state error. However, it is difficult in practice. Imagine using an ad-hoc

controller that uses smaller step sizes to change the ideal throttle level (e.g., 0.1 instead of 1.0). As the

number of discrete performance steps available rises, the steady-state error would reduce, but at the

cost of increased settling time. While it may be possible in some cases to design an ad-hoc controller

that works well in practice, proportional control is preferred because there are established techniques to

provide theoretical guarantees on the control performance and in the case of our P controller there is no

steady-state error.

7.4. Improved ad-hoc control

The ad-hoc controller of the previous section can be improved to not have positive steady-state

error. In Figure 8, we show the result of running both the P controller and the ad-hoc controller at

many set points from 180 W to 260 W. The results are collected by running P4MAX and collecting the

long-term steady-state error observed after a few minutes. The P controller is able to precisely meet the

set point with 0.1 W precision. However, the ad-hoc controller shows steady-state error that is often

above the set point. At most it is 6.1 W above the set point. An improved ad-hoc controller that always

runs at or below the set point is created by subtracting 6.1 W from the set point used. The figure shows

that the improved ad-hoc controller with the safety margin does not violate the set point. We use this

improved version of the ad-hoc controller in the rest of the paper.

190

200

210

220

230

240

250

38 39 40 41 42
Time (s)

S
e
rv

e
r

p
o
w

e
r

(W
)

power 1ms
power 64ms
power 1s

A) System power with ad-hoc control

190

200

210

220

230

240

250

38 39 40 41 42
Time (s)

S
e
rv

e
r

p
o
w

e
r

(W
)

power 1ms

power 64ms

power 1s

B) System power with proportional control

initial overshoot

40%

50%

60%

70%

80%

90%

100%

38 39 40 41 42
Time (s)

P
e
rf

o
rm

a
n
c
e
 s

ta
te

C) Processor performance with ad-hoc control

40%

50%

60%

70%

80%

90%

100%

38 39 40 41 42
Time (s)

 P
e
rf

o
rm

a
n
c
e
 s

ta
te

initial overshoot

settling and modulation to achive 211.0 W

D) Processor performance with proportional control

Figure 7: Example of ad-hoc controller and P controller. The LINPACK benchmark is run and the feedback controller is
turned on at 39 seconds into the run with a set point of 211.0 W. In A) and C), the ad-hoc controller moves one performance
state up or down depending on whether the 64 ms power is below or above the set point. At t=40, the processor speed
averages 68.8% and the average 1 second power is 216.0 W, violating the set point by 5 W. In B) and D), the P controller
shows more effective use of the actuator to precisely achieve the 211.0 W target. At t=40, the average power over 1 second
is 210.7 W and is considered to be settled (by design, within 0.5 W of the set point). By t=41, the average power over 1
second measures 211.0 W and the processor speed averages 65.8%.

170

180

190

200

210

220

230

240

250

260

270

180 200 220 240 260

Controller pow er setpoint (W)

P
o
w

e
r

m
e
a
s
u
re

d
 o

v
e
r

6
6
 s

e
c
o
n
d

in
te

rv
a
l

(W
)

P controller

Ad-hoc controller

Improved ad-hoc

controller

Figure 8: Steady-state error. P4MAX, is run with set points
from 180 W to 260 W. The maximum power for a 66 second
interval is recorded and the average of 3 runs is plotted. The
P controller matched the set point to 0.1 W precision. The
ad-hoc controller showed long-term, steady-state violations
of up to 6.1 W. The improved ad-hoc controller is run with a
safety margin by subtracting 6.1 W from the set point and
exhibits no power budget violation.

220
225

230
235

240
245

250
255

260

38 39 40 41 42
Time (s)

S
e

rv
e

r
p

o
w

e
r

(W
)

power 1ms

power 64ms

power 1s

Figure 6: LINPACK without power management. Graph
shows 4 seconds of the LINPACK benchmark after running
for 38 seconds. Average power over 1 ms, 64 ms, and 1 s
periods is plotted. LINPACK has almost constant power
consumption with periodic dips in power (as seen around
the 40 second mark).

7.5. Application Performance

In this section, we investigate the impact of closed-loop power control on the performance of

common microprocessor benchmarks. We use the improved ad-hoc controller with the safety margin

of 6.1 W because this allows both controllers to run with the same power constraints so that application

performance can be compared. Without the safety margin, the ad-hoc controller would violate the

power constraint for some workloads and show better performance than the P controller.

We ran open-loop, (improved) ad-hoc, and P controller under each power budget and recorded the

throughput achieved. In Figure 9, we present the benchmark performance as a percentage of the

throughput at full-performance. For example, a measure of 100% means the application ran at the same

rate as it would in the 100% performance state (no power management). A measure of 50% means that

the workload achieved half of the throughput as it would the 100% performance state. The throughput

for LINPACK is measured in GFLOP/S, the throughput for SPECjbb2005 is measured in business

operations per second, and SPEC CPU2000 is run with 2 user threads and recorded as number of runs

per second. CPU2000 is divided into CINT2000 and CFP2000 which consist of integer and floating-

point benchmarks, respectively. The reported result is the average for all benchmarks in the category.

Over the entire power budget range, application performance with the P controller is 31% to 82%

faster than open-loop and up to 17% faster than ad-hoc. The open-loop policy runs applications at 29%

to 76% of full-performance. The slowdown is very high because open-loop does not use real-time

measurement and must select a single static speed at which to run the processors. The improved ad-hoc

0%

20%

40%

60%

80%

100%

210 220 230 240 250

Power budget (W)

A
p
p
lic

a
ti
o
n
 t

h
ro

u
g
h
p
u
t

(%
 o

f
fu

ll-
p
e
rf

o
rm

a
n
c
e
)

CINT2000 P controller

CINT2000 improved ad-hoc

CINT2000 open-loop

0%

20%

40%

60%

80%

100%

210 220 230 240 250
Power budget (W)

A
p
p
lic

a
ti
o
n
 t

h
ro

u
g
h
p
u
t

(%
 o

f
fu

ll-
p
e
rf

o
rm

a
n
c
e
)

CFP2000 P controller

CFP2000 improved ad-hoc

CFP2000 open-loop

0%

20%

40%

60%

80%

100%

210 220 230 240 250

Power budget (W)

A
p
p
lic

a
ti
o
n
 t

h
ro

u
g
h
p
u
t

(%
 o

f
fu

ll-
p
e
rf

o
rm

a
n
c
e
)

JBB2005 P controller

JBB2005 improved ad-hoc

JBB2005 open-loop
0%

20%

40%

60%

80%

100%

210 220 230 240 250

Power budget (W)

A
p
p
lic

a
ti
o
n
 t

h
ro

u
g
h
p
u
t

(%
 o

f
fu

ll-
p
e
rf

o
rm

a
n
c
e
)

LINPACK P controller

LINPACK improved ad-hoc

LINPACK open-loop

Figure 9: Application performance. Full-performance (no power management) is denoted by 100% on Y-axis.

policy does much better and runs applications at 49% to 99% of full-performance. However, the P

controller can do even better due to quicker settling times in response to changing power levels and

more efficient modulation of the performance states in the processors. The P controller achieves

between 53% and 100% of full-performance on the workloads across power budgets from 210 W to

250 W. Budgets beyond 250 W for P controller, cause performance to quickly converge to full-

performance for all workloads.

Figure 10 summarizes the speedup of the P controller over other methods. The speedup is

calculated as the throughput of workload under the P controller divided by the throughput of the

workload under the other control mechanism. In general, the largest improvements are made at the

lowest power budgets where the power constraints are the greatest. At the highest power budgets (240

W and 250 W), the improved ad-hoc and P controller policies ran most benchmarks near full

performance because the workloads often run below the power set point at these levels.

8. Discussion

8.1. Accurate power measurement

Accurate power measurement is a vital component to implementing superior power control. All

power sensors are measurement instruments which have some measurement error. This error directly

impacts the application performance achieved by the power controller. For example, our power sensors

have a 2% measurement error so that a power budget of 240 W would use a controller set point of

235.2 W (4.8 W lower) to avoid the risk of having a real power consumption steady-state error above

240 W. In Figure 9 we see that each additional 1 W in the power budget used by the P controller

results in an increase of more than 1 percentage point in application throughput for LINPACK. If it

were possible to use a measurement circuit with negligible error and the controller set point was equal

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

210 220 230 240 250

Pow er budget (W)

S
p
e
e
d
u
p
 o

f
P

 c
o
n
tr

o
lle

r

c
o
m

p
a
re

d
 o

v
e
r

o
th

e
r

m
e
th

o
d
s

CINT2000 - openloop CFP2000 - openloop
JBB2005 - openloop LINPACK - openloop
CINT2000 - ad-hoc CFP2000 - ad-hoc
JBB2005 - ad-hoc LINPACK - ad-hoc

Figure 10: Speedup of P controller over other methods.

to the power budget, then LINPACK performance could be increased by 4 to 5 percentage points

across the power budget range used in the experiments. More realistically, improving the measurement

circuitry to have a 1% measurement error would increase LINPACK performance by over 2 percentage

points.

8.2. Power shifting

The example of LINPACK above shows that allocating even 1 W more to a server can have a

measurable impact (over 1%) in application performance. In power-limited data centers, each

additional Watt that is allocated to a server comes from another server that had to reduce its power

budget and likely its performance. We predict that the ability to allocate server power budget in units

of 1 W, will be necessary for achieving efficient power shifting implementations. Additionally,

extending a server’s power capping range by implementing even lower-power processor performance

states or extending power control to the memory, IO, and storage subsystems will allow shifting

algorithms to scavenge more power from low priority servers.

9. Conclusions

In this paper we present a control-theoretic peak power management system for servers. We show

that a relatively simple closed-loop controller provides better application performance under a power

constraint than by using open-loop solutions found in conventional servers. Since the closed-loop

controller measures the actual power the system consumes, it can react to workload changes and adapt

the performance state to meet the requested power budget. This can increase application performance

by up to 82%. A key factor in realizing this performance improvement is having accurate power

measurement which reduces controller design margins and utilizes the available power supply

effectively.

We compared our controller to a widely used ad-hoc technique. In general our controller is superior

because 1) it has no steady-state error, 2) it has much shorter settling time, 3) it has less actuation

overhead, 4) it has guaranteed stability and predictable settling time even when the system model is not

accurate, and 5) it provides a stability range which gives the designer confidence about the degree of

variation that the control system can tolerate. The P controller runs applications at up to 17% faster

than the ad-hoc controller.

Feedback control of power has many implications for the future design and operation of servers.

Enforcing a run-time power constraint with closed-loop control, rather than a design-time power

constraint with open-loop control, will allow servers to flexibly adapt to changing power and thermal

environments. In addition, it allows design-time safety margins to be reduced so that severs run closer

to the limits of the available power supply constraints. In our blade, we could reduce label power from

308 W to 250 W with a minimal impact on the performance of real applications. At the server-level,

we expect that power capping will be applied to low-cost rack-mount and blade servers so that cost-

effective power supplies with lower power ratings can be used. Within a data center, power capping

will enable power shifting optimizations to dynamically match server power consumption to workload

priority, power distribution constraints, and available rack cooling capacity.

10. References

[1] C. Lefurgy et al., “Energy Management for Commercial Servers”, Computer, vol. 36, no. 12, December, 2004.

[2] P. Bohrer et al., The Case for Power Management in Web Servers. In R. Graybill and R. Melhem, editors, Power Aware Computing.

Kluwer Academic Publishers, 2002.

[3] H. Zeng et al., “Ecosystem: Managing energy as a first class operating system resource”, Int. Conf. on Architectural Support for

Programming Languages and Operating Systems, 2002.

[4] Y. H. Lu et al.. “Operating-system directed power reduction”, Int. Symp. on Low Power Electronics and Design, 2000.

[5] J. Hellerstein et al., Feedback Control of Computing Systems, John Wiley & Sons, 2004.

[6] K. Skadron et al., "Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and Localized Dynamic Thermal

Management." In Proceedings of the Eighth International Symp. on High-Performance Computer Architecture, 2002.

[7] Q. Wu et al., Formal control techniques for power-performance management. IEEE Micro, 25(5):52-62, 2005.

[8] R. J. Minerick, V. W. Freeh, and P. M. Kogge, “Dynamic Power Management Using Feedback”, In Proceedings of Workshop on

Compilers and Operating Systems for Low Power (COLP), 2002.

[9] M. E. Femal and V. W. Freeh, “Boosting Data Center Performance Through Non-Uniform Power Allocation”, In Proceedings of 2nd

Intl. Conf. on Autonomic Computing, 2005.

[10] V. Sharma et al., “Power-Aware QoS Management on Web Servers”, In Proceedings of the 24th International Real-Time Systems

Symposium (RTSS), Dec. 2003.

[11] Y. Chen et al., ”Managing Server Energy and Operational Costs in Hosting Centers”, In Proceedings of the ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer Systems, June 2005.

[12] G. F. Franklin et al., Digital Control of Dynamic Systems, 3rd ed., Addition-Wesley, 1997.

[13] Intel, Maximum Power Program User Guide Version 2.0 for Nocona/Irwindale Processor, 2004.

[14] T. Brey et al., “BladeCenter Chassis Management”, IBM J. Res. & Dev., vol. 49, no. 6, November, 2005.

[15] X. Wang, C. Lefurgy, and M. Ware,"Managing Peak System-level Power with Feedback Control", IBM Research Technical Report

RC23835, 2005.

[16] S. Norsworthy, R. Schreier, and G. Temes (Eds.), Delta-Sigma Data Converters: Theory, Design, and Simulation, Wiley-IEEE

Press, 1996.

[17] D. Brooks and M Martonosi, “Dynamic Thermal Management for High-Performance Microprocessors”, Proceedings of the 7th

Symp. on High Performance Computer Architecture (HPCA-7), 2001.

[18] W. Felter et al., "A Performance-Conserving Approach for Reducing Peak Power Consumption in Server Systems", Proceedings of

the International Conf. on Supercomputing, 2005.

[19] C. Poirier et al., “Power and Temperature Control on a 90nm Itanium-Family Processor”, In proceedings of Intl. Solid State

Circuits Conf., 2005.

[20] IBM Systems, IBM PowerExecutive 1.10 Installation and User’s Guide Version 1.10, 2nd ed., June, 2006.

[21] Intel, Dual-Core Intel Xeon Processor 5100 Series Thermal/Mechanical Design Guide, June, 2006.

[22] B. Colwell, “We May Need a New Box”, Computer, March, 2004.

[23] P. Ranganathan et al., “Ensemble-level Power Management for Dense Blade Servers”, Proceedings of the 33rd Annual Intl. Symp.

on Computer Architecture (ISCA), 2006.

[24] C. Lefurgy, X. Wang, and M. Ware, “Server-level power control”, 4th IEEE Conference on Autonomic Computing, 2007.

[25] X. Fan, W. Weber, and L. Barroso, “Power provisioning for a warehouse-sized computer”, Proceedings of the 34th Annual Intl.

Symp. on Computer Architecture (ISCA), 2007.

