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ABSTRACT

Recently, the demand for data center computing has surged,
increasing the total energy footprint of data centers world-
wide. Data centers typically comprise three subsystems: IT
equipment provides services to customers; power infrastruc-
ture supports the IT and cooling equipment; and the cooling
infrastructure removes heat generated by these subsystems.
This work presents a novel approach to model the energy
flows in a data center and optimize its operation. Tradition-
ally, supply-side constraints such as energy or cooling avail-
ability were treated independently from IT workload man-
agement. This work reduces electricity cost and environmen-
tal impact using a holistic approach that integrates renew-
able supply, dynamic pricing, and cooling supply including
chiller and outside air cooling, with IT workload planning
to improve the overall sustainability of data center opera-
tions. Specifically, we first predict renewable energy as well
as IT demand. Then we use these predictions to generate an
IT workload management plan that schedules IT workload
and allocates IT resources within a data center according
to time varying power supply and cooling efficiency. We
have implemented and evaluated our approach using traces
from real data centers and production systems. The results
demonstrate that our approach can reduce both the recur-
ring power costs and the use of non-renewable energy by as
much as 60% compared to existing techniques, while still
meeting the Service Level Agreements.

1. INTRODUCTION
Data centers are emerging as the “factories” of this genera-

tion. A single data center requires a considerable amount of
electricity and data centers are proliferating worldwide as a
result of increased demand for IT applications and services.
As a result, concerns about the growth in energy usage and
emissions have led to social interest in curbing their energy
consumption. These concerns have led to research efforts in
both industry and academia. Emerging solutions include the
incorporation of renewable on-site energy supplies as in Ap-
ple’s new North Carolina data center, and alternative cooling
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supplies as in Yahoo’s New York data center. The problem
addressed by this paper is how to use these resources most
effectively during the operation of data centers.

Most of the efforts toward this goal focus on improving
the efficiency in one of the three major data center silos:
(i) IT, (ii) cooling, and (iii) power. Significant progress has
been made in optimizing the energy efficiency of each of the
three silos enabling sizeable reductions in data center energy
usage, e.g., [1, 2, 3, 4, 5, 6, 7, 8]; however, the integration of
these silos is an important next step.

To this end, a second generation of solutions for data cen-
ters has begun to emerge. This work focuses on the inte-
gration of different silos as in [9, 10, 11, 12]. An example is
the dynamic thermal management of air-conditioners based
on load at the IT rack level [9, 13]. However, to this point,
supply-side constraints such as renewable energy and cool-
ing availability are largely treated independently from work-
load management such like scheduling. Particularly, current
workload management are not designed to take advantage of
time variations in renewable energy availability and cooling
efficiencies. The work in [14] integrates power capping and
consolidation with renewable, but they do not shift work-
loads to align power demand with renewable supply.

The potential of integrated, dynamic approaches has been
realized in some other domains, e.g., cooling management
solutions for buildings that predict weather and power prices
to dynamically adapt the cooling control have been proposed
[15]. The goal of this paper is to start to realize this potential
in data centers. Particularly, the potential of an integrated
approach can be seen from the following three observations:

First, most data centers support a range of IT workloads,
including both critical interactive applications that run 24x7
such like Internet services, and delay tolerant, batch-style
applications as scientific applications, financial analysis, and
image processing, which we refer to as batch workloads or
batch jobs. Generally, batch workloads can be scheduled to
run anytime as long as they finish before deadlines. This
enables significant flexibility for workload management.

Second, the availability and cost of power supply, e.g., re-
newable energy supply and electricity price, is often dynamic
over time, and so dynamic control of the supply mix can
help reduce CO2 emissions and offset costs. Thus, thought-
ful workload management can have a great impact on energy
usage and costs by scheduling batch workloads in a manner
that follows the renewable availability.

Third, many data centers nowadays are cooled by multiple
means through a cooling micro grid combining traditional
mechanical chillers, airside economizers, and waterside econ-
omizers. Within a micro grid, each cooling approach has a
different efficiency and capacity that depends on IT work-
load, cooling generation mechanism and external conditions
including outside air temperature and humidity, and may
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Figure 1: Sustainable Data Center

vary with the time of day. This provides opportunities to
optimize cooling cost by “shaping” IT demand according to
time varying cooling efficiency and capacity.

The three observations above highlight that there is con-
siderable potential for integrated management of the IT,
cooling, and power subsystems of data centers. Providing
such an integrated solution is the goal of this work. Specif-
ically, we provide a novel workload scheduling and capac-
ity management approach that integrates energy supply (re-
newable energy supply, dynamic energy pricing) and cooling
supply (chiller cooling, outside air cooling) into IT workload
management to improve the overall energy efficiency and re-
duce the carbon footprint of data center operations.

A key component of our approach is demand shifting,
which schedules batch workloads and allocates IT resources
within a data center according to the availability of renew-
able energy supply and the efficiency of cooling. This is a
complex optimization problem due to the dynamism in the
supply and demand and the interaction between them. To
see this, given the lower electricity price and temperature of
outside air at night, batch jobs should be scheduled to run
at night; however, because more renewable energy like solar
is available around noon, we should do more work during the
day to reduce electricity bill and environmental impact.

At the core of our design is a model of the costs within the
data center, which is used to formulate a constrained convex
optimization problem. The workload planner solves this op-
timization to determine the optimal demand shifting. The
optimization-based workload management has been popular
in the research community recently, e.g., [16, 17, 18, 19, 3, 11,
20, 21]. The key contributions of the formulation considered
here compared to the prior literature are (i) the addition of a
detailed cost model and optimization of the cooling compo-
nent of the data center, which is typically ignored in previous
designs; (ii) the consideration of both interactive and batch
workloads; and (iii) the derivation of important structural
properties of the optimal solutions to the optimization.

In order to validate our integrated design, we have imple-
mented a prototype of our approach for a data center that
includes solar power and outside air cooling. Using our im-
plementation, we perform a number of experiments on a real
testbed to highlight the practicality of the approach (Section
5). In addition to validating our design, our experiments are
centered on providing insights into the following questions:

(1) How much benefit (reducing electricity bill and environ-
mental impact) can be obtained from our renewable and
cooling-aware workload management planning?

(2) Is net-zero1 grid power consumption achievable?

(3) Which renewable source is more valuable? What is the
optimal renewable portfolio?

1By “net-zero” we mean that the total energy usage over a
fixed period is less than or equal to the local total renewable
generation during that period. Note that this does not mean
that no power from the grid is used during this period.
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Figure 2: One week renewable generation

2. SUSTAINABLE DATA CENTER

OVERVIEW
Figure 1 depicts an architectural overview of a sustain-

able data center. The IT equipment includes servers, stor-
age and networking switches that support applications and
services hosted in the data center. The power infrastruc-
ture generates and delivers power for the IT equipment and
cooling facility through a power micro grid that integrates
grid power, local renewable generation such as photovoltaic
(PV) and wind, and energy storage. The cooling infrastruc-
ture provides, delivers and distributes the cooling resources
to extract the heat from the IT equipment. In this example,
the cooling capacity is delivered to the data center through
the Computer Room Air Conditioning (CRAC) Units from
the cooling micro grid that consists of air economizer, water
economizer and traditional chiller plant. We discuss these
three key subsystems in detail in the following sections.

2.1 Power Infrastructure
Although renewable energy is in general more sustainable

than grid power, the supply is often time varying in a manner
that depends on the source of power, location of power gen-
erators, and the local weather conditions. Figure 2 shows
the power generated from a 130kW PV installation for an
HP data center and a nearby 100kW wind turbine in Califor-
nia, respectively. The PV generation shows regular variation
while that from the wind is much less predictable. How to
manage these supplies is a big challenge for application of
renewable energy in a sustainable data center.

Despite the usage of renewable energy, data centers must
still rely on non-renewable energy, including off-site grid power
and on-site energy storage, due to availability concerns. Grid
power can be purchased at either a pre-defined fixed rate or
an on-demand time-varying rate, and Figure 3 shows an ex-
ample of time-varying electricity price over 24 hours. Note
that there might also be an additional charge for the peak
demand.

Local energy storage technologies can be used to store and
smooth out the supply of power for a data center. A variety
of technologies are available [22], including flywheels, batter-
ies, and other systems. Each has its costs, advantages and
disadvantages. Energy storage is still quite expensive and
there is power loss associated with energy conversion and
charge/discharge. Hence, it is critical to maximize the use
of the renewable energy that is generated on site. An ideal
scenario is to maximize the use of renewable energy while
minimizing the use of storage.

2.2 Cooling Supply
Due to the ever-increasing power density of IT equipment

in today’s data centers, a tremendous amount of electricity
is used by the cooling infrastructure. According to [23], a
significant amount of data center power goes to the cooling
system (up to 1/3) including CRAC units, pumps, chiller
plant and cooling towers.

Lots of work has been done to improve the cooling effi-
ciency through, e.g., smart facility design, real-time control
and optimization [8, 7]. Traditional data centers use chillers
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Figure 3: One week real-time electricity price

to cool down the returned hot water from CRACs via me-
chanical refrigeration cycles since they can provide high cool-
ing capacity continuously. However, compressors within the
chillers consume a large amount of power [24, 25]. Recently,
“chiller-less” cooling technologies have been adopted to re-
move or reduce the dependency on mechanical chillers. In
the case with water-side economizers, the returned hot water
is cooled down by components such as dry coolers or evap-
orative cooling towers. The cooling capacity may also be
generated from cold water from seas or lakes. In the case of
air economizers, cold outside air may be introduced after fil-
tering and/or humidification/de-humidification to cool down
the IT equipment directly while hot air is rejected into the
environment.

However, these so-called “free” cooling approaches are ac-
tually not free [24]. First, there is still a non-negligible energy
cost associated with these approaches, e.g., blowers driving
outside air through data center need to work against air flow
resistance and therefore consume power. Second, the effi-
ciency of these approaches is greatly affected by environ-
mental conditions such as ambient air temperature and hu-
midity, compared with that of traditional approaches based
on mechanical chillers. The cooling efficiency and capacity
of the economizers can vary widely along with time of the
day, season of the year, and geographical locations of the
data centers. These approaches are usually complemented
by more stable cooling resources such as chillers, which pro-
vides opportunities to optimize the cooling power usage by
“shaping” IT demand according to cooling efficiencies.

2.3 IT Workload
There are many different workloads in a data center. Most

of them fit into two classes: interactive, and non-interactive
or batch. The interactive workloads such as Internet services
or business transactional applications typically run 24x7 and
process user requests, which have to be completed within a
certain time (response time), usually within a second. Non-
interactive batch jobs such as scientific applications, finan-
cial analysis, and image processing are often delay tolerant
and can be scheduled to run anytime as long as progress can
be made and the jobs finish before the deadline (completion
time). This deadline is much more flexible (several hours
to multiple days) than that of interactive workload. This
provides great optimization opportunities for workload man-
agement to“shape”non-interactive batch workloads based on
the varying renewable energy and cooling supply.

Interactive workloads are characterized by different stochas-
tic properties for request arrival, service demand, and Service
Level Agreements (SLAs, e.g., thresholds of average response
time or percentile delay). Figure 4 shows a 7-day normalized
workload demand (CPU usage) trace for a popular photo
sharing and storage web service, which has more than 85
million registered users in 22 countries. We can see that the
workload shows significant variability and exhibits a clear
diurnal pattern, which is typical for data center interactive
workloads.

Batch jobs are defined in terms of total resource demand
(e.g, CPU hours), starting time, completion time as well as
maximum resource consumption (e.g., a single thread pro-
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Figure 4: One week interactive workload

gram can use up to 1 CPU). Conceptually, a batch job can
run at anytime on many different servers as long as it fin-
ishes before the specified completion time. Our integrated
management approach exploits this flexibility to make use of
renewable energy and efficient cooling when available.

3. MODELING AND OPTIMIZATION
As discussed above, time variations in renewable energy

supply availability and cooling efficiencies provide both op-
portunities and challenges for managing IT workloads in data
centers. In this section, we present a novel design for renew-
able and cooling aware workload management that exploits
opportunities available to improve the sustainability of data
centers. In particular, we formulate an optimization problem
for adapting the workload scheduling and capacity allocation
to varying supply from power and cooling infrastructure.

3.1 Optimizing the cooling substructure
We first derive the optimal cooling substructure when mul-

tiple cooling approaches are available in the substructure.
We consider two cooling approaches: the outside air cool-
ing which supplies most of the cooling capacity, and cooling
through mechanical chillers which guarantees availability of
cooling capacity. By exploring the heterogeneity of the ef-
ficiency and cost of the two approaches, we represent the
minimum cooling power of the substructure as a function of
the IT heat load.

In the following discussion, we define cooling coefficient as
the cooling power divided by the IT power to represent the
cooling efficiency. By cooling capacity we mean how much
heat the cooling system can extract from the IT equipment
and reject into the environment. In the case of outside air
cooling, the cold air from outside is assumed pushed into
the return ends of the CRAC units while the hot air from
the outlets of the server racks is exhausted to the ambient
environment through ducts.

Outside Air Cooling

The energy usage of outside air cooling is mainly the power
consumed by blowers, which can be approximated as a cu-
bic function of the blower speed [26, 24]. We assume that
capacity of the outside air cooling is under tight control,
e.g., through blower speed tuning, to avoid over-provisioning.
Then the outside air capacity is equal to the IT heat load at
the steady state when the latter does not exceed the total air
cooling capacity. Based on basic heat transfer theory [27],
the cooling capacity is proportional to the air volume flow
rate. The air volume flow rate is approximately proportional
to blower speed according to the general fan laws [26, 24].
Therefore, outside air cooling power can be defined as a func-
tion of IT power d as fa(d) = kd3, 0 ≤ d ≤ d, k > 0, which is
a convex function. The parameter k depends on the temper-
ature difference, (tRA − tOA), based again on heat transfer
theory, where tOA is the outside air temperature (OAT) and
tRA is the temperature of the (hot) exhausting air from the
IT racks. The maximum capacity of this cooling system can
be modeled as d = C(tRA − tOA). The parameter C > 0
is the maximum capacity of the air, which is proportional
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(a) Outside air cooling
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(b) Chiller cooling

Figure 5: Cooling coefficient comparison, for conver-
sion, 20◦C=68◦F, 25◦C=77◦F, 30◦C=86◦F

to the maximal outside air mass flow rate when the blowers
run at the highest speed. As one example, Figure 5(a) shows
the cooling coefficient for an outside air cooling system (as-
suming the exhausting air temperature is 35◦C/95◦F) under
different outside air temperatures.

Chilled Water Cooling

First-principle models of chilled water cooling systems, in-
cluding the chiller plant, cooling towers, pumps and heat
exchangers, are complicated [27, 13, 25]. In this paper, we
consider an empirical chiller efficiency model that was built
on actual measurement of an operational chiller [25]. Fig-
ure 5(b) shows the cooling coefficient of the chiller. Different
from the outside air cooling, the chiller cooling coefficient
does not change much with OAT and the variation over dif-
ferent IT load is much smaller than that under outside air
cooling. In the following analysis, the chiller power consump-
tion is approximated as fc(d) = γd, where d is again the IT
power and γ > 0 is a constant depending on the chiller.
Our analysis also applies to the case of any arbitrary strictly
increasing and convex chiller cooling function [28].

Cooling optimization

As shown in Figure 5, the efficiency of outside air cooling
is more sensitive to IT load and the OAT than is that of
chiller cooling. Furthermore, the cost of outside air cooling
is higher than that of the chiller when the IT load exceeds
a certain value because its power increases very fast (super-
linearly) as the IT power increases, in particular for high
ambient temperatures. The heterogeneous cooling efficien-
cies of the two approaches and the varying properties along
with air temperature and heat load provide opportunities to
optimize the cooling cost by using proper cooling capacity
from each cooling supply as we discuss below, or by manip-
ulating the heat load through demand shaping as we show
in later sections.

For a given IT power d and outside air temperature tOA,
there exists an optimal cooling capacity allocation between
outside air cooling and chiller cooling. Assume the cooling
capacities provided by the chiller and outside air are d1 and
d2 respectively (d1 = d − d2). From the cooling models
introduced above, the optimal cooling power consumption is

c(d) = min
d2∈[0,d]

γ(d− d2)
+ + kd32 (1)

This can be solved analytically, which yields

d∗2 =

{

d if d ≤ ds
ds otherwise

where ds = min
{

√

γ/3k, d
}

, and the optimal outside air

cooling capacity is d∗1 = d− d∗2. So,

c(d) =

{

kd3 if d ≤ ds
kd3s + γ(d− ds) otherwise

(2)
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Figure 6: Optimal cooling power

is the cooling power of the optimal substructure, which is
used for the optimization in later sections. Figure 6 illus-
trates the relationship between cooling power and IT load
for different ambient temperatures. We see that the cooling
power is a convex function of IT power, higher with hotter
outside air. We also prove that the optimal c(d) is a convex
function of d in [28], which is important for using this as a
component of the overall optimization for workload manage-
ment.

3.2 System Model
We consider a discrete-time model whose timeslot matches

the timescale at which the capacity provisioning and schedul-
ing decisions can be updated. There is a (possibly long) time
period we are interested in, {1, 2, ..., T}. In practice, T could
be a day and a timeslot length could be 1 hour. The man-
agement period can be either static, e.g., to perform the
scheduling every day for the execution of the next day, or
dynamic, e.g., to create a new plan if the old scheduling dif-
fers too much from the actual supply and demand. The goal
of the workload management is at each time t to:
(i) Make the scheduling decision for each batch job;
(ii) Choose the energy storage usage;
(iii) Optimize the cooling infrastructure.
We assume the renewable supply at time t is r(t), which

may be a mix of different renewables, such as wind and PV
solar. We denote the grid power price at time t by p(t) and
assume p(t) > 0 without loss of generality. If at some time t
we have negative price, we will use up the total capacity at
this timeslot, then we only need to make capacity decisions
for other timeslots, see [28] for more details. To model energy
storage, we denote the energy storage level at time t by es(t)
with initial value es(0) and the discharge/charge at time t
by e(t), where positive or negative values mean discharge or
charge, respectively. Also, there is a loss rate ρ ∈ [0, 1] for
energy storage. We therefore have the relation es(t + 1) =
ρ(es(t) − e(t)) between successive timeslots and we require
0 ≤ es(t) ≤ ES,∀t, where ES is the energy storage capacity.
Though there are more complex energy storage models [29],
they are beyond the scope of the paper.

Assume that there are I interactive workloads. For in-
teractive workload i, the arrival rate at time t is λi(t), the
mean service rate is µi and the target performance metrics
(e.g., average delay, or 95th percentile delay) is rti. In or-
der to satisfy these targets, we need to allocate interactive
workload i with IT capacity ai(t) at time t. Here ai(t) is
derived from analytic models (e.g., M/GI/1/PS, M/M/k) or
system measurements as a function of λi(t) because perfor-
mance metrics generally improve as the capacity allocated to
the workload increases, hence there is a sharp threshold for
ai(t). Note that our solution is quite general and does not
depend on a particular model.

Assume there are J classes of batch jobs. Class j batch
jobs have total demand Bj , maximum parallelization MPj ,
starting time Sj and deadline Ej . Let bj(t) denote the
amount of capacity allocated to class j jobs at time t. We
have 0 ≤ bj(t) ≤ MPj ,∀t and

∑

t bj(t) ≤ Bj . Given the
above definitions, the total IT demand at time t is given by

d(t) = Σiai(t) + Σjbj(t). (3)



When taking into consideration the server power model,
we can further transform d(t) into power demand, as in Sec-
tion 4.1. We assume the total IT capacity is D, so 0 ≤
d(t) ≤ D,∀t. Note here d(t) is not constant, but instead
time-varying as a result of dynamic capacity provisioning.

3.3 Cost and Revenue Model
The cost of a data center includes both capital and op-

erating costs. Our model focuses on the operational elec-
tricity cost. Meanwhile, by servicing the batch jobs, the
data center can obtain revenue. We model the data center
cost by combining the energy cost and revenue from batch
jobs. Note that, to simplify the model, we do not include the
switching costs associated with cycling servers in and out of
power-saving modes; however, the approach of [3] provides a
natural way to incorporate such costs if desired.

To capture the variation of the energy cost over time, we
let g(t, d(t), e(t)) denote the energy cost of the data center
at time t given the IT power d(t), optimal cooling power,
renewable generation, electricity price, and energy storage
usage e(t). For any t, we assume that g(t, d(t), e(t)) is non-
decreasing in d(t), non-increasing in e(t), and jointly convex
in d(t) and e(t).

This formulation is quite general, and captures, for exam-
ple, the common charging plan of a fixed price per kWh plus
an additional “demand charge” for the peak of the average
power used over a sliding 15 minute window [30], in which
case the energy cost function consists of two parts:

p(t) (d(t) + c(d(t))− r(t)− e(t))+

and

ppeak
(

max
t

(d(t) + c(d(t))− r(t)− e(t))+
)

,

where p(t) is the fixed/variable electricity price per kWh,
and ppeak is the peak demand charging rate. We could also
include a sell-back mechanism and other charging policies.
Additionally, this formulation can capture a wide range of
models for server power consumption, e.g., energy costs as
an affine function of the load, see [1], or as a polynomial
function of the speed, see [4, 31].

We model only the variable component of the revenue2,
which comes from the batch jobs that are chosen to be run.
Specifically, the data center gets revenue R(b), where b is
the matrix consisting of bj(t),∀j, ∀t. In this paper, we focus
on the following, simple revenue function

R(b) = ΣjRj

(

Σt∈[Sj,Ej ]bj(t)
)

,

where Rj is the per-job revenue.
(

Σt∈[Sj,Ej ]bj(t)
)

captures
the amount of class j jobs finished before their deadlines.

3.4 Optimization Problem
We are now ready to formulate the renewable and cooling

aware workload management optimization problem. Our op-
timization problem takes as input the renewable supply r(t),
electricity price p(t), optimal cooling substructure c(d(t)),
and IT workload demand ai(t), Bj and related information
(the starting time Sj , deadline Ej , maximum parallization
MPj), IT capacity D, energy storage capacity ES and loss
rate ρ, and generates an optimal schedule of each timeslot for
batch jobs bj(t) and energy storage usage e(t), according to
the availability of renewable power and cooling supply such
that specified SLAs (e.g., deadlines) and operational goals
(e.g., minimizing operational costs) are satisfied.

2Revenue is also derived from the interactive workload, but
for the purposes of workload management the amount of
revenue from this workload is fixed.

This is captured by the following optimization problem:

min
b,e

Σtg(t, d(t), e(t))−ΣjRj

(

Σt∈[Sj,Ej ]bj(t)
)

(4a)

s.t.Σtbj(t) ≤ Bj , ∀j (4b)

es(t+ 1) = ρ(es(t)− e(t)), ∀t (4c)

0 ≤ bj(t) ≤ MPj , ∀j,∀t (4d)

0 ≤ d(t) ≤ D, ∀t (4e)

0 ≤ es(t) ≤ ES. ∀t (4f)

Here d(t) is given by (3). (4b) means the amount of served
batch jobs cannot exceed the total demand, and could be-
come Σtbj(t) = Bj if finishing all class j batch job is re-
quired. (4c) updates the energy storage level of each times-
lot. We also incorporate constraints on maximum paralleliza-
tion (4d), IT capacity (4e), and energy storage capacity (4f).
We may have other constraints, such as a “net zero” con-
straint that the total energy consumed be less than the total
renewable generation within [1, T ], i.e.

∑

t(d(t) + c(d(t))) ≤
∑

t r(t). Note that, though highly detailed, this formulation
does ignore some important concerns of data center design,
e.g., reliability and availability. Such issues are beyond the
scope of this paper; nevertheless, our designs merge nicely
with proposals such as [32] for these goals.

In this paper, we restrict our focus from optimization (4a)
to (5a), but the analysis can be easily extended to other
convex cost functions.

min
b,e

Σtp(t)(d(t) + c(d(t)) − r(t) − e(t))+ − ΣjRj

(

Σt∈[Sj,Ej ]
bj(t)

)

(5a)

s.t.Σtbj(t) ≤ Bj , ∀j (5b)

es(t+ 1) = ρ(es(t) − e(t)), ∀t (5c)

0 ≤ bj(t) ≤ MPj , ∀j,∀t (5d)

0 ≤ d(t) ≤ D, ∀t (5e)

0 ≤ es(t) ≤ ES. ∀t (5f)

Note that this optimization problem is jointly convex in
bj(t) and e(t) and can therefore be efficiently solved.

Given the significant amount of prior work approaching
data center workload management via convex optimization
[16, 17, 18, 19, 3, 11, 20], it is important to note the key
difference between our formulation and prior work–our for-
mulation is the first, to our knowledge, to incorporate renew-
able generation, storage, an optimized cooling micro grid,
and batch job scheduling with consideration of both price
diversity and temperature diversity. Prior formulations have
included only one or two of these features. This “univer-
sal” inclusion is what allows us to consider truly integrated
workload management.

3.5 Properties of the optimal workload
management

The usage of the workload management optimization de-
scribed above depends on more than just the ability to solve
the optimization quickly. In particular, the solutions must
be practical if they are to be adopted in actual data centers.

In this section, we provide characterizations of the optimal
solutions to the workload management optimization, which
highlight that the structure of the optimal solutions facil-
itates implementation. Specifically, one might worry that
the optimal solutions require highly complex scheduling of
the batch jobs, which could be impractical. For example,
if a plan schedules too many jobs at a time, it may not be
practical because there is often an upper limit on how many



workloads can be hosted in a physical server. The following
results here show that such concerns are unwarranted.

Energy usage and cost

Although it is easily seen that the workload management op-
timization problem has at least one optimal solution,3 in gen-
eral, the optimal solution is not unique. Thus, one may worry
that the optimal solutions might have very different proper-
ties with respect to energy usage and cost, which would make
capacity planning difficult. However, it turns out that the
optimal solution, though not unique, has nice properties with
respect to energy usage and cost.

In particular, we prove that all optimal solutions use the
same amount of power from the grid at all times. Thus,
though the scheduling of batch jobs and the usage of energy
storage might be very different, the aggregate grid power
usage is always the same. This is a nice feature when con-
sidering capacity planning of the power system. Formally,
this is summarized by the following theorem proved in [28].

Theorem 1. For the simplified energy cost model (5a),
suppose the optimal cooling power c(d) is strictly convex in
d. Then, the energy usage from the grid, (d(t) + c(d(t)) −
r(t) − e(t))+, at each time t is common across all optimal
solutions.

Though Theorem 1 considers a general setting, it is not
general enough to include the optimal cooling substructure
discussed in Section 3.1, which includes a strictly convex sec-
tion followed by a linear section (while in practice, the chiller
power is usually strictly convex in IT power, and satisfies
the requirement of Theorem 1). However, for this setting,
there is a slightly weaker result that still holds–the marginal
cost of power during each timeslot is common across all op-
timal solutions. This is particularly useful because it then
provides the data center operator a benchmark for evaluat-
ing which batch jobs are worthy of execution, i.e., provide
revenue larger than the marginal cost they would incur. For-
mally, we have the following theorem proved in [28].

Theorem 2. For the simplified energy cost model (5a),
suppose c(d) is given by (2). Then, the marginal cost of
power, ∂

(

p(t)(d(t) + c(d(t))− r(t)− e(t))+
)

/∂(d(t)), at each
time t is common across all optimal solutions.

Complexity of the schedule for batch jobs

A goal of this work is to develop an efficient, implementable
solution. One practical consideration is the complexity of
the schedule for batch jobs. Specifically, a schedule must
not be too “fragmented”, i.e., have many batch jobs being
run at the same time and batch jobs being split across a
large number of time slots. This is particularly important
in virtualized server environments because we often need to
allocate a large amount of memory for each virtual machine
and the number of virtual machines sharing a server is often
limited by the memory available to virtual machines even if
the CPUs can be well shared. Additionally, there is always
overhead associated with hosting virtual machines. If we
run too many virtual machines on the same server at the
same time, the CPU, memory, I/O and performance can be
affected. Finally, with more virtual machines, live migrations
and consolidations during runtime management can affect
the system performance.

However, it turns out that one need not worry about an
overly “fragmented” schedule, since there always exists a
“simple” optimal schedule. Formally, we have the following
theorem, which is proved in [28].

3This can be seen by applying Weierstrass’ theorem [33],
since the objective function is continuous and the feasible
set is compact subset of Rn.
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Figure 7: System Architecture

Theorem 3. There exists an optimal solution to the work-
load management problem with at most (T + J − 1) of the
bj(t) are neither 0 nor MPj .

Informally, this result says that there is a simple optimal
solution that uses at most (T +J−1) more timeslots, or cor-
responding active virtual machines, in total than any other
solutions finishing the same number of jobs. Thus, on aver-
age, for each class of batch job per timeslot, we run at most
(T+J−1)

TJ
more active virtual machines than any other plan

finishing the same amount of batch jobs. If the number of
batch job classes is not large, on average, we run at most one
more virtual machine per slot. In our experiments in Section
5, the simplest optimal solution only uses 4% more virtual
machines. Though Theorem 3 does not guarantee that every
optimal solution is simple, the proof is constructive. Thus,
it provides an approach that allows one to transform an op-
timal solution into the simplest optimal solution.

In addition to Theorem 3, there are two other properties of
the optimal solution that highlight its simplicity. We state
these without proof due to space constraints. First, when
multiple classes of batch jobs are served in the same timeslot,
all of them except possibly the one with the lowest revenue
are finished. Second, in every timeslot, the lowest marginal
revenue of a batch job that is served is still larger than the
marginal cost of power from Theorem 2.

4. SYSTEM PROTOTYPE
We have designed and implemented a supply-aware work-

load and capacity management prototype in a production
data center based on the description in the previous sec-
tion. The data center is equipped with on-site PV power
generation and outside air cooling. The prototype includes
workload and capacity planning, runtime workload schedul-
ing and resource allocation, renewable generation and IT
workload demand prediction. Figure 7 depicts the system
architecture. The predictors use the historical traces of sup-
ply and demand information to predict the available power
of an on-site PV, and the expected interactive workload de-
mand. The capacity planner takes the predicted energy sup-
ply and cooling information as inputs and generates an op-
timal capacity allocation scheme for each workload. Finally,
the runtime workload manager executes the workload plan.

The remainder of this section provides more details on
each component of the system: capacity and workload plan-
ning, PV and workload prediction, and runtime workload
management.

4.1 Capacity and Workload Planner
The data center has mixed energy sources: on-site pho-

tovoltaic (PV) generation tied to grid power. The cooling
infrastructure has a cooling micro grid, including outside air
cooling and chiller cooling. The data center hosts interac-
tive applications and batch jobs. There are SLAs associated



with the workloads. Though multiple IT resources can be
used by IT workloads, we focus on CPU resource manage-
ment in this implementation. We use a virtualized server
environment where different workloads can share resources
on the same physical servers.

The planner takes the following inputs: power supply (time
varying PV power and grid power price data), interactive
workload demand (time varying user request rates, response
time target), batch job resource demands (CPU hours, ar-
rival time, deadline, revenue of each batch job), IT con-
figuration information (number of servers, server idle and
peak power, capacity) and cooling configuration parameters
(blower capacity, chiller cooling efficiency) and operational
goals. We use the optimization (5a) in Section 3.4 with the
following additional details.

We first determine the IT resource demand of interac-
tive workload i using the M/GI/1/PS model, which gives

1
µi−λi(t)/ai(t)

≤ rti. Thus, the minimum CPU capacity

needed is ai(t) =
λi(t)

µi−1/rti
, which is a linear function of the

arrival rate λi(t). We estimate µi through real measure-
ments and set the response time requirement rti according
to the SLAs. While the model is not perfect for real-world
data center workloads, it provides a good approximation.
Although important, performance modeling is not the focus
of this paper. The resulting average CPU utilization of in-
teractive workload i is 1 − 1

µirti
, therefore its actual CPU

usage at time t is ai(t)
(

1− 1
µirti

)

, the remaining ai(t)
1

µirti

capacity can be shared by batch jobs. For a batch job j,
assume at time t it shares nji(t) ≥ 0 CPU resource with
interactive workload i and uses additional nj(t) ≥ 0 CPU
resource by itself, then its total CPU usage at time t is
bj(t) = Σinji(t) + nj(t), which is used to update Constraint
(5b) and (5d). We have an additional constraint on CPU ca-
pacity that can be shared Σjnji(t) ≤ ai(t)

1
µirti

. Assume the

data center has D CPU capacity in total, so the IT capacity
constraint becomes Σiai(t) + Σjnj(t) ≤ D. Although our
optimization (5a) in Section 3.4 can be used to handle IT
workload with multi-dimensional demand, e.g., CPU, mem-
ory, here we restrict our attention to CPU-bound workloads.

The next step is to estimate the IT power consumption,
which can be done based on the average CPU utilization

Pserver(u) = Pi + (Pb − Pi) ∗ u

where u is the average CPU utilization across all servers, Pi

and Pb are the power consumed by the server at idle and
their fully utilized state, respectively. This simple model
has proved very useful and accurate in modeling power con-
sumption since other components’ activities are either static
or correlate well with CPU activity [1]. Assuming each server
has Q CPU capacity, using the above model, we estimate the
IT power as follows4 :

d(t) =
Σiai(t)

Q
(Pi + (Pb − Pi) ∗ ui) +

Σjnj(t)

Q
Pb,

where ui =
(

1− 1
µirti

+
Σjnji(t)

ai(t)

)

.

The cooling power can be derived from the IT power ac-
cording to the cooling model (2) described in Section 3.1.

By solving the cost optimization problem (5a), we then
obtain a detailed capacity plan, including at each time t the
capacity allocated to each class j of batch jobs bj(t) (from
nji(t) and nj(t)), and interactive workload i ai(t), energy
storage usage e(t), as well as optimal cooling configuration
(i.e., capacity for outside air cooling and chiller cooling).

4Since the number of servers used by an interactive workload
or a class of batch jobs is usually large in data centers, we
treat it as continuous.
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Figure 8: PV prediction

It follows from Section 3.4 that this problem is a convex op-
timization problem and hence there exist efficient algorithms
to solve this problem. For example, disciplined convex pro-
gramming [34] can be used. Under this approach, convex
functions and sets are built up from a small set of rules from
convex analysis, starting from a base library of convex func-
tions and sets. Constraints and objectives that are expressed
using these rules are automatically transformed to a canon-
ical form and solved. In our prototype, the algorithm is
implemented using Matlab CVX [34], a modeling system for
convex optimization.

We then utilize the Best Fit Decreasing (BFD) method [35]
to decide how to place and consolidate the workloads at each
timeslot. More advanced techniques exist for optimizing the
workload placement [5], but they are out this paper’s scope.

4.2 PV Power Forecaster
A variety of methods have been used for fine-grained en-

ergy prediction, mostly using classical auto-regressive tech-
niques [36, 37]. However, most of the work does not explicitly
use the associated weather conditions as a basis for modeling.
The work in [38] considered the impact of the weather con-
ditions explicitly and used an SVM classifier in conjunction
with a RBF kernel to predict solar irradiation. We use a sim-
ilar approach for PV prediction in our prototype implemen-
tation. In order to predict PV power generation for the next
day, we use a k-nearest neighbor (k-NN) based algorithm.
The prediction is done at the granularity of one-hour time
periods. The basic idea is to search for the most “similar”
days in the recent past (using one week worked well here5)
and use the generation during those days to estimate the
generation for the target hour. The similarity between two
days is determined using features such as ambient temper-
ature, humidity, cloud cover, visibility, sunrise/sunset times
on those days, etc. In particular, the algorithm uses weighted
k-NN, where the PV prediction for hour t on the next day

is given by ŷt =
Σi∈Nk(xt,D)yi/d(xi,xt)

Σi∈Nk(xt,D)1/d(xi,xt)
, where ŷt is the PV

predicted output at hour t, xt is the feature vector, e.g., tem-
perature, cloud cover, for the target hour t obtained from the
weather forecast, yi is the actual PV output for neighbor i,
xi is the corresponding feature vector, d is the distance met-
ric function, Nk(xi,D) are k-nearest neighbors of xi in D. k
is chosen based on cross-validation of historical data.

Figure 8 shows the predicted and actual values for the
PV supply of the data center for one week in September
2011. The average prediction errors vary from 5% to 20%.
The prediction accuracy depends on occurrence of similar
weather conditions in the recent past and the accuracy of the
weather forecast. The results in [28] show that a ballpark
approximation is sufficient for planning purposes and our
system can tolerate prediction errors in this range.

4.3 IT Workload Forecaster
In order to perform the planning, we need knowledge about

the IT demand, both the stochastic properties of the inter-
active application and the total resource demand of batch

5If available, data from past years could also be used.
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Figure 9: Workload analysis and prediction

jobs. Though there is large variability in workload demands,
workloads often exhibit clear short-term and long-term pat-
terns. To predict the resource demand (e.g., CPU resource)
for interactive applications, we first perform a periodicity
analysis of the historical workload traces to reveal the length
of a pattern or a sequence of patterns that appear periodi-
cally. Fast Fourier Transform (FFT) can be used to find the
periodogram of the time-series data. Figure 9(a) plots the
time-series and the periodogram for 25 work days of a real
CPU demand trace from an SAP application. From this we
derive periods of the most prominent patterns or sequences
of patterns. For this example, the peak at 24 hours in the
periodogram indicates that it has a strong daily pattern (pe-
riod of 24 hours). Actually, most interactive workloads ex-
hibit prominent daily patterns. An auto-regressive model
is then used to capture both the long term and short term
patterns. The model estimates w(d, t), the demand at time
t on day d, based on the demand of the previous N days
as w(d, t) = ΣN

i=1ai ∗ w(d − i, t) + c. The parameters are
calibrated using historical data.

We evaluate the workload prediction algorithm with sev-
eral real demand traces. The results for a Web application
trace are shown in Figure 9(b). The average prediction er-
rors are around 20%. If we can use the previous M time
points of the same day for the prediction, we could further
reduce the error rate.

The total resource demand (e.g., CPU hours) of batch jobs
can be obtained from users or from historical data or through
offline benchmarking [39]. Like supply prediction, a ballpark
approximation is good enough, as we will see in [28].

4.4 Runtime Workload Manager
The runtime workload manager schedules workloads and

allocates CPU resource according to the plan generated by
the planner. We implement a prototype in a KVM-based
virtualized server environment [40]. Our current implemen-
tation uses a KVM/QEMU hypervisor along with control
groups (Cgroups), a new Linux feature, to perform resource
allocation and workload management [40]. In particular, it
executes the following tasks according to the plan: (1) create
and start virtual machines hosting batch jobs; (2) adjust the
resource allocation (e.g., CPU shares or number of virtual
CPUs) to each virtual machine; (3) migrate and consolidate
virtual machines via live migration. The workload manager
assigns a higher priority to virtual machines running inter-
active workloads than virtual machines for batch jobs via
Cgroups. This guarantees that resources are available as
needed by interactive applications, while excess resources can
be used by the batch jobs, improving server utilization.

5. EVALUATION
To highlight the benefits of our design for renewable and

cooling aware workload management, we perform a mixture
of numerical simulations and experiments in a real testbed.
We first present trace-based simulation results in Section 5.1,
and then the experimental results on the real testbed imple-
mentation in Section 5.2.

5.1 Case Studies
We begin by discussing evaluations of our workload and ca-

pacity planning using numerical simulations. We use traces
from real data centers. In particular, we obtain PV supply,
interactive IT workload, and cooling data from real data cen-
ter traces. The renewable energy and cooling data is from
measurements of a data center in California. The data cen-
ter is equipped with 130kW PV panel array and a cooling
system consisting of outside air cooling and chiller cooling.
We use the real-time electricity price of the data center loca-
tion obtained from [41]. The total IT capacity is 500 servers
(100kW). The interactive workload is a popular web service
application with more than 85 million registered users in 22
countries. The trace contains average CPU utilization and
memory usage as recorded every 5 minutes. Additionally,
we assume that there are a number of batch jobs. Half of
them are submitted at midnight and another half are sub-
mitted around noon. The total demand ratio between the
interactive workload and batch jobs is 1:1.5. The interactive
workload is deemed critical and the resource demand must
be met while the batch jobs can be rescheduled as long as
they finish before their deadlines. The plan period is 24-
hours and the capacity planner creates a plan for the next
24-hours at midnight based on renewable supply and cool-
ing information as well as the interactive demand. The plan
includes hourly capacity allocation for each workload. We
assume perfect knowledge about the workload demand and
renewable supply, and the results in [28] validate our solu-
tion works well with prediction errors and different mixes of
interactive and batch workloads.

Here we explore:

1. How valuable is renewable and cooling aware workload
management?

2. Is net zero possible under renewable and cooling aware
workload management?

3. What portfolio of renewable sources is best?

How valuable is renewable and cooling aware
workload management?

We start with the key question for this paper: how much
energy cost/CO2 savings does renewable and cooling aware
workload management provide? In this study, we assume
half of batch jobs must be finished before noon and another
half must be finished before midnight. We compare the fol-
lowing four approaches: (i) Optimal, which integrates supply
and cooling information and uses our optimization algorithm
to schedule batch jobs; (ii) Night, which schedules batch jobs
at night to avoid interfering with critical workloads and to
take advantage of idle machines (this is a widely used so-
lution in practice); (iii) Best Effort (BE), which runs batch
jobs immediately when they arrive and uses all available IT
to finish batch jobs as quickly as possible; (iv) Flat, which
runs batch jobs at a constant rate within the deadline period
for the jobs.

Figure 10 shows the detailed schedule and power consump-
tion for each approach, including IT power (batch and in-
teractive workloads), cooling, and supply. As shown in the
figure, compared with other approaches, Optimal reshapes
the batch job demand and fully utilizes the renewable sup-
ply, and uses non-renewable energy, if necessary, to complete
the batch jobs during this 24-hour period. These additional
batch jobs are scheduled to run between 3am and 6am or
11pm and midnight, when the outside air cooling is most ef-
ficient and/or the electricity price is lower. As a result, our
solution reduces the grid power consumption by 39%-63%
compared to other approaches (Figure 10(e)). Though not
clear in the figure, the optimal solution does consume a bit
more total power (up to 2%) because of the low cooling ef-
ficiency around noon. Figure 10(f) shows the average recur-
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Figure 10: Power cost minimization while finishing
all jobs

ring electricity cost and CO2 emission per job. The energy
cost per job is reduced by 53%-83% and the CO2 emission
per job is reduced by 39%-63% under the Optimal schedule.

The adaptation of workload management to renewable avail-
ability is clear in Figure 10. Less clear is the importance of
managing the workload in a manner that is “cooling aware”.

The importance of cooling aware scheduling: As dis-
cussed in Sections 2.2 and 3.1, the cooling efficiency and
capacity of a cooling supply often vary over time. This is
particularly true for outside air cooling. One important com-
ponent of our solution is to schedule workloads by taking into
account time varying cooling efficiency and capacity. To un-
derstand the benefits of cooling integration, we compare our
optimal solution as shown in Figure 10(a) with two solu-
tions that are renewable aware but handle cooling differently:
(i)Cooling-oblivious ignores cooling power and considers IT
power only, (ii)Static-cooling uses a static cooling efficiency
(assuming the cooling power is 30% of IT power) to esti-
mate the cooling power from IT power and incorporates the
cooling power into workload scheduling.

Figures 11(a) and 11(b) show Cooling-oblivious and Static-
cooling schedules, respectively. As shown in the figures, both
schedules integrate renewable energy into scheduling and run
most batch jobs when renewables are available. However, be-
cause they do not capture the cooling power accurately, they
cannot fully optimize workload schedule. In particular, by
ignoring the cooling power, Cooling-oblivious underestimates
the power demand and runs more jobs than the available PV
supply and hence uses more grid power during the day. This
is also less cost-efficient because the electricity price peaks at
that time. On the other hand, by overestimating the cooling
power demand, Static-cooling fails to fully utilize the renew-
able supply and results in inefficiency, too. Figures 11(c) and
11(d) compare the total power usage and energy efficiency,
i.e., normalized energy cost and carbon emission per batch
job of these two approaches and Optimal, respectively. By
accurately modeling the cooling efficiency and adapting to
time variations in cooling efficiency, our solution reduces the
energy cost by 20%-38% and CO2 emission by 4%-28%.
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Figure 11: Benefit of cooling integration

The importance of optimizing the cooling micro-grid:
Optimizing the workload scheduling based on cooling effi-
ciency is only one aspect of our cooling integration. Another
important aspect is to optimize the cooling micro-grid, i.e,
using the proper amount of cooling capacity from each cool-
ing resource. This is important because different cooling sup-
plies exhibit different cooling efficiencies as the IT demand
and external conditions such as OAT changes. Our solution
takes this into account and optimizes the cooling capacity
management in addition to IT workload management.

We compare: (i) Optimal adjusts the cooling capacity for
outside air cooling and chiller cooling based on the dynamic
cooling efficiency, which is determined by IT demand and
outside air temperature; (ii) Binary Outside Air (BOA) uses
outside air cooling at its full capacity if OAT exceeds some
threshold (25◦C) or interactive demand is too low (less than
10% of the IT capacity) and does not use it at all otherwise;
(iii) Chiller only uses the chiller cooling only. All three so-
lutions are renewable and cooling aware and schedule work-
load according to the renewable supply and cooling efficiency.
They finish the same number of batch jobs. The difference
is how they manage cooling resources and capacity.

Figure 12 shows the cooling capacity from outside air cool-
ing and chiller cooling for these three solutions. As shown
in this figure, Optimal uses outside air only during night
when it is more efficient, and combines outside air cooling
and chiller cooling during other times. In particular, our so-
lution uses less outside air cooling and more chiller cooling
between 1pm and 4pm as outside air cooling is less efficient
due to high IT demand and outside air temperature at that
time. In contrast, BOA runs outside air at full capacity
except the hours around noon when the outside air is less
efficient. Figures 12(g) and 12(h) compare the power, cost,
and cooling consumption of the three approaches. By op-
timizing the cooling substructure, our solution reduces the
cooling power by 66% over BOA and 48% over Chiller only.

Is net zero energy consumption possible with renewable
and cooling aware workload management?

Now, we switch our goal from minimizing the cost incurred
by the data center to minimizing the environmental impact of
the data center. Net zero is often used to describe a building
with zero net energy consumption and zero carbon emission
annually. Recently, researchers have envisioned how net zero
building concepts can be effectively extended into the data
center space to create a net zero data center, whose total
power consumption is less than or equal to the total power
supply from renewable. We explore if net zero is possible
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(c) BOA plan
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(d) BOA cooling capacity
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(e) Chiller only plan
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Figure 12: Benefit of cooling optimization

with renewable and cooling aware workload management in
data centers and how much it will cost.

By adding a net-zero constraint (i.e., total power consump-
tion ≤ total renewable supply) to our optimization problem,
our capacity planner can generate a net-zero schedule. Fig-
ure 13(a) shows our solution (Net-zero1 ) for achieving a net
zero operation goal. Similar to the optimal solution shown
in Figure 10(a), Net-zero1 optimally schedules batch jobs
to take advantage of the renewable supply; however, batch
jobs are only executed when renewable energy is available
and without exceeding the total renewable generation, and
thus some are allowed to not finish during this 24 hour pe-
riod. In this case, about 40% of the batch jobs are delayed
till a future time when a renewable energy surplus may ex-
ist. Additionally, some renewable energy is reserved to offset
non-renewable energy used at night for interactive workloads.
This excess renewable power is reserved in the afternoon
when the outside air temperature peaks, thus minimizing
the energy required for cooling.

A key to achieving net zero is energy storage. By maximiz-
ing renewable usage directly, Net-zero1 reduces the depen-
dency on storage and hence the capital cost. To understand
the benefit, we compare Net-zero1 with another schedule,
Net-zero2, which runs the same amount of batch jobs but
distributes the batch jobs over 24-hours as shown in Fig-
ure 13(b). Both approaches achieve the net-zero goal, but
Net-zero2 uses 287% more grid power compared to our solu-
tion Net-zero1. As a result, the energy storage sizes of Net-
zero1 and Net-zero2 are 82kWh and 330kWh, respectively.
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Figure 13: Net Zero Energy
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Figure 14: Optimal renewable portfolio

Using an estimated cost of 400$/kWh [22], this difference in
energy demand results in $99,200 more energy storage ex-
penditure for Net-zero2.

What portfolio of renewable sources is best?

To this point, we have focused on PV solar as the sole source
of renewable energy. Since wind energy is becoming increas-
ingly cost-effective, a sustainable data center will likely use
both solar and wind to some degree. The question that
emerges is which one is better source from the perspective
of optimizing data center energy efficiency. More generally,
what is the optimal portfolio of renewable sources?

We conduct a study using the wind and solar traces de-
picted in Figure 2. Assuming an average renewable supply of
200kW, we vary the mix of solar and wind in the renewable
supply. For each mix, we use our capacity management opti-
mization algorithm to generate an optimal workload sched-
ule. We compare the non-renewable power consumption for
different renewable mixes for two cases (turning off unused
servers and without turning off unused servers). Figure 14
shows the results as a function of percentage of solar with
different storage capacity. As shown in the figure, the opti-
mal portfolio contains more solar than wind because solar is
less volatile and the supply aligns better with IT demand.

However, wind energy is still an important component and
a small percentage of wind can help improve the efficiency.
For example, the optimal portfolio without storage consists
of about 60% solar and 40% wind. As we increase the stor-
age capacity, the energy efficiency improves and wind energy
becomes less valuable. This is because wind is stronger at
night and so storage will incur heavier losses.

In summary, solar is a better source for local data centers
in sunny areas such like Palo Alto and a small addition of
wind can help improve energy efficiency. The optimal port-
folio varies for different areas. Additionally, recent work has
shown that the value of wind increases significantly when
geographically diverse data centers are considered [17, 20].

5.2 Experimental Results on a Real Testbed
The case studies described in the previous section high-

light the theoretical benefits of our approach over existing
solutions. To verify our claims and ensure that we have a
practical and robust solution, we experimentally evaluate our
prototype implementation on a real data center testbed and
contrast it with a current workload management approach.



5.2.1 Experiment Setup
Our testbed consists of four high end servers (each with

two 12-core 1.8GHz processors and 64 GB memory) and the
following workloads: one interactive Web application, and 6
batch applications. Each server is running Scientific Linux.
Each workload is running inside a KVM virtual machine.
The interactive application is a single-tier web application
running multiple Apache web servers and batch jobs are sys-
bench [42] with different resource demands. httperf [43] is
used to replay the workload demand traces in the form of
CGI requests, and each request is directed to one of the
Web servers. The PV, cooling data, and interactive workload
traces used in the case study are scaled to the testbed ca-
pacity. We measure the power consumption via the server’s
built-in management interfaces, collect CPU consumption
through system monitoring and obtain response times of
Web servers from Apache logs.

5.2.2 Experiment Results
We compare two approaches: (i) Optimal is our optimal

design, (ii) Night, which runs batch jobs at night. For each
plan, the runtime workload manager dynamically starts the
batch jobs, allocates resources to both interactive and batch
workloads and turns on/off servers according to the plan.
Figures 15(a) and 15(b) shows the CPU allocation of our
optimal solution and the actual CPU consumption measured
in the experiment, respectively. The results show that actual
resource usage closely follows the power generated by the
capacity planner. The results for Night are similar. We
further compare the predicted power usage in the plan and
the actual power consumption in the experiment for both
approaches. From Figures 15(c) and 15(d), we see that the
actual power usage is close to the power plan.

We then compare the power consumption and performance
of the two approaches. Figure 16(a) shows the power con-
sumption. Optimal does more work during the day when the
renewable energy source is available. Night uses additional
servers from midnight to 6am to run batch jobs while our
solution starts batch jobs around noon by taking advantage
of renewable energy. Compared with Night, our approach
reduces the grid power usage by 48%. One thing worth men-
tioning is that the total power is not quite proportional to
the total CPU utilization as a result of the large idle part
of the server power. This is most noticeable when the num-
ber of servers is small, as we see in the experimental results,
Figures 15(b) and 15(c). When the total number of servers
increases, the impact of idle power decreases and Optimal
will save even more grid power.

One reason that batch jobs are scheduled to run at night
is to avoid interfering with interactive workloads. Our ap-
proach runs more jobs during the day when the web server
demand is high. To understand the impact of this on per-
formance, we compare the average response time of the web
server. The results show that both approaches are almost
identical: 153.0ms for Optimal, compared to 156.0ms for
Night. See [28] for more details. This is because both so-
lutions satisfy web server demand and Linux KVM/Cgroups
scheduler is preemptive and enables CPU resources to be ef-
fectively virtualized and shared among virtual machines [40].
In particular, assigning a much higher priority to virtual ma-
chines hosting the web servers guarantees that resources are
available as needed by the web servers.

In summary, the real experiment results demonstrate that
(i) the optimization-based workload management scheme can
translate effectively into a prototype implementation, (ii)
compared with traditional workload management solution,
Optimal significantly reduces the use of grid power without
degrading the performance of critical demand.

6. CONCLUDING REMARKS
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Our goal in this paper is to provide an integrated workload
management system for data centers that takes advantage of
the efficiency gains possible by shifting demand in a way that
exploits time variations in electricity price, the availability
of renewable energy, and the efficiency of cooling. There are
two key points we would like to highlight about our design.

First, a key feature of the design is the integration of the
three main data center silos: cooling, power, and IT. Though
a considerable amount of work exists in optimizing efficien-
cies of these individually, there is little work that provides
an integrated solution for all three. Our case studies illus-
trate that the potential gains from an integrated approach
are significant. Additionally, our prototype illustrates that
these gains are attainable. In both cases, we have taken case
to measurements from a real data center and traces of real
applications to ensure that our experiments are meaningful.

Second, it is important to point out that our approach
uses a mix of implementation, modeling, and theory. At the
core of our design is a cost optimization that is solved by the
workload manager. Care has been taken in designing and
solving this optimization so that the solution is “practical”
(see the characterization theorems in Section 3.5). Building
an implementation around this optimization requires signifi-
cant measurement and modeling of the cooling substructure,
and the incorporation of predictors for workload demand and
PV supply. We see one role of this paper as a proof of concept
for the wide-variety of “optimization-based designs” recently
proposed, e.g., [16, 17, 18, 19, 3, 11, 20].

There are a number of future directions building on this
work including integrating reliability and a more detailed
study of the role of storage. But, perhaps the most exciting
direction is the potential to consider renewable and cooling
aware workload management of geographically diverse data
centers as opposed to the local workload management con-



sidered here. As illustrated in [17, 20], geographical diver-
sity can be a significant aid in handling the intermittency of
renewable sources and electricity price fluctuations. For ex-
ample, the fact that fluctuations in wind energy are nearly
uncorrelated for significantly distant locations means that
wind can provide a nearly constant baseline supply of en-
ergy if workload can be adapted geographically. Another
future direction we would like to highlight is the task of un-
derstanding the impact of workload management on the ca-
pacity planning of a data center, e.g. the size of renewable
infrastructure, the capacity of IT and cooling infrastructure,
and the capital expense and to minimize the Total Cost Own-
ership (TCO).
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