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ABSTRACT
Developing sensor network applications demands a new set
of tools to aid programmers. A number of simulation en-
vironments have been developed that provide varying de-
grees of scalability, realism, and detail for understanding
the behavior of sensor networks. To date, however, none of
these tools have addressed one of the most important as-
pects of sensor application design: that of power consump-
tion. While simple approximations of overall power usage
can be derived from estimates of node duty cycle and com-
munication rates, these techniques often fail to capture the
detailed, low-level energy requirements of the CPU, radio,
sensors, and other peripherals.

In this paper, we present PowerTOSSIM, a scalable sim-
ulation environment for wireless sensor networks that pro-
vides an accurate, per-node estimate of power consumption.
PowerTOSSIM is an extension to TOSSIM, an event-driven
simulation environment for TinyOS applications. In Pow-
erTOSSIM, TinyOS components corresponding to specific
hardware peripherals (such as the radio, EEPROM, LEDs,
and so forth) are instrumented to obtain a trace of each
device’s activity during the simulation run. PowerTOSSIM
employs a novel code-transformation technique to estimate
the number of CPU cycles executed by each node, elimi-
nating the need for expensive instruction-level simulation of
sensor nodes. PowerTOSSIM includes a detailed model of
hardware energy consumption based on the Mica2 sensor
node platform. Through instrumentation of actual sensor
nodes, we demonstrate that PowerTOSSIM provides accu-
rate estimation of power consumption for a range of appli-
cations and scales to support very large simulations.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General; B.8.0 [Performance
and Reliability]: General; C.4 [Performance of Sys-
tems]: Modeling techniques
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1. INTRODUCTION
The challenges of developing, debugging, and evaluating

complex sensor network applications demands a new set of
tools to aid programmers. Simulation environments, such
as ns2 [6], TOSSIM [13], and Atemu [11], provide varying
degrees of scalability, realism, and detail for understanding
the behavior of sensor networks. To date, however, none of
these tools have considered one of the most important as-
pects of sensor application design: that of power consump-
tion. While simple approximations of overall power usage
can be derived from estimates of node duty cycle and com-
munication rates, these techniques often fail to capture the
detailed, low-level energy requirements of the CPU, radio,
sensors, and other peripherals.

Understanding power consumption is especially critical for
sensor networks operating on limited power reserves, such as
batteries or solar cells. Sensor network designers need the
ability to obtain accurate and dependable power consump-
tion figures to tune their applications before deployment in
real environments. Apart from aggregate power consump-
tion over time, the pattern of power load is important to
consider, as this affects the ability of the power source to
deliver adequate energy over time. These challenges were
apparent in the Great Duck Island sensor network deploy-
ment [24], in which nodes significantly underperformed their
expected lifetimes.

Existing simulation environments allow researchers to study
dynamics such as communication overheads within the net-
work, but no comparable tools exist for power consumption.
Moreover, simulating the behavior of each sensor node at the
level of CPU cycles or radio bits does not scale for networks
of considerable size (e.g., thousands of nodes). In situ mea-
surement of power consumption is possible at small scales,
for instance, by instrumenting specific nodes in a lab setup.
However, such an approach does not provide a network-wide
picture of power consumption which is necessary for analysis
of hot spots, or of variations in power usage under changes
in the environment or network topology.

In this paper, we present PowerTOSSIM, a scalable sim-
ulation environment for wireless sensor networks that pro-



vides an accurate, per-node estimate of power consumption.
PowerTOSSIM is based on TOSSIM [13], an event-driven
simulation environment for TinyOS [10] applications, and
derives much of its value from the tools built up around the
TinyOS environment. In PowerTOSSIM, TinyOS compo-
nents corresponding to specific hardware peripherals (such
as the radio, EEPROM, LEDs, and so forth) are instru-
mented to obtain a trace of each device’s activity during
the simulation run. To scale up to large numbers of sen-
sor nodes, PowerTOSSIM runs applications as a native ex-
ecutable and does not directly simulate each node’s CPU
at the instruction level. Instead, PowerTOSSIM employs
a code-transformation technique to estimate the number of
CPU cycles executed by each node. Finally, the trace of
each node’s activity is fed into a detailed model of hardware
energy consumption, yielding per-node energy consumption
data. This energy model can be readily modified for differ-
ent hardware platforms.

The contributions of this paper are as follows. We de-
scribe the design and implementation of PowerTOSSIM, as
well as present a detailed energy profile of the Mica2 sensor
node obtained via extensive application-level benchmarking.
We validate the accuracy of PowerTOSSIM’s power esti-
mates against 15 TinyOS applications, demonstrating that
PowerTOSSIM achieves within 0.45–13% of the true power
consumption of nodes running an identical program. Pow-
erTOSSIM is designed to scale to very large networks, and
runs 20 times faster than Atemu [11], an instruction-level
simulator for the AVR platform that runs TinyOS programs.
PowerTOSSIM is the first scalable simulation environment
for sensor networks that provides accurate power consump-
tion data.

The rest of this paper is organized as follows. We first
discuss motivation and related work in Section 2. In Sec-
tion 3 we describe our hardware measurement configura-
tion, benchmarking, and the resulting Mica2 energy model.
In Section 4 we describe the design of TOSSIM and our
modifications to it. Section 5 describes the implementation
of PowerTOSSIM in detail, and Section 6 presents exper-
iments to validate its accuracy and scalability. Section 7
describes future work and concludes.

2. BACKGROUND AND RELATED WORK
Understanding the performance and behavior of sensor

networks requires simulation tools that can scale to very
large numbers of nodes. Traditional network simulation en-
vironments, such as ns2 [6], are effective for understanding
the behavior of network protocols, but generally do not cap-
ture the operation of endpoint nodes in detail. Also, while
ns2 provides implementations of the 802.11 MAC/PHY lay-
ers, many sensor networks employ nonstandard wireless pro-
tocols that are not implemented in ns2.

A number of instruction-level simulators for sensor net-
work nodes have been developed, including Atemu [11] and
Simulavr [20]. These systems provide a very detailed trace of
node execution, although only Atemu provides a simulation
of multiple nodes in a networked environment. The overhead
required to simulate sensor nodes at the instruction level
considerably limits scalability. Other sensor network sim-
ulation environments include PROWLER [21], TOSSF [19]
(based on SWAN [14]), SensorSim [17], and SENS [23]. Each
of these systems provides differing levels of scalability and
realism, depending on the goals for the simulation environ-

ment. In some cases, the goal is to work at a very ab-
stract level, while in others, the goal is to accurately simu-
late the behavior of sensor nodes. Few of these simulation
environments have considered power consumption. Sensor-
Sim [17] and SENS [23] incorporate simple power usage and
battery models, but they do not appear to have been val-
idated against actual hardware and real applications [18].
Also, SensorSim does not appear to be publically available.

Several power simulation tools have also been developed
for energy profiling in the embedded systems community.
EMSIM [25] is a simulator for an embedded OS based on
the StrongARM microprocessor. It consists of a StrongARM
instruction-set simulator and simulation models for memory,
UART and other peripherals connected to the processor.
JouleTrack [2] is another tool built for general embedded
software energy profiling but it estimates only the micro-
processor energy consumption. Although these tools show
high accuracy in energy profiling, they are designed for simu-
lating a single host’s energy use only. From a sensor network
perspective, a tool for efficient large scale profiling is desired.

EmStar [9] provides an emulation environment for sensor
networks using either a simulated radio channel or real mes-
saging on a ceiling array of nodes connected via a serial port
multiplexer. EmStar allows sensor network applications to
be developed in a friendly Linux-based environment, allow-
ing one to leverage debugging and tracing features in stan-
dard operating systems. EmTOS [22] is a TinyOS emulation
environment for EmStar. While not a simulation environ-
ment per se, EmStar and EmTOS provide a valuable frame-
work for testing sensor network applications.

TOSSIM [13] provides a scalable simulation environment
for sensor networks based on TinyOS [10]. Unlike machine-
level simulators, TOSSIM compiles a TinyOS application
into a native executable that runs on the simulation host
This design allows TOSSIM to be extremely scalable, sup-
porting thousands of simulated nodes. Deriving the simula-
tion from the same code that runs on real hardware greatly
simplifies the development process. TOSSIM supports sev-
eral realistic radio-propagation models and has been vali-
dated against real deployments for several applications. How-
ever, TOSSIM does not provide any information on the
power consumption, which is the key goal of this paper.

Most of the individual ideas in this work have been used
before. Our CPU power estimation technique is similar to
the basic block profile based macro modeling in Tan, et
al.[26]. Trace based modeling and offline processing are also
extremely common ideas in systems research [7]. Modeling
power usage by keeping track of the state of various system
components is also an established technique [5]. Our main
contribution is the integration of many disjoint ideas into a
single tool that enables accurate power simulation of sen-
sor networks at a scale that was previously impossible to
attain.

3. HARDWARE CHARACTERIZATION
In this paper, we focus on sensor networks based on small,

low-power sensors such as the Mica2 sensor node, developed
by UC Berkeley. This device consists of a 7.3 MHz AT-
mega128L processor, 128KB of code memory, 512KB EEP-
ROM, 4KB of data memory, and a ChipCon CC1000 ra-
dio capable of transmitting at 38.4 Kbps with an outdoor
transmission range of approximately 300m. The device mea-
sures 5.7cm × 3.1cm × 1.8cm and is typically powered by



Figure 1: Our hardware measurement configuration.

Our setup includes an oscilloscope, instrumentation amp,

power supply, mote, PC, and programming board. The in-

strumented mote is at the bottom center of the picture.
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Figure 2: Measured current consumption for transmit-

ting a single radio message at maximum transmit power

on the Mica2 node.

2 AA batteries. The expected lifetime varies from days to
months, depending on application duty cycle. The Mica2
can be interfaced to a number of sensors such as photore-
sistors, thermistors, passive infrared, magnetometers, and
accelerometers.

The first challenge in simulating the power consumption
of sensor network devices is obtaining an accurate, detailed
model of a typical node’s power consumption. We have con-
ducted extensive power profiling of the Mica2 platform us-
ing the standard Mica2 sensor board equipped with a pho-
toresistor, temperature sensor, microphone, sounder, and
tone detection circuit. In this section we describe our mea-
surement setup and methodology, and present the resulting
power model.

3.1 Measurement setup
Our measurement setup is depicted in Figure 1. An os-

cilloscope was chosen to measure current with the highest
possible resolution in order to reveal all power transitions.
The oscilloscope used was an Agilent Infiniium 54832B[1]

with 10:1 passive probes. The oscilloscope provides a 1 GHz
sampling resolution. All data was logged digitally for later
analysis. Because the Mica2 mote exhibits drastic current
swings (from 30 µA to 30mA) the measurement circuit was
designed to respond to the swings but not drastically change
the voltage supplied to the mote. A 1.03 Ω resistor was
placed in series with the mote and an instrumentation am-
plifier (Analog Devices AD620[3]) with a gain of 106 was
used to amplify the voltage across the resistor. This am-
plified voltage was measured by the scope. Input offsets
induced by the amplifier were measured and accounted for
during data analysis.

Several benchmarks required synchronization between the
measured signal and the application. In these cases, data
capture was initiated by raising an I/O pin on the mote’s
microcontroller. Digital multi-meters which are capable of
accurately capturing extremely small currents were used to
measure the low power modes.

Figure 2 illustrates a high-resolution data capture of the
current consumption for transmitting a radio message. In
this example the mote starts in a low power state (consum-
ing less than 100 µA), wakes up, and transmits the message.
The TinyOS radio stack uses the Carrier Sense Multiple
Access (CSMA) collision avoidance protocol. When using
CSMA, sending a message requires the mote to listen to the
radio channel to detect potential collisions before beginning
transmission. The figure clearly shows the discrete power
levels for each of these operations.

3.2 Micro-benchmarks
Isolating the hardware consumption of each of the mote’s

devices (CPU, radio, EEPROM, etc.) required developing
a set of micro-benchmarks that exercise each component in-
dependently. Two different micro-benchmarks were written
to capture the current drawn by the CPU. The first spun in
a series of loops with known instruction counts in order to
capture the per-instruction current consumption overhead.
The second exercised each of the seven CPU power states
supported by the ATmega128L. Measuring the energy re-
quired to transmit and receive messages is possible with a
standalone benchmark that periodically broadcasts a mes-
sage; as shown in Figure 2, message transmission requires
an initial listen period to avoid channel contention, which
is straightforward to isolate in the trace. The CC1000 ra-
dio supports programmable transmission power levels rang-
ing from −20 dBm to +10 dBm. A micro-benchmark was
written to measure energy used at different transmit pow-
ers. Likewise, another micro-benchmark measured the EEP-
ROM by performing a series of read and write operations,
raising an I/O pin to trigger data collection at the appro-
priate point.

In order to characterize the analog-to-digital converter
and the sensors a micro-benchmark was written that en-
abled the ADC and then periodically sampled the sensors.
A general purpose I/O pin was raised when a sensor reading
was requested and then cleared when the value was returned.
Both the light and the temperature sensor were tested.

3.3 Hardware power model
Table 1 presents the resulting power model for the Mica2

hardware platform. As the table shows, the different CPU
power modes cover a wide range of current levels, from
103µA in the “power down” state up to 8mA when ac-



Mode Current Mode Current
CPU Radio
Active 8.0 mA Rx 7.0 mA
Idle 3.2 mA Tx (-20 dBm) 3.7 mA
ADC Noise Reduce 1.0 mA Tx (-19 dBm) 5.2 mA
Power-down 103 µA Tx (-15 dBm) 5.4 mA
Power-save 110 µA Tx (-8 dBm) 6.5 mA
Standby 216 µA Tx (-5 dBm) 7.1 mA
Extended Standby 223 µA Tx (0 dBm) 8.5 mA
Internal Oscillator 0.93 mA Tx (+4 dBm) 11.6 mA
LEDs 2.2 mA Tx (+6 dBm) 13.8 mA
Sensor board 0.7 mA Tx (+8 dBm) 17.4 mA
EEPROM access Tx (+10 dBm) 21.5 mA
Read 6.2 mA
Read Time 565 µs
Write 18.4 mA
Write Time 12.9 ms

Table 1: Power model for the Mica2. The mote was mea-

sured with the micasb sensor board and a 3V power supply.

tively executing instructions. Likewise, the choice of ra-
dio transmission power affects current consumption consid-
erably, from 3.7mA at -20dBm to 21.5mA at +10dBm. How-
ever, in many of our applications the radio is almost always
listening for incoming messages, which consumes 7mA re-
gardless of transmission activity.

Note that it is possible to achieve even lower energy con-
sumption (down to 30µA or so) by disabling the external
oscillator, JTAG interface, and making various hardware
modifications to the Mica2 platform. These features have
been exploited to achieve very long lifetimes in certain ap-
plications [24], but are not used by the bulk of applications
provided in the TinyOS codebase. In any case, the power
model can be readily modified to account for decreased cur-
rent consumption in “snooze” states if one wishes to evaluate
the effect of these changes.

Another component of power consumption is the current
drawn by the sensors themselves. On the Mica2, analog-to-
digital conversion (ADC) does not consume a measurable
amount of energy, given that the ADC logic is incorporated
into the CPU. However enabling or disabling particular sen-
sors may cause additional energy consumption while those
devices are active. The simple Mica2 sensor board does not
specifically gate the supply voltage for each sensor, and thus
consumes a constant current of 0.7 mA when it is attached
to the mote, regardless of whether the particular sensors are
being sampled. If a more sophisticated sensor board is used,
our power model can easily incorporate the current draw of
individual sensors.

3.4 In situ power monitoring with MoteLab
Apart from the rather elaborate measurement setup shown

in Figure 1, we have found it valuable to obtain real-time
power consumption data from sensor nodes in a larger-scale
testbed. We have developed a web-based interface to a
wired network of 30 Mica2 nodes distributed throughout
our building, called MoteLab. Each node is connected to an
Ethernet-based backchannel board that provides TCP/IP
access to each mote’s serial port for data capture and re-
programming. The web interface allows a user to remotely
reprogram the entire testbed with specified TinyOS bina-
ries, and logs messages sent to each mote’s serial port to a
database. The data can be accessed while the job is running
or used for later analysis.

As part of this environment, we have instrumented one
node with a network-attached digital multimeter, and im-
plemented a server component that logs the power consump-
tion of this node to the database as well. This setup pro-
vides in situ power measurements of the sensor node as it
participates in the sensor network application provided by
the user, requires no additional configuration (other than
clicking a checkbox in the web interface to enable the power
monitoring) and saves considerable effort on the part of sen-
sor network developers. We have found it to be extremely
valuable for validating experiments conducted in the Pow-
erTOSSIM environment.

4. DESIGN OF POWERTOSSIM
In this section we describe the overall design of Power-

TOSSIM, which consists of instrumentation of the TinyOS
codebase to track hardware power state transitions, an accu-
rate CPU cycle counting mechanism based on basic-block-
level profiling, and analysis tools to visualize and analyze
power consumption results on a per-mote basis.

4.1 TinyOS and TOSSIM
PowerTOSSIM is based on the TinyOS [10] operating sys-

tem and the TOSSIM [13] simulation environment. TinyOS
is a component-oriented, event-driven operating system for
sensor networks, consisting of a simple FIFO task scheduler
and numerous software components for sensing, radio com-
munication, EEPROM access, and other devices. TinyOS is
not a binary kernel per se; rather, one assembles a TinyOS
application by linking multiple software components into an
optimized binary. TinyOS is written in NesC [8], a C-based
language that provides support for the TinyOS component
and concurrency model.

TinyOS has become a popular environment for experi-
menting with sensor network applications, due to its mod-
ular nature and support for several common sensor node
platforms. As described in Section 2, TinyOS supports a
simulation environment called TOSSIM [13]. In TOSSIM,
the TinyOS application is compiled directly into an event-
driven simulator that runs on the simulation host. This de-
sign exploits the component-oriented nature of TinyOS by
effectively providing drop-in replacements for the TinyOS
components that access hardware; TOSSIM provides sim-
ulated hardware components such as a simple radio stack,
sensors, and other peripherals. This design allows the same
code that is run on real hardware to be tested in simula-
tion at scale. PowerTOSSIM makes use of the TinyOS and
TOSSIM component model to instrument hardware state
transitions for the purpose of tracking power consumption.
This is described in detail below.

4.2 PowerTOSSIM architecture
Figure 3 illustrates the architecture of PowerTOSSIM.

PowerTOSSIM tracks the power state of each hardware com-
ponent of the simulated motes by generating specific power
state transition messages that are logged during the sim-
ulation run. This is accomplished by instrumenting the
TOSSIM simulated hardware components with calls to a
new component, PowerState, which tracks hardware power
states for each mote and logs them to a file during the run.
Estimating CPU usage is somewhat more involved: since
PowerTOSSIM runs the mote software as a native binary
on the host machine, it has no information on the length of



time that a given mote spends using the CPU. CPU profil-
ing is accomplished by mapping the basic blocks executed
by the simulation code to cycle counts in the corresponding
mote binary; this is described further in Section 4.4.

The power state data generated by PowerTOSSIM can
be combined with a power model, such as that described
in Section 3, to determine per-mote and per-component en-
ergy usage. This processing can be performed using offline
tools to obtain detailed traces of power consumption for each
hardware component of each mote, or fed into the TinyViz
visualization tool to display power consumption data in re-
altime.

We chose to decouple the generation and processing of
power state transition data for two reasons: efficiency and
flexibility.

Efficiency:. One of the important characteristics that Pow-
erTOSSIM inherits from TOSSIM is its very high efficiency
in simulating large networks that scale to thousands of nodes.
To preserve this efficiency, it is important to avoid intro-
ducing high overheads into the simulation itself. Logging
hardware state transition messages at runtime introduces
very low overhead. Likewise, allowing the simulation to run
as a native binary avoids the overhead of instruction-level
simulation.

Flexibility:. It is also important to provide a high degree of
flexibility for capturing and modeling the power state of the
mote; we did not want to assume a particular hardware plat-
form, as new designs are constantly being considered. With
the decoupled design it is possible to evaluate the power effi-
ciency of potential hardware designs only by plugging a new
power model into the analysis tools; the simulation itself
need not be re-executed.

The following subsections present the design of each part
of the PowerTOSSIM architecture in detail.

4.3 Component instrumentation
In TinyOS, each of the mote’s hardware components is

driven by a specific software module that is responsible for
controlling its operation. For example, the CC1000RadioIntM
module handles most aspects of radio communication us-
ing the ChipCon CC1000 radio. TOSSIM replaces many
of these hardware drivers with its own simulated versions,
making it possible to link a TinyOS application to the simu-
lated hardware with very few code changes. PowerTOSSIM
leverages this design by instrumenting each of the simulated
hardware drivers with power state transition messages that
are logged during the simulation. This is accomplished by
adding calls from each hardware driver to a new module,
called PowerState, that emits log messages when the power
state of each hardware device changes. Abstracting power
state transitions in a separate module allows the interface to
be readily extended to support new hardware components,
such as new sensor platforms.

4.4 CPU profiling
As described above, TOSSIM achieves scalability by com-

piling the TinyOS application code into a binary that runs
directly on the simulation host. While very efficient, this
design makes it difficult to determine how much time each
simulated mote’s CPU spends in the active state (actively
executing instructions) versus the idle state, or any of the
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other low-power states. Tracking the amount of time the
CPU spends active is important for accurately capturing
power consumption, especially for applications that make
use of CPU-intensive operations (such as encryption) or that
spend much time in low-power sleep modes, only to wake up
and perform computation infrequently.

The simple microcontrollers used on current sensor node
designs consume approximately constant power while exe-
cuting instuctions. This is due to the fact that they do not
use the sophisticated chip level power management strate-
gies present in more advanced processors, so the instuction
core, SRAM, ADC, oscillator, timer, and other peripherals
are always on when the controller is in active mode.

Recalling Table 1, the ATMEL Atmega128L CPU con-
sumes about 8 mA while executing instructions, and 3.2 mA
while idle. Likewise, the cycle time for each instruction is
well-documented and usually deterministic, or at least pre-
dictable. Therefore, to compute CPU energy usage it is
adequate to track the amount of time the CPU spends in
each power state. The amount of time that a node spends
in idle mode depends on external factors, such as the timing
of clock interrupts, that are already modeled by TOSSIM.
However, the amount of time spent executing CPU instruc-
tions is not captured by TOSSIM.

Determining CPU execution time can be accomplished by
simulating the execution of each instruction, although do-
ing so for large sensor networks would incur a tremendous
performance penalty. Our approach is to (1) instrument
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the PowerTOSSIM binary to obtain an execution count for
each basic block (run of instructions with no branches) ex-
ecuted by the simulated CPU; (2) map each basic block to
its corresponding assembly instructions in the AVR binary;
(3) determine the number of CPU cycles for each basic block
using simple instruction analysis; and (4) combine the simu-
lation basic block execution counts with their corresponding
cycle counts to obtain the total CPU cycle count for each
simulated mote.

At the end of the simulation run, PowerTOSSIM logs ba-
sic block execution counters that are processed offline in the
manner described above to obtain CPU cycle count totals.
As we show below, this process is fairly accurate and incurs
very little overhead at simulation time. There are several
potential sources of inaccuracy, however, due to the pres-
ence of code in the simulation binary with no corresponding
code in the AVR binary, and vice versa. In addition, some
difficulties arise with mapping basic blocks to AVR instruc-
tions, as described in Section 5.3.

4.5 Analysis tools
Once the power and CPU state data has been obtained

by the simulation run, several tools are available to permit
analysis and visualization. For example, an offline postpro-
cessor generates power consumption time-series data as well
as tallies of the per-mote and per-component power con-
sumption for the entire simulated sensor network. Another
tool makes use of the basic block execution counters to per-
form hotspot analysis on the application code. We have also
implemented several plugins for TinyViz, the TOSSIM vi-
sualization tool, that allow the user to monitor the power
consumption of simulated motes in realtime.

5. IMPLEMENTATION
In this section we detail the implementation of Power-

TOSSIM.

5.1 PowerState Module
To avoid scattering power state tracking code throughout

the simulator, we created a single TinyOS module, called
PowerState, that other TinyOS components make calls to

in order to register hardware power state transitions. Fig-
ure 4 depicts the PowerState module and its connections to
other TinyOS components; PowerState consists of a single
interface with one command for each possible state transi-
tion. Each function tests if power profiling is enabled, and
if so, emits a log message detailing the mote number, the
specific power state transition, and the current simulation
time. An excerpt from this log is shown below:

0: POWER: Mote 0 LED_STATE RED_OFF at 18677335
0: POWER: Mote 0 LED_STATE YELLOW_OFF at 18677335
0: POWER: Mote 0 ADC SAMPLE RSSI_PORT at 18990479
0: POWER: Mote 0 ADC DATA_READY at 18990679
0: POWER: Mote 0 RADIO_STATE TX at 18993551
0: POWER: Mote 0 RADIO_STATE RX at 19199375

5.2 Component instrumentation
A number of TOSSIM components representing hardware

drivers were instrumented with calls into the PowerState
module. These include components representing the ra-
dio, CPU power state control, ADC, LEDs, EEPROM, and
photo and temperature sensors.

Very few modifications were required to the original TOSSIM
code to track the power state of these various devices. A
total of only 46 lines of code were changed or added into ex-
isting TinyOS components for power state tracking. These
lines are merely wiring and function calls to commands in
PowerState module. A summary of the lines affected in each
component is shown in Table 2. The PowerState module it-
self consists of about 400 lines for formatting and printing
state messages. We discuss the interesting points of this
instrumentation below.

The radio is a major power consumer on the motes and
tracking its state accurately is essential to the success of
any power profiling tool for sensor networks. Unfortunately,
TOSSIM does not include a Mica2 CC1000 radio stack be-
cause it was designed to model the original Mica platform,
which used a different radio chip. We ported the Mica2
CC1000 radio stack to TOSSIM to accurately capture the
radio chip’s power state.

The Atmega128L CPU used by the Mica2 has seven dis-
tinct power states: active, idle, ADC noise reduction (used
to reduce noise while taking ADC readings), power down,
power save, standby, and extended standby [4]. While few
(if any) TinyOS applications exploit all of these states, cap-
turing them is relatively straightforward in PowerTOSSIM.
By default, the CPU is in the active state while execut-
ing instructions, and in the idle state while waiting for an
incoming interrupt. As described in Section 5.3, below, we
capture the amount of time in the active state through CPU
cycle estimation, and assume the CPU is in idle unless it has
been explicitly put into one of the low power sleep modes.

Analog-to-digital conversion is used to sample analog sen-
sor data from the physical environment. On the Mica2, ADC
is built-in to the CPU and does not consume a discernible
amount of power when active, although alternative sensor
node platforms may incorporate an external ADC that can
be independently enabled or disabled. Therefore, we have
instrumented the TinyOS ADCC component to track the
amount of time that the ADC is active, although in our
Mica2 power model it does not contribute to overall energy
consumption.

5.3 CPU profiling
Our approach for determining the amount of time that

each simulated mote’s CPU is active is to instrument the



Category TinyOS Component Message generated Files involved Number of lines added
for state tracking

System LedsC LED STATE LedsC.nc, LedsM.nc 9
Main CPU CYCLES Main.nc 2

Platform- ADCC ADC ADCC.nc, HPLADCC.nc 6
specific CC1000RadioC RADIO STATE CC1000RadioC, CC1000ControlM 8

EEPROM EEPROM EEPROM.nc, EEPROMM.nc 7
SnoozeC CPU STATE SnoozeC.nc, SnoozeM.nc 8

Sensorboard PhotoTemp SENSOR STATE PhotoTemp.nc, PhotoTempM.nc 6
Total 46

Table 2: Summary of changes to TinyOS for power state instrumentation. Only 46 lines were added to existing TinyOS

components.

Task PowerTOSSIM atemu error (%)
hash(char[27]) 3002 2956 1.5
hash(char[404]) 45415 40279 11.3
qsort(int[100]) 69581 92598 -33.0
encrypt(char[100]) 103756 106096 -2.3
decrypt(char[100]) 105075 107890 -2.7

Table 3: Accuracy of the cycle count estimator. This

table shows the number of CPU cycles executed by several

CPU-intensive operations as measured by our basic-block es-

timation technique and Atemu, an instruction-level simula-

tor for the AVR platform.

TOSSIM application to report basic block execution counts,
and then map each basic block to the appropriate number
of instructions as executed by the mote. This avoids the
overhead of instruction-level simulation while maintaining
relatively accurate CPU cycle counts.

The NesC compiler parses an entire TinyOS component
graph and emits a single C source code file that is then
compiled with a back-end compiler appropriate for the tar-
get platform (e.g., avr-gcc in the case of the Mica2 motes).
We exploit this design by instrumenting this intermediate
C source file with basic block execution counters. This is
accomplished using C Intermediate Language (CIL) [16], a
toolkit for programmatically manipulating C source code
files. CIL builds a high-level representation of the structure
of the C program and permitting easy analysis and source-
to-source transformations.

Our use of CIL involved writing a set of source transfor-
mation rules that inserted an execution counter into each
basic block of the program. This transformation requires
less than 100 lines of OCaml code. In addition to modi-
fying the NesC-generated source code, the transformation
code records the original NesC source file and line number
corresponding to each basic block, allowing us to map basic
blocks back to their original source code line number.

The next step is to map each basic block to the appro-
priate number of CPU instructions as executed by the At-
mega128L on the Mica2. This is accomplished by compil-
ing the TinyOS application to a Mica2 binary and using
a disassembler (avr-objdump) to determine the set of AVR
instructions for each source code line. This is then corre-
lated with the basic block line number information to obtain
the set of assembly instructions corresponding to each basic
block. To obtain CPU cycle counts, the number of cycles
for each AVR instruction in the basic block (obtained from
the ATmega128L data sheet [4]) is totaled. In cases where

an instruction can consume a variable number of cycles, the
expected number of cycles for each instruction is used.

After the simulation executes, the basic block execution
counts are recorded in the PowerTOSSIM log. Postmortem
analysis is then used to determine the CPU cycle counts for
each mote using the technique described above.

There are several complications with this scheme. One is
that a single C source code line may get compiled into sev-
eral basic blocks, each of which is counted separately in the
simulated code. Since the C-to-assembly mapping contains
all of the assembly instructions for each source line, when-
ever any basic block contained in the line gets executed,
it counts as if the entire line was executed. This leads to
overcounting.

Another problem is that not all of the code executed by
the simulation is present in the AVR binary, since TOSSIM
provides its own replacements for a number of low-level
hardware modules. These basic blocks have no mapping
to AVR assembly instructions, and are simply ignored in
the CPU cycle counts, which leads to undercounting cycles.
However, nearly all of this code corresponds to low-level
hardware drivers, which are primarily accounted for by the
other components of the hardware model. The bulk of the
TinyOS codebase (system-level services, libraries, and ap-
plication code) is shared between the TOSSIM and mote
environments, and accounts for a significant proportion of
the CPU execution time of typical applications.

The accuracy of our cycle count estimator is shown in Ta-
ble 3. For comparison we obtained cycle count numbers from
Atemu [11], an instruction-level simulator for the AVR plat-
form. Because Atemu simulates the individual instructions,
we assume that the cycle counts it produced are extremely
accurate. Encryption and decryption operations were per-
formed using the Skipjack encryption module from Tiny-
Sec [12]. As the table shows, our method is fairly accurate
for application level code, although some discrepancies do
arise, for example, in qsort(). We believe this to be due
to cases where a small number of basic blocks that happen
to have slightly inaccurate cycle mappings account for the
majority of CPU time.

5.4 Analysis tools
We have developed several tools for analyzing and visu-

alizing the power consumption data generated by Power-
TOSSIM. These tools take as input the log files generated by
PowerState, the CPU profiling information, and a hardware
power model. The first tool is a postprocessor that computes
energy totals for the various hardware components for each
mote as well as outputting a time series trace of power con-



Figure 5: Screenshot of the PowerProfiling plugin for

TinyViz. The table on the right reports a run-time sum-

mary of energy consumed by each component of the simu-

lated network. Each mote is also assigned a color based on

the total amount of energy that it has consumed since the

start of the run.

sumed by each mote (example graphs of these traces are
shown in Section 6).

We have also implemented a plugin for TinyViz, the Java-
based visualization environment for TOSSIM, that reports
per-mote power consumption as the simulation runs. The
plugin also assigns a color to each mote based on how much
power it has consumed during the course of the run, mak-
ing it possible to visualize power hotspots in the network.
Figure 5 shows a typical screenshot of the visualization.

Another tool uses the basic block execution counters pro-
duced by the CPU profiler and generates an ordered list of
the TinyOS components that consume the most CPU cy-
cles during the run. This list can also be broken down by
basic block. This analysis is extremely valuable for under-
standing the overhead of various components in a TinyOS
application. Note that analysis of the TOSSIM binary itself
is generally not adequate as there is little correspondence
between the number of instructions executed on, e.g., an
x86 machine and that on an 8-bit microcontroller lacking
hardware floating-point support. Table 4 shows an example
of this tool run on the TinyDB [15] sensor network query
processor.

6. EVALUATION
This section presents the evaluation of PowerTOSSIM along

two axes: validation of the simulated power consumption
data against real hardware for a range of applications, and
PowerTOSSIM’s ability to scale to very large simulations.

6.1 Total Energy Consumption
To validate PowerTOSSIM’s energy consumption estimates,

we ran a range of real TinyOS applications both on Power-
TOSSIM and on an actual mote that was instrumented to
obtain power traces. Most of these applications were drawn
from the standard TinyOS distribution and were chosen to
represent a broad range of typical sensor network programs.
Many of the applications, such as Blink and Sense, are sim-

Rank Cycles Component
1 2191584.5 TimerM
2 661187.5 TupleRouterM
3 577066.5 SimpleTimeM
4 383780.0 sched.c
5 371004.5 TimeUtil
6 153594.0 AbsoluteTimer
7 134514.0 Time
8 95567.5 TimeUtilC
9 16119.0 ADCM
10 12029.0 tos.h (memcpy, memset, rcombine)
11 9780.5 TinyAlloc
12 7579.5 AMPromiscuous
13 7186.0 MultiHopLEPSM
14 5868.0 Attr
15 3916.0 HPLADC
16 2880.0 SendMsg
17 2187.5 QueuedSendM
18 1743.5 Leds
19 1505.0 Command
20 1180.0 ADC

Table 4: Hotspots in the TinyDB query-processing en-

gine. This table shows the top 20 most CPU intensive com-

ponents in the TinyDB application. Results are for a 60

second run with the query “SELECT light FROM sensors

SAMPLE PERIOD 1024.”

Benchmark Simulated Measured Error (%)
Beacon 92.93 106.73 -12.9
Blink 940.26 931.72 0.85
BlinkTask 940.28 917.90 2.5
CntToLeds 1336.49 1330.00 0.45
CntToLedsAndRfm 2620.37 2562.00 2.3
CntToRfm 2028.09 1985.00 2.1
Oscilloscope 867.94 801.60 8.3
OscilloscopeRF 2136.45 2021.90 5.7
Sense 865.59 900.72 -3.8
SenseLightToLog 2133.89 2005.26 6.4
SenseTask 865.62 944.74 -8.3
SenseToLeds 868.70 977.73 -11.1
SenseToRfm 2152.27 2059.16 4.5
Average 4.7

TinyDB (idle) 2001.31 2275.55 -12.1
TinyDB (select light) 2144.86 2465.30 -13.0
Surge 2089.09 2028.40 3.0
Average 9.5

Table 5: Measured versus simulated energy for various

TinyOS applications. All applications were executed for 60

real or simulated seconds and all values are in millijoules

(mJ).



ple demonstration programs that exercise particular features
of the motes. Most of these programs perform some com-
bination of sensing, blinking LEDs, transmitting radio mes-
sages, and recording data in the EEPROM; their function
is mostly self-explanatory from the program name.

Beacon is the only program in our benchmark suite that
uses the low-power sleep states of the Mica2. It transmits a
radio beacon message every two seconds but drops the CPU
to a low power mode between each beacon; the other pro-
grams consume considerably more CPU energy since they
sit in the (relatively higher-power) idle mode when not exe-
cuting instructions.

In addition to these simple benchmarks, we examined two
more involved applications: TinyDB and Surge. TinyDB [15]
is a sophisticated program that provides a query interface to
sensor network data. It involves sensing, aggregation, com-
munication, and computation. Surge is an adaptive multi-
hop routing protocol that forms a spanning tree rooted at
the wired base station node. Each node periodically takes
a sensor reading and routes it to the root. Surge performs
complex radio link quality estimation for parent selection
in the routing tree. These applications were run in a small
network of several motes, as described in Section 6.4, below.

Table 5 presents total simulated and measured energy
numbers for a 60 second run of each application. As the ta-
ble shows, PowerTOSSIM achieves excellent accuracy, with
an average error of just 4.7% compared to the actual mote,
and a maximum error of about 13%. Some of this differ-
ence between simulated energy and measured energy can be
attributed to voltage fluctuations, noise and rounding error
in the experimental setup. Other differences may be due to
inaccuracies in the power model or in CPU cycle counting,
though we believe that we are accurately capturing nearly
all of the hardware power transition states.

6.2 Energy Breakdown By Component
Table 6 shows the simulated energy consumption for each

application broken down by hardware component. Power-
TOSSIM makes it extremely easy to perform this kind of
analysis, which is otherwise extremely difficult for real sen-
sor nodes.

The behavior of several applications depends on the par-
ticular sensor readings that they obtain. For example, Sense-
ToLeds takes a light sensor reading and displays the high-
order bits of the reading using the 3 LEDs. Consequently,
the total energy consumed depends on the light intensity of
the environment, which is difficult to match in the simula-
tion. To avoid this, we simply disabled the LEDs in these
applications, which explains why the LEDs are shown as
not consuming energy for several applications that would
otherwise have done so.

Some interesting observations can be made using this data.
While active CPU energy (when executing actual instruc-
tions) is very small, the total CPU energy consumes a sig-
nificant fraction of the energy for the entire run. This is
because most applications leave the CPU in the 3.2 mA idle
state rather than using the lower-power sleep modes. How-
ever, even for the Beacon application, which uses low-power
sleep, the CPU consumes a considerable fraction of the over-
all energy. In this case, the CPU must be active to transmit
outgoing beacon messages a byte at a time. Packet-based
radio interfaces (such as the Chipcon CC2420) may provide
significant savings in this regard. Another lesson to take
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Figure 8: Six-node topology used to evaluate Surge.

Mote 1 is the “hotspot” since Motes 3, 4, 5 all rely on it to

relay their messages to the base station Mote 0.

away is that the LEDs draw a significant amount of current,
and should be used for debugging but disabled when the
application is actually deployed.

6.3 Current traces
In addition to total energy consumption data, PowerTOSSIM

outputs realtime traces of simulated current draw. We ver-
ified that these traces correspond well with the measured
oscilloscope trace for the same application.

Figure 6 shows the measured and simulated current for
the Beacon application. Note the two small peaks between
every pair of large peaks. The large peaks every 2 sec are
due to message transmissions, while the smaller peaks are
due to the CPU waking up briefly to increment a counter.
PowerTOSSIM successfully captures all the details of the
real trace, including the spurious CPU wakeups.

Many of the sensor applications that we tested had rather
dry behaviors, that is, they spend most of their time in idle
mode and transmit a message or blink an LED periodically.
To demonstrate a more interesting application, we measured
CntToLedsAndRfm, which increments an internal counter
each time a 4 Hz timer fires. The lower 3 bits of the counter
are displayed on the 3 LEDs, resulting in an interesting pat-
tern of current consumption as shown in Figure 7. The
program also transmits a message with the counter value
on each timer interrupt. The graph clearly shows the radio
messages and the LEDs cycling through the sequence from
0 to 7.

6.4 Networked applications: TinyDB and Surge
In addition to the simple benchmarks presented earlier, we

evaluated TinyDB and Surge, which represent more complex
sensor network applications. We find that PowerTOSSIM
does a very good job at estimating the power consumption
of these applications as well.

The last 3 lines Table 5 present the results for TinyDB and
Surge. There are two TinyDB tests. The first is TinyDB in
idle mode, with no running queries. In this mode, TinyDB
simply performs periodic network topology maintenance and
listens for new queries. The second measurement was taken



Application CPU idle CPU active Radio Leds Sensor Board EEPROM Total
Beacon 35.86 0.58 47.68 8.81 0.00 0.00 92.93
Blink 742.50 0.25 0.00 197.52 0.00 0.00 940.26
BlinkTask 742.50 0.27 0.00 197.52 0.00 0.00 940.28
CntToLeds 743.72 0.57 0.00 592.20 0.00 0.00 1336.49
CntToLedsAndRfm 741.90 1.61 1284.65 592.20 0.00 0.00 2620.37
CntToRfm 741.90 1.54 1284.65 0.00 0.00 0.00 2028.09
Oscilloscope 742.65 1.46 0.00 0.00 123.82 0.00 867.94
OscilloscopeRF 741.90 1.85 1268.76 0.00 123.95 0.00 2136.45
Sense 742.21 0.38 0.00 0.00 123.00 0.00 865.59
SenseLightToLog 741.90 0.81 1262.95 0.00 123.95 4.28 2133.89
SenseTask 742.21 0.42 0.00 0.00 123.00 0.00 865.62
SenseToLeds 743.72 0.73 0.00 0.00 124.25 0.00 868.70
SenseToRfm 741.90 1.77 1284.65 0.00 123.95 0.00 2152.27
TinyDB (idle) 693.29 10.41 1181.78 0.00 115.83 0.00 2001.31
TinyDBApp (select) 742.85 11.20 1266.70 0.00 124.11 0.00 2144.86
Surge 727.28 1.50 1239.02 0.00 121.30 0.00 2089.09

Table 6: Simulated component energy breakdown for various applications. All values are in millijoules (mJ).
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Figure 6: Measured and simulated current consumption for the Beacon application. The simulated version includes

a breakdown according to radio, LEDs, and CPU current. A lower resolution digital multi-meter was used for the above

measurement, which did not capture the very short duration peak power spikes during the wakeups.

running the query “SELECT light FROM sensors SAMPLE
PERIOD 1024.” This query reports the value of the light
sensor on each mote once every 1024 ms. The error for
TinyDB is higher than for most of the benchmark applica-
tions, though we believe this is partly due to the fact that
TinyDB exhibits somewhat different behavior in simulation
than it does on actual hardware.

Surge forms a spanning-tree-based multihop route from
each node to a wired basestation. Each node performs pe-
riodic estimations of the link quality to its neighbors and
attempts to select a parent node that will maximize the
probability of its messages reaching the base station. Each
node samples its light sensor and generates a message once
every 2 sec. Therefore, nodes that have children in the rout-
ing tree will relay both the messages of their children as
well as their own messages. With this approach, it is possi-
ble that some nodes become “hotspots” that forward many
more packets than other nodes.

As shown in Table 5, PowerTOSSIM captures the overall
power consumption of Surge with very high accuracy (3%

error). In this measurement, we instrumented a single Surge
node with several other network nodes relaying data to it.
Using PowerTOSSIM, we were interested to verify whether
hotspots in the routing tree really lead to increased power
consumption on those nodes. To induce a specific hotspot
in the routing tree, we modified the Surge code to always
form the topology depicted in Figure 8, and ran the resulting
network in PowerTOSSIM. In this arrangement, mote 1 has
three children and will have four times more radio packets
to send out than other nodes in the network.

Figure 9 shows the simulated energy consumption for each
node as well as the total number of transmitted messages.
The hotspot node sends out about three times more mes-
sages than the other motes in the network, as expected.
However, the energy consumption of the hotspot is not very
different from the other nodes. This is because Surge does
not use the low power CPU and radio modes between trans-
mitting messages. Because the relative rate of message for-
warding is quite low (no more than 2 messages/sec on the
hotspot node versus 0.5 messages/sec for the other nodes),
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Figure 7: Measured and simulated current consumption for the CntToLedsAndRfm application. The simulated version

includes a breakdown according to radio, LEDs, and CPU current.

there is very little difference in the simulated energy con-
sumption for each node.

6.5 Scalability
Finally, we evaluate the overhead of power profiling in

PowerTOSSIM with respect to both the original TOSSIM
environment upon which it is based, as well as Atemu [11],
an AVR instruction-level simulator that is capable of sim-
ulating multiple motes. Performance tests were run on a
2.4GHz Pentium 4 machine running Linux with 512MB of
main memory and 512KB L2 cache. The results are shown
in Figure 10. In all cases we ran the OscilloscopeRF appli-
cation which takes periodic sensor readings and broadcasts
them as radio messages. Each run was for 300 virtual sec-
onds.

As can be seen, PowerTOSSIM without CPU cycle coun-
ters (that is, only instrumenting the hardware state transi-
tions using PowerState) has little measurable overhead over
TOSSIM. In the 1000-mote case, the time for PowerTOSSIM
was within 1% of the time for TOSSIM. Adding basic block
counters increases the amount of memory used in the simula-
tor, which causes a slowdown when simulating a large num-
ber of motes. For OscilloscopeRF, there are approximately
4KB of counters per mote, which overflows the 512KB L2
cache at about 125 simulated motes. This explains the in-
flection point above 100 simulated motes in the figure.

We also compare PowerTOSSIM’s performance to Atemu,
which performs instruction-level simulation and executes each
simulated mote as a separate thread. We show data for up to
50 simulated motes in Atemu. For this application, Atemu
is approximately 20 times slower than PowerTOSSIM due to
the high overhead of instruction-level simulation, which lim-
its its value for simulating large networks. However, Atemu
does provide very accurate instruction-level analysis of the
simulated mote, which can be valuable when this level of
detail is warranted.

6.6 Environmental factors
We were able to achieve excellent correspondence between

simulation and our experiments. However, a real world de-

ployment would likely see more variance in actual energy
usage due to environmental variation that can be carefully
controlled in the lab. The main factors are:

• Supply voltage – This is the most important factor that
can contribute to energy use variability. Voltage has a
linear effect on current and a quadratic effect on power
and energy. As motes such as the Mica2 commonly run
on regular batteries with a voltage range from 1.8 to
3.0 volts, this can lead to very large fluctuations in
energy use.

• Event response to environment – As discussed above,
sensor network applications often have behavior that
depends on the particular readings obtained. Thus,
the energy used by a network may be vastly differ-
ent if it detects a lot of events that require some sort
of processing (sending radio messages, blinking LEDs,
etc). This is fairly obvious, but is hard to quantify in
a simulator.

• Temperature – Temperature has a fairly small effect
on active current (only a few percent). However, if the
device is in an extremely low power sleep mode tem-
perature variations can have a more drastic affect on
leakage current. Since nodes in many sensor network
applications spend much of their time in sleep mode,
it is important to be aware of this. Unfortunately, it
is difficult to quantify in general, and we were unable
to obtain any datasheets on it, as it depends on man-
ufacturing tolerances.

Environmental factors like temperature and humidity can
also affect the reliability of the motes [24]. As a result,
it is difficult to predict the overall failure behavior of the
network.

7. FUTURE WORK AND CONCLUSIONS
As the sensor network community expands in terms of

size and scope of interest, we believe it is critical that effec-
tive tools be produced to understand the behavior of sensor
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message counts for Surge run. Simulations were run for
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node topology shown in Figure 8. The data shows that each

Surge mote consumes roughly the same energy regardless of

its position in the topology, although the routing node (node

1) sends out 3 times more messages than the leaf nodes

(nodes 2 through 5).

network applications. While real-world deployments are ul-
timately the ideal evaluation environment, simulation tools
have a great deal of value for debugging, testing, and exper-
imenting with applications in a controlled setting.

This paper addresses a pressing need for this community:
that of modeling the power consumption of sensor network
applications. Rather than sacrificing scalability and effi-
ciency by using a low-level hardware simulation, we propose
the use of efficient emulation of the sensor node hardware
platform coupled with careful instrumentation of the power
states. PowerTOSSIM generates an event-driven simulator
directly from TinyOS code and emits power state transitions
for multiple hardware peripherals (radio, sensors, LEDs,
etc.). In addition, PowerTOSSIM obtains an accurate es-
timate of CPU cycle counts for each mote by measuring
basic block execution counts and mapping each basic block
to microcontroller instructions. We have demonstrated that
PowerTOSSIM obtains very accurate power consumption re-
sults for a wide range of TinyOS applications and exhibits
very little overhead above that of the TOSSIM environment
upon which it is based.

We envision a number of future directions for PowerTOSSIM
itself as well as for studies that this tool enables. Pow-
erTOSSIM’s flexible power model allows both current and
future sensor node designs to be evaluated with respect to
power efficiency. We are currently designing a novel sensor
node architecture and intend to use the PowerTOSSIM en-
vironment to model its behavior in large-scale deployments
in advance of taping out actual hardware. As part of this
effort we are building a sensor network “benchmark suite”
that can be used to understand the tradeoffs between gener-
ality, performance, and energy requirements across a range
of applications. Finally, PowerTOSSIM makes it possible to
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ber of simulated motes is increased. The Oscilloscop-

eRF application was simulated for 300 virtual seconds for

an increasing number of motes. PowerTOSSIM introduces

very low overhead on top of the basic TOSSIM infrastruc-

ture, and scales well with increasing numbers of motes.

Adding basic block counting increases overhead somewhat.

Also shown is the total size of the PowerTOSSIM log file

and the time to simulate up to 50 motes using Atemu, an

instruction-level simulator for motes.

understand the energy consumption of a sensor network as a
whole, rather than simply at the per-node level. Many tech-
niques for sensor data aggregation, routing, filtering, and
compression have been proposed in the literature, though
few have been evaluated in large-scale settings using a re-
alistic power model. PowerTOSSIM should open up broad
avenues for exploration of energy-efficient sensor network al-
gorithms.
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