Somniloquy: Augmenting Network Interfaces to Reduce PC Energy Usage

Yuvraj Agarwalt, Steve Hodges', Ranveer Chandra', James Scott', Paramvir Bahl', Rajesh Gupta*

"Microsoft Research, *University of California, San Diego
byuvraj@cs.ucsd.edu, T{shodges, ranveer, jws, bahl}@microsoft.com, * gupta@cs.ucsd.edu

Abstract

Reducing the energy consumption of PCs is becoming in-
creasingly important with rising energy costs and environmen-
tal concerns. Sleep states such as S3 (suspend to RAM) save
energy, but are often not appropriate because ongoing network-
ing tasks, such as accepting remote desktop logins or perform-
ing background file transfers, must be supported. In this paper
we present Somniloquy, an architecture that augments network
interfaces to allow PCs in S3 to be responsive to network traf-
fic. We show that many applications, such as remote desktop
and VoIP, can be supported without application-specific code
in the augmented network interface by using application-level
wakeup triggers. A further class of applications, such as in-
stant messaging and peer-to-peer file sharing, can be supported
with modest processing and memory resources in the network
interface. Experiments using our prototype Somniloquy imple-
mentation, a USB-based network interface, demonstrates en-
ergy savings of 60% to 80% in most commonly occuring sce-
narios. This translates to significant cost savings for PC users.

1 Introduction

Many personal computers (PCs) remain switched on
for much or all of the time, even when a user is not
present [23], despite the existence of low power modes,
such as sleep or suspend-to-RAM (ACPI state S3) and
hibernate (ACPI state S4) [1]. The resulting electricity
usage wastes money and has a negative impact on the
environment.

PCs are left on for a variety of reasons (see Section 2),
including ensuring remote access to local files, main-
taining the reachability of users via incoming email, in-
stant messaging (IM) or voice-over-IP (VoIP) clients, file
sharing and content distribution, and so on. Unfortu-
nately, these are all incompatible with current power-
saving schemes such as S3 and S4, in which the PC does
not respond to remote network events. Existing solutions
for sleep-mode responsiveness such as Wake-On-LAN
(WoL) [18] have not proven successful “in the wild” for
a number of reasons, such as the need to modify applica-

tion servers or configure network hardware. A few initial
proposals suggest the use of network proxies [4, 7, 11]
to perform lightweight protocol functionality, such as re-
sponding to ARPs. However, such a system too requires
significant modifications to the network infrastructure,
and to the best of our knowledge such a prototype has
not been described in published form (see Section 6 for
a full discussion).

In this paper, we present a system, called Som-
niloquy', that supports continuous operation of many
network-facing applications, even while a PC is asleep.
Somniloquy provides functionality that is not present in
existing wake-up systems. In particular, it allows a PC to
sleep while continuing to run some applications, such as
BitTorrent and large web downloads, in the background.
In existing systems, these applications would stop when
the PC sleeps.

Somniloquy achieves the above functionality by em-
bedding a low power secondary processor in the PC’s
network interface. This processor runs an embedded op-
erating system and impersonates the sleeping PC to other
hosts on the network. Many applications can be sup-
ported, either with or without application-specific code
“stubs” on the secondary processor. Applications sim-
ply requiring the PC to be woken up on an event can be
supported without stubs, while other applications require
stubs but in return support greater levels of functionality
during the sleep state.

We have prototyped Somniloquy using a USB-based
low power network interface. Our system works for
desktops and laptops, over wired and wireless networks,
and is incrementally deployable on systems with an
existing network interface. It does not require any
changes to the operating system, to network hardware
(e.g. routers), or to remote application servers. We have
implemented support for applications including remote
desktop access, SSH, telnet, VoIP, IM, web downloads

I'somniloquy: the act or habit of talking in one’s sleep.

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

365

and BitTorrent. Our system can also be extended to sup-
port other applications. We have evaluated Somniloquy
in various settings, and in our testbed (Section 5) a PC in
Somniloquy mode consumes 11x to 24x less power than
aPCin idle state. For commonly occurring scenarios this
translates to energy savings of 60% to 80%.

We make the following contributions in this paper:

e We present a new architecture to significantly re-
duce the energy consumption of a PC while main-
taining network presence. This is accomplished
without changes in the network infrastructure.

e We show that several applications — BitTorrent,
web downloads, IM, remote desktop, etc. — can
consume much less energy. This is achieved with-
out modifying the remote application servers.

e We present and empirically validate a model to pre-
dict the energy savings of Somniloquy for various
applications.

e We demonstrate the feasibility of Somniloquy via a
prototype using commodity hardware. This proto-
type is incrementally deployable, and saves signifi-
cant energy in a number of scenarios.

2 Motivation

Prior studies have shown that that users often leave
their computer powered on, even when they are largely
idle [4]. A study by Roberson et. al. [23] shows that in
offices, 67% of desktop PCs remain powered on outside
work hours, and only 4% use sleep mode. In home envi-
ronments, Roth et. al. [24] show that average residential
computer is on 34% of the time, but is not being actively
used for more than half the time.

To uncover the reasons why people do not use sleep
mode, we conducted an informal survey. We passed it
among our contacts who in turn circulated it further. We
had 107 respondents from various parts of the world, of
which 58 worked in the IT sector. 30% of the respon-
dents left at least one machine at home on all of the time,
and 75% of the respondents left at least one work ma-
chine on even when no one was using it.

Among the people who left their home machine pow-
ered on, 29% did so for remote access, 45% for quick
availability and 57% for applications running in the back-
ground, of which file sharing/downloading (40%) and
IM/e-mail (37%) were most popular. In the office envi-
ronment, 52% of respondents left their machines on for
remote access, and 35% did so to support applications
running in the background, of which e-mail and IM were
most popular (47%).

Although this survey should not be regarded as repre-
sentative of all users, and is not statistically significant, it
does highlight two important points. First, a number of

Host PC
TR Somniloquy
PP daemon
Operating system, including
networking stack
Host processor, /| Portfilters Atpri)'”
RAM, peripherals, etc. / S
| / Embedded OS, incl.
Secondary processor networking stack
Network interface hardware | . Skt OR,

R RAM, flash

Figure 1: Somniloquy augments the PC network inter-
face with a low power secondary processor that runs an
embedded OS and networking stack, network port filters
and lightweight versions of certain applications (stubs).
Shading indicates elements introduced by Somniloquy.

PCs don’t go to sleep even when they are unused. Sec-
ond, significant energy savings can be achieved if only a
few applications — remote reachability, file sharing, file
downloads, instant messaging, e-mail — can be handled
when the PC is asleep.

3 The Somniloquy Architecture

Our primary aims during the development of Somnilo-
quy were:

e to allow an unattended PC to be in low power
S3 state while still being available and active for
network-facing applications as if the PC were fully
on;

e to do so without changing the user experience of the
PC or requiring modification to the network infras-
tructure or remote application servers.

We accomplish these goals by augmenting the PC’s
network interface hardware with an always-on, low
power embedded CPU, as shown in Figure 1. This sec-
ondary processor has a relatively small amount of mem-
ory and flash storage > which consumes much less power
than if it were sharing the larger disk and memory of the
host processor. It runs an embedded operating system
with a full TCP/IP networking stack, such as embedded
Linux or Windows CE. The flash storage is used as a
temporary buffer to store data before the data is trans-
ferred in a larger chunk to the PC. A larger flash on the
secondary processor allows the PC to sleep longer (Sec-
tion 3.2. This architecture has a couple of useful prop-
erties. First, it does not require any changes to the host
operating system, and second, it can be incrementally de-
ployed on existing PCs using a peripheral network inter-
face (Section 4).

2Qur prototype had 64 MB DRAM and 2 GB of flash.

366

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

The software components of Somniloquy and their in-
teractions are illustrated in Figure 2. The high-level oper-
ation of Somniloquy is as follows: When the host PC is
powered on, the secondary processor does nothing; the
network stack on the host processor communicates di-
rectly with the network interface hardware. When the PC
initiates sleep, the Somniloquy daemon on the host pro-
cessor captures the sleep event, and transfers the network
state to the secondary processor. This state includes the
ARP table entries, IP address, DHCP lease details, and
associated SSID for wireless networks i.e. MAC- and IP-
layer information. It also includes details of what events
the host should be woken on, and application-specific de-
tails such as ongoing file downloads that should continue
during sleep. Following the transfer of this information
to the secondary processor, the host PC enters sleep.

Although the host processor is asleep, power to the
network interface and the secondary processor is main-
tained [1]. To maintain transparent reachability to the
host while it is asleep, the secondary processor imper-
sonates the host by using the same MAC and IP ad-
dresses, host name, DHCP details, and for wireless, the
same SSID. It also handles traffic at the link and network
layers, such as ARP requests and pings — thereby main-
taining basic presence on the network. New incoming
connection requests for the host processor are now re-
ceived and handled by the network stack running on the
secondary processor. In this way the PC’s transition into
sleep is transparent to remote hosts on the network.

To ensure that the host PC is reachable by various ap-
plications, a process on the secondary processor mon-
itors incoming packets. This process watches for pat-
terns, such as requests on specific port numbers, which
should trigger wake-up of the host processor. Although,
this simple architecture [4, 7, 11] supports several ap-
plications with minimal complexity, Somniloquy can get
much greater energy savings for some applications by
not waking up the host processor for simple tasks, for
example, to send instant messenger presence updates. To
perform these tasks on the secondary processor, we re-
quire the application writer to add a small amount of
application specific code (“stubs”) on the host and sec-
ondary processor. In the rest of this section we describe
in more detail how we handle various applications — with
and without application stubs.

3.1 Somniloquy without Application Stubs

The Somniloquy daemon on the host processor speci-
fies packet filters, i.e. patterns on incoming packets, on
which the secondary processor should wake up the host
processor from sleep state. The Somniloquy daemon cre-
ates filters at various layers of the network stack. At the
link layer and network layer, the secondary processor can

(N cat —
Application state

N Application

Applications Stub config/app-layer wakeup filters stubs

) wakeup filters L ——>
Stub configiapp-1aye!
I Port filters
Port-based wakeup filters
Somniloquy E (TCP, UDP,
daemon || ICMP etc)
Network.base d wak]
— | eUp filters
N
Get/set Current g, Network
network twork Config Bl config
config.
Sleep detection/signalling

Operating Sleep/wake

System Wake-up signal and updated state mgmt
Secondary
_ HostPC) processor

Figure 2: Somniloquy software components on the host
PC and the secondary processor, and their interactions.

be told to wake the computer when it detects a particular
packet, analogously to the magic packets used by Wake
on LAN, though not requiring the MAC address to be
known by the remote host (see further discussion in Sec-
tion 6). Trigger conditions at the transport layer may also
be specified, for example, wake on TCP port 23 for telnet
requests. Similarly, Somniloquy also supports wake-ups
on patterns in the application payload.

Although the host PC will wake up within a few sec-
onds, it will not receive the packet(s) that triggered the
wake-up. One way to solve this problem is to buffer the
packet on the secondary processor and replay it on the
network stack of the host processor once it has woken
up. However, since the time to wake up is just a few sec-
onds, most sources can be relied upon to retry the con-
nection request. For example, any protocol using TCP
as the transport layer will automatically retransmit the
initial SYN packet. Even UDP-based applications that
are designed for Internet use are designed to cope with
packet loss using automatic retransmissions.

This simple packet filter based approach to trigger-
ing wake-ups has the advantage that application-specific
code does not need to be executed on the secondary pro-
cessor. Nonetheless, it is sufficient to support many ap-
plications that get triggered on remote connection re-
quests, such as remote file access, remote desktop access,
telnet and ssh requests to name a few.

3.2 Application-specific Extensions

Several applications maintain active state on the PC even
when it is idle, and hence prevent a PC from going to
sleep. For example, a movie download client on a home

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

367

PC (e.g. from Netflix) will require the host PC to be
awake for a few hours while downloading the movie. An
instant messenger (IM) client will require the PC to be
on in order for the user to stay “online” (reachable) to
their contacts.

Somniloquy provides a way for these applications
to consume significantly less power. By performing
lightweight operations on the secondary processor, it
can opportunistically put the host processor to sleep.
For example, the secondary processor can send and re-
ceive presence updates to/from the IM server while the
host processor is asleep. During a large download, the
secondary processor can download portions of the file,
putting the host processor to sleep in the meantime.

The key to supporting these applications is the use
of stubs that run on the host and the secondary proces-
sor. We have implemented stubs for three popular ap-
plications — IM (MSN, AOL, ICQ), BitTorrent, and web
download. Here, we will describe the general guidelines
for writing these stubs, and describe the specific imple-
mentations for the three applications in Section 4.

Writing application stubs: When designing an appli-
cation stub, the first step is to understand the subset of the
application’s functionality that needs to run when the PC
is asleep. This is implemented as a stub on the secondary
processor. For example, for an IM stub, the functionality
to send and receive presence updates is essential to main-
tain IM reachability. However, the stub need not include
any Ul-related code — such as opening a chat window.

We note that it is not feasible for the stub to reuse the
entire original application code from the host PC. The
application code might depend on drivers (display, disk,
etc.) that are absent on the secondary processor. Further-
more, running the entire application might overload the
secondary processor. Therefore, only the essential com-
ponents of the application are implemented as part of the
application stub.

Another step in designing application stubs is to de-
cide when to wake up the host processor. Triggers can
be user-defined, for example waking up on an incoming
call from a specific IM contact. Triggers may also occur
when the secondary’s processor’s resources are insuffi-
cient, for example when the flash is full or more CPU re-
sources are needed. In all of these cases, the stub wakes
up the host processor.

To interface with the application on the host PC and
the Somniloquy daemon, the application stub needs to
have a component on the host processor. This compo-
nent registers two callback functions with the Somnilo-
quy daemon — one that is called just before the PC goes
to sleep and the other just after it has woken up. The
first function transfers the application state to the stub on
the secondary processor, and also sets the trigger condi-
tions on which to wake the host processor. These val-

ues depend on the application being handled by the stub.
The second callback function, which is called when the
host resumes from sleep, checks the event that caused
the wakeup — whether it was caused by a trigger con-
dition on the secondary processor or due to user activ-
ity. It handles these events differently. If the wakeup
was caused by user activity, the stub transfers state from
the secondary processor, and disables it. However, if the
wakeup was caused by a trigger condition on the sec-
ondary processor, the application stub handles it as de-
fined by the user. For example, for an incoming VoIP
call, the stub engages the incoming call functionality of
the VoIP application.

Having determined what functionality needs to be sup-
ported by the application stub and host-based callbacks,
and what state must pass between them, the final step is
to implement this. We have used two manual approaches
to doing this. For the download stub, we built all the
functionality ourselves based on detailed knowledge of
the application protocols, and for the BitTorrent and IM
stubs, we trimmed down existing application code to re-
duce memory and CPU footprint. An alternative could
be to automatically learn protocol behavior to build these
application stubs. However, we believe that this is an
extremely difficult problem. There are parts of the ap-
plication that are difficult to infer, and any inaccuracy in
the application stub will make it unusable. For exam-
ple, knowledge of how BitTorrent hashes the file blocks
is necessary for the stub to successfully share a file with
peers. We are unaware of any automatic tool that can
learn such application behavior. Therefore, we believe
that the best (although perhaps not the most elegant)
approach to building these stubs is to modify applica-
tion source code and remove functionality that is not re-
quired by the secondary processor. In the future, with
a greater incentive to save energy, we expect that appli-
cation developers will compete for energy consumption,
and hence provide stubs for their applications using the
guidelines described in this section.

We realize that partial application stubs might be cre-
ated using tools such as the Generic Application-Level
Protocol Analyzer [6] and Discoverer [8], which auto-
matically learn the behavior and message formats for a
range of protocols. As part of future work, we plan to
explore how the knowledge of the protocol can be aug-
mented with application-specific behavior to ease the de-
velopment of application stubs.

When to use application stubs? Not all applications
are conducive to low-power operation via application
stubs. A CPU intensive application, such as a compi-
lation job, will be very slow on the secondary processor
since it has a less powerful CPU and low memory. Simi-
larly, an I/O intensive application, such as a disk indexer,
will need to read the disk very often and will therefore

368

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

need the PC to be awake. Download and file sharing ap-
plications are an interesting exception, because portions
of a file can be transferred by the secondary processor
whilst the host sleeps. We will discuss this approach in
more detail in Section 4.4.

Even for an application stub that saves energy for a
given application, it is not always useful to offload the ap-
plication to the secondary processor when the host PC is
going to sleep. Several other applications may also want
to run their application stubs on the secondary processor.
This might overload the CPU of the (weaker, low power)
secondary processor. In this case, it might be beneficial
to keep the host PC awake.

One way to solve this problem is to modify the Som-
niloquy daemon to predict the CPU utilization of the
stubs for all applications that are willing to be offloaded
to the secondary processor. However, making this pre-
diction is extremely difficult. There might be little cor-
relation between the CPU utilization of the application
on the host PC, and the stub on the secondary proces-
sor, because of different processor architectures, and
varying application demands. Instead, we take a sys-
tems approach. We monitor the CPU utilization of the
secondary processor; if it remains at more than 90%
continuously(>30 seconds), we wake up the PC, and re-
sume all applications on the host processor. If the CPU
utilization of these applications decreases by more than
10% on the host processor, we repeat the same procedure
— offload to the secondary processor and stay there if
CPU utilization is less than 90%. In our Somniloquy de-
ployment the need to move applications arose when run-
ning multiple application stubs on the secondary proces-
sor, such as two concurrent 8 Mbps web downloads and
two concurrent BitTorrent downloads of Section 5.3.2.

Incremental Deployment: We realize that Somnil-
oquy may never be universally deployed, and that get-
ting software vendors to try for incremental deployment
requires a low-effort mechanism to ensure that their
Somniloquy-enhanced software is compatible with ma-
chines and platforms that do not have Somniloquy sup-
port. The Somniloquy daemon queries the OS to de-
termine the presence of a secondary processor, and the
supported application stubs. Applications then need to
query the Somniloquy daemon, and invoke the applica-
tion stubs only if the OS supports Somniloquy, and the
corresponding stubs are implemented on the secondary
processor.

3.3 Quantifying Energy Savings

The amount of energy saved through adoption of Som-
niloquy is quite easy to predict; it depends on the relative
power consumption of the awake and sleep states, and
the proportion of time that a machine can be kept asleep

when it would previously have been awake. For applica-
tions without stubs, this proportion is largely dependent
on the actions of a remote user - how frequently a re-
mote ssh session is initiated for example, and for how
long. On the other hand, for applications with stubs the
secondary processor may regularly wake up the host to
perform some task or other. We quantify the energy sav-
ings for an application with different wake-up intervals
in Section 5.4.4.

More formally, suppose the host is woken up once ev-
ery Tsicep seconds, whereupon it stays awake for Tqpqke
seconds. T,.ake includes the time it takes to transfer
data between the PC and the secondary processor. Also
assume that d is sum of the time to wake up the host plus
the time to transition to sleep. Suppose:

e P, is the power consumption of the PC when it is
awake (in W)

e P is power consumed in sleep mode (in W), and

e P, is power consumed by the secondary (embed-
ded) processor (in W)

The energy (E) consumed during Somniloquy operation
is given by:

= EPCinSleepMode + EpCinAwakeMode
+ESecondaryProcessor

= Tsleep * Ps + (Tawake + d) * Pa
+(Tawak’e +d+ Teleep) * P, Joules

Esomniloquy

In the absence of Somniloquy, the amount of energy
consumed by the host PC in the same time is Fpost =
P, * (Tywake + Tsieep) Joules. Therefore, the ratio of
energy consumed by Somniloquy compared to the host
PC being always on is given by:

Es(wnniloquy _

Tsieep*(Pet+Ps)+Tawake*(PatPe)+d*(Pa+Ps)

Ehost Po*(Tawake+Tsicep)

Typically, as we show in Section 5, P, and Ps are two
orders of magnitude less than P, for a desktop computer,
and d is around 10 seconds (to wake up the host, and put
it back to sleep). Therefore, for most energy savings,
we would want T}y, to be much less than Ty, i.e.
if Tawake < Tsleep, then the ratio Esmnniloquy/Ehost
is approximately (P. + Ps)/P,. We will present the
approximate energy savings for different applications in
Section 4.

Of course, Somniloquy could save more energy by dis-
abling the secondary processor when the PC is awake.
This would require the PC to enable the secondary pro-
cessor before going to sleep, and disable it when the PC
has woken up. We were unable to fully implement this
functionality in our prototype, but we expect this to be a
minor fix in a production system.

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

369

3.4 Discussion

Security: A common requirement of corporate IT de-
partments is that all PCs should be up to date with the
latest OS and application patches. Somniloquy can en-
sure that this constraint is met even when PCs are asleep.
This is achieved using a port-based trigger to wake up the
host PC when the SMS (Systems Management Server)
contacts the host PC to install updates.

Somniloquy ensures that the secondary processor is
secure by patching its OS whenever security updates
become available. Also, it prevents attackers from re-
placing the secondary processor by requiring that it be
a physically part of the PC (as part of the network in-
terface). In some cases however, the functionality that
Somniloquy provides could be misused to conduct at-
tacks that spuriously wake up the PC and waste energy.
This kind of denial-of-service attack would be particu-
larly effective for mobile devices where a drained bat-
tery might result. One way to address this issue is to
disable port triggers, and instead exclusively use appli-
cation stubs which ensure that only authenticated remote
hosts are allowed to trigger wakeup.

Another concern is that application stubs, and hence
the use of extra code, increases the PC’s attack surface.
To mitigate the impact of this vulnerability we use a few
techniques. First, the secondary processor only listens
on ports that have been opened by applications on the
host PC. Second, we require the PC and the secondary
processor to be on the same administrative domain.

We also note that modern processors have additional
security features built in, for example an execute-disable
bit, used by some applications to prevent executing ar-
bitrary code and preventing buffer overflows. We realize
that a low power processor may not currently support this
advanced functionality, although we expect that in the
future low-power chips will also be available with these
features.

Alternative Design: With the increasing prevalence
of multi-core PCs, one idea to alleviate the need for the
additional secondary processor introduced by Somnilo-
quy would be to use one of the cores of the host CPU in-
stead. Running just one core at the lowest possible clock
frequency would minimize energy consumption and ob-
viate the need for a separate low power processor in the
NIC.

However, it turns out that such an approach is not use-
ful without significant modification to today’s PC archi-
tecture. Our measurements (see Section 5.1) show that
the power consumption of a multi-core PC with only one
core active, running at the lowest permissible clock speed
is still approximately 50 times that of our low power sec-
ondary processor, even with all other peripherals in their
lowest power modes — e.g. disk spun down. This is be-

cause of the lack of truly fine-grained power control of
PC components such as the Northbridge, Southbridge,
memory buses, parts of the storage hierarchy and various
peripherals. Even if fine-grained control were available,
the base power consumption of individual components
(NIC, hard drive) is significant (see Table 2). One way
to reduce this base power draw would be to have a sep-
arate and relatively simple core with a small amount of
associated memory running from a separate power do-
main so that it can function without powering on other
components. Such an architecture is very similar to Som-
niloquy, and most of our design principles can easily be
adopted.

4 Prototype Implementation

We have prototyped Somniloquy using gumstix, a low
power modular embedded processor platform manufac-
tured by Gumstix Inc that support a wide variety of pe-
ripherals.

4.1 Hardware and Software Overview

An important goal when prototyping Somniloquy was to
have it work with existing unmodified desktops and lap-
tops, and for both wired and wireless networks. Further-
more, we required the platform to be low power, have
a small form factor, and be well supported for develop-
ment. The gumstix platform served all these design re-
quirements well. The specific components we use for
Somniloquy include a connex-200xm processor board,
an etherstix network interface card (NIC) (for wired Eth-
ernet), a wifistix NIC (for Wi-Fi), and a thumbstix com-
bined USB interface/breakout board. The connex-200xm
employs a low power 200 MHz PXA255 XScale pro-
cessor, with 16 MB of non-volatile flash and 64 MB of
RAM. The etherstix provides a 10/100BaseT wired Eth-
ernet interface plus an SD memory slot to which we have
attached a 2GB SD card. The thumbstix provides a USB
connector, serial connections and general purpose input
and output (GPIO) connections from the XScale.

To enable Somniloquy we needed mechanisms to
wake-up the host PC, and also to detect its state (awake
or in S3). To achieve this we added a custom de-
signed circuit board that incorporates a single chip — the
FT232RL from FTDI. The FT232RL is a USB-to-Serial
converter chip supporting functionality such as sending
a resume signal to the host and detecting the state of the
host, both over the USB bus. This board is attached to
the computer via a second USB port and to the thumb-
stix module (and thence to the XScale processor) via a
two-wire serial (RS232) interface plus two GPIO lines.
One GPIO line is connected to the FT232RL’s ‘ring indi-
cator’ input to wake up the computer. The second GPIO

370

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Ve N S
Sleep detection FTDI USB
. to serial
¢ Wake-up signal
L converter | cstom PCB
usB]
Interfaces e
Power
TCP/IP link thumbstix
(USB and breakout board)
Somniloquy /]
Daemon Somm'loquy
device XScale
software
processor
Windows Embedded
Vista Linux
\ connex-200xry
|
4 N\
Ethernet NIC
\ Desktop/Laptop (SMC91x) etherstix
- J

Figure 3: Block diagram of the Somniloquy prototype
system - Wired-1NIC version. The figure shows various
components of the gumstix and the USB interfaces to the
host laptop.

line is connected to the FT232RL’s ‘sleep’ output which
can be polled by the gumstix to detect whether the host
PC is active or in S3.

As mentioned above (and shown in Figure 3), the com-
puter is connected to the secondary processor via two
USB connections. One of these provides power and two-
way communications between the two processors. It is
configured to appear as a point-to-point network inter-
face (“USBNet”), over which the gumstix and the host
computer communicate using TCP/IP. The second USB
interface provides sleep and wake-up signaling, and a se-
rial port for debugging purposes. The use of two USB
interfaces is not a fundamental requirement, it is simply
for ease of prototyping.

Since we use standard USB ports for interfacing with
the host and for sleep signaling, our prototype works on
any recent desktop or laptop that supports USB. We run
an embedded distribution of Linux on the gumstix that
supports a full TCP/IP stack, DHCP, configurable routing
tables, a configurable firewall, SSH and serial port com-
munication. This provides a flexible prototyping plat-
form for Somniloquy with very low power operation.

We have implemented the Somniloquy host software
on Windows Vista. The Somniloquy daemon detects
transition to S3 sleep state, and before this is allowed
to occur we transfer the network state (MAC address, IP
address, and in the case of the wireless prototype, the
SSID of the AP) and other information about the wakeup
triggers as discussed in Section 3.

USB Interface (debug + Wakeup) |

| USB Interface (power + USBNet)

SD Storage
Processor

| 100Mbps Ethernet Interface |

Figure 4: Photograph of the gumstix-based Somniloquy
prototype - Wired-INIC version.

4.2 Three different prototypes

We have prototyped three different Somniloquy designs
to explore different aspects of operation. The first uses
the gumstix as an augmented Ethernet interface, as de-
scribed in Section 3. However, in our prototype this has
some performance limitations so we have also imple-
mented a second design which uses the gumstix in co-
operation with an existing high-speed Ethernet interface.
Finally, we have a Wi-Fi version. All three prototypes
are described in further detail below:

Augmented Network Interface: We call this imple-
mentation the Wired-INIC version. The architecture is
shown in Figure 3, with a photograph of the prototype
shown in Figure 4. In this prototype, we disable the NIC
of the host, and configure the PC to use the USBNet in-
terface (USB connection between the gumstix and the
host) as its only NIC. The gumstix is connected to the
network using its Ethernet connection. To enable the host
PC to be on the network, we set up a transparent layer-2
software bridge between the USBnet interface to the host
and the Ethernet interface of the gumstix. This bridge is
active when the host is awake. When the host transitions
to sleep, the gumstix disables the bridge, and resets the
MAC address of its Ethernet interface to that of the US-
BNet interface of the host. The gumstix thus appears to
the rest of the network as the host itself, since it has the
same network parameters (IP, MAC address). When the
host wakes up, the gumstix resets its MAC address to its
original value and starts bridging traffic to the host again.

Although our Wired-INIC prototype hardware sup-
ports a 100 Mbps Ethernet interface, we are limited to a
throughput of 5 Mbps due to the bandwidth supported by
the USBNet interface driver. There is also a slight over-
head of bridging traffic on the gumstix. Although this
limits bandwidth to the host significantly in our proto-
type, we note that in a final integrated version, this over-

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

371

head of bridging can be avoided by allowing both the
host and the low power secondary processor to access
the NIC directly.

Using Existing Network Interface: Somniloquy can
coexist with an existing NIC. On such systems, the over-
head of bridging is avoided by using the existing Ether-
net interface on the host PC for data transfer when it is
awake, with the gumstix using its own Ethernet interface
(while still impersonating the host PC) when the host is
asleep. We have built this version where the gumstix
does not perform Layer-2 bridging, and call it the Wired-
2NIC prototype.

Using Wi-Fi: We have also implemented a wireless
version of Somniloquy. We were unable to implement a
one-NIC version since the Marvell 88W8385 802.11 b/g
chipset present on the wifistix does not currently sup-
port layer 2 bridging. We have however implemented a
Wireless-2NIC version.

4.3 Applications Without Stubs

We have implemented a flexible packet filter on the gum-
stix using the BSD raw socket interface to support appli-
cations that do not require stubs, e.g. RDP, SSH, telnet
and SMB connections. Every application in this class
provides a regular expression matched against incoming
packets to decide whether to trigger host wakeup. For
example, handling incoming remote desktop requests re-
quires the host to be woken up when the gumstix receives
a TCP packet with destination port 3389.

We note that waking up the host computer is not
enough; the incoming connection request must somehow
be conveyed to the host. We accomplish this by using
the iptables firewall on the gumstix to filter any re-
sponse to TCP or UDP packets that the gumstix does not
handle itself. Thus trigger packets are not acknowledged
by the gumstix and the remote client sends retries. Af-
ter the host has resumed, one of the retries will reach it
(since it is still using the same IP and MAC addresses)
and it will respond directly. Using port-based filtering,
we have implemented wake-up triggers for four appli-
cations: remote desktop requests (RDP), remote secure
shell (SSH), file access requests (SMB), and Voice over
1P calls (SIP/VoIP).

4.4 Applications Using Stubs

To demonstrate how modest application stubs can enable
significant sleep-mode operation in Somniloquy, we have
also implemented application stubs for three applications
that were popular in our informal survey: background
web download, peer to peer content distribution using
BitTorrent, and instant messaging. For all these appli-
cations, we did not have to modify the operating system

or the existing applications on the PC, which were only
available to us in binaries. To capture the state of the
application for the respective stub, we wrote wrappers
around the binaries.

Background Web Downloads: We developed the
web download stub for wget which works as follows:
When the host PC transitions to sleep, the status of ac-
tive downloads is sent to the stub running on the gum-
stix. The status includes the download URL, the offset
of how much download has taken place, the buffer space
available, and the credentials (if required for the down-
load). Most popular web servers (e.g. IIS and Apache)
allow these byte ranges to be specified using the HTTP
‘Accept-Ranges’ primitives [22]. The web download
stub then resumes the downloads from the respective off-
sets of the files, and stores the data on the flash storage
of the gumstix. If the flash memory fills up before the
downloads complete, the stub wakes up the host PC and
transfers the downloaded files from flash storage to the
host PC, thereby freeing up space. The host PC then goes
back to sleep while the stub continues the downloads. At
the end of a download, the gumstix wakes up the host
PC, and transfers the remaining part of the file.

The download stub consumes significantly less energy
to download a file than keeping the PC awake to down-
load it. The overhead is a slight increase in latency. We
can quantify the savings and overhead using the model
described in Section 3.3. If flash storage is ' MB and
the download bandwidth is B MBps, then the host PC is
woken up every F'/B seconds, and it is awake for F//T
seconds, where T is the transfer rate between the host
and the gumstix. Therefore, using the formula in Sec-
tion 3.3, Somniloquy gives most energy savings at low
B and high T'. We empirically validate this observation
in Section 5.4.4. When T is of the same order as B,
Somniloquy might not save much energy. This can hap-
pen if the NIC supports very high rates (e.g. 1 Gbps),
while the secondary processor can only support lower
data rates (up to 100 Mbps) or if the transfer rate 7' is
limited. However, we anticipate the download stub to be
primarily used in scenarios where the download speeds
are limited by the last mile connection of at most a few
tens of Mbps — here, this stub is nearly always beneficial.

BitTorrent: For the BitTorrent stub we customized
a console-based client, ctorrent, to run on the gumstix
with a low CPU utilization and memory footprint. Prior
to suspending to S3, the host computer transfers the ‘.tor-
rent’ file and the portion of the file that has already been
downloaded to the gumstix. The BitTorrent stub on the
gumstix then resumes download of the torrent file and
stores it temporarily on the SD flash memory of the gum-
stix. When the download completes, the stub wakes up
the host and transfers the file.

When only downloading content, the energy saved by

372

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

using this stub is similar to that of the web download
stub, i.e., frequency of waking up the PC and the duration
for which it is woken up depends on the download band-
width B, the transfer speed 7" and the flash size '. How-
ever, when uploading/sharing (which is key to altruis-
tic P2P applications), the energy savings are much more.
The same file chunk can be uploaded to many peers, and
hence the PC can sleep for much longer — implying more
energy savings using the formula in Section 3.3.

Instant Messaging: For the IM stub, we used a
console-only IM client called finch that supports many
IM protocols such as MSN, AOL, ICQ, etc. On the PC,
we used the corresponding GUI version of the IM client.
To ensure our goal of a low memory and CPU footprint
we customized finch to include only the features salient
to our aim of waking up the host processor when an in-
coming chat message arrives. This only requires authen-
tication, presence updates and notifications; we disabled
other functionality. The host processor transfers over the
authentication credentials for relevant IM accounts be-
fore going to S3. The gumstix then logs into the rele-
vant IM servers, and when an incoming message arrives
it triggers wakeup. The energy saved by the IM stub is
thus similar to applications that are handled using packet
filters (e.g. SSH/RDP), where the duration for which a
host can sleep depends on the frequency of occurrence
of wake-up triggers.

S System Evaluation

We present the benefits of Somniloquy in four steps.
First, we show that gumstix consumes much less power
than a PC by profiling standalone desktops, laptops and
the gumstix in different power states. Second, we mea-
sure the energy saved (and latency introduced) by Som-
niloquy when used on an “idle’ host processor. Third, we
show how Somniloquy affects the performance of vari-
ous applications, with and without application stubs. Fi-
nally, we quantify Somniloquy’s energy savings — mon-
etary and environmental cost for an enterprise and bat-
tery lifetime increase for laptops.

Methodology: To measure the power consumption of
laptops and desktop PCs, we used a commercially avail-
able mains power meter, Watts-Up 3. To measure the
power consumption of the standalone gumstix, we built
a USB extension cable with a 100 m) 0.1% sense resis-
tor, which was inserted in series with the +5V supply
line, and we used this cable to connect the gumstix to the
computer. We calculated the power draw of the gumstix
by measuring the voltage drop across the sense resistor.
All power numbers presented in this section are averaged
across at least five runs.

Shttp://www.wattsupmeters.com/

Condition Optiplex | Dimension

745 4600

Normal idle state 102.1W T2.TW
Lowest CPU frequency 97.4W N/A
Disable multiple cores 93.1W N/A

‘Base power’ 93.1W 72 TW
Suspend state (S3) 1.2W 3.6W
Time to enter S3 94s 5.8s
Time to resume from S3 445 6.2s

Table 1: Power consumption and S3 suspend/resume
time for two desktops under various operating condi-
tions. In all cases the processor is idle and the hard disk
is spun down. The power consumed by other peripherals
such as displays is not included.

Condition Lenovo | Toshiba | Lenovo
X60 M400 T60
Normal idle state 16.0W | 274W | 29.7TW
Backlight minimum 13.8W | 224W | 247W
Screen turned off 11w 183W | 21.3W
‘Base power’ 11W 183W | 21.3W
Suspend state (S3) 0.74W | 1.15W | 0.55W
Battery capacity 65 Wh 50 Wh 85 Wh
Base lifetime 59h 2.7h 4.0h
Suspend lifetime 88h 43h 155h
Time to enter S3 8.7s 55s 49s
Time to resume from S3 3.0s 3.6s 48s

Table 2: Power consumption and battery lifetime of three
laptops under various operating conditions, and the time
to change power states.

5.1 Microbenchmarks — Power, Latency

Desktops: Table 1 presents the average power consump-
tion for two Dell desktop machines: an Intel dual core
(2.4 GHz Core2Duo) OptiPlex 745 with 2 GB RAM run-
ning Windows Vista, and a 2.4 GHz Pentium 4 Dimen-
sion 4600 with 512 MB RAM running Windows XP. The
display is turned off in these experiments, and only the
essential system processes are left running. The power
consumption of the desktop in S3 is two orders of mag-
nitude less than when it is awake. This is consistent with
prior published data on the power consumption of mod-
ern PCs [7]. We use the term ‘base power’ to indicate the
lowest power mode that a PC can be in and still be re-
sponsive to network traffic (without using Somniloquy).
To get this number, we further scaled down the CPU to
the lowest permissible frequency on these desktops. Fur-
thermore, we disabled the multi-core functionality using
the system BIOS to effectively use only one core and
verified that the system was actually doing so by using
a processor ID utility supplied by Intel. The time taken
for the desktops to resume from S3 and reconnect to the
network is of the order of a few seconds (Table 1).

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

373

Gumstix state Power

Wired version
1 gumstix only - no Ethernet 210 mW
2 gumstix + Ethernet idle 1073 mW
3 gumstix + Ethernet bridging 1131 mW
4 | gumstix + Ethernet + write to flash | 1675 mW
5 | gumstix + Ethernet broadcast storm | 1695 mW
6 gumstix + Ethernet unicast storm 1162 mW

Wireless version

7 gumstix only — no Wi-Fi 210 mW
8 gumstix + Wi-Fi associated (PSM) 290 mW
9 | gumstix + Wi-Fi associated (CAM) | 1300 mW
10 gumstix + Wi-Fi broadcast storm 1350 mW
11 gumstix + Wi-Fi unicast storm 1600 mW

Table 3: Power consumption for the gumstix platform in
various states of operation.

Laptops: Table 2 presents the average power con-
sumption of three popular laptops: a Lenovo X60 tablet
PC with 2 GB RAM running Windows Vista, a Toshiba
laptop with 1 GB RAM running Windows XP, and a
Lenovo T60 laptop with 1 GB RAM running Windows
Vista. For all power measurements, the processor is set
to the lowest speed and is idle, the hard disk is spun down
and the wireless network interface is powered on. The
base power is between 11 W and 22 W, resulting in a bat-
tery lifetime of around 4 to 5 hours with the batteries that
are present on these laptops. Using the sleep/S3 state
can dramatically extend the battery lifetime, to between
40 and 150 hours for the laptops we tested, although the
laptop is unreachable in this state.

Gumstix: Table 3 shows the average power con-
sumed by the gumstix (with both etherstix and wifistix)
in various states of operation. The gumstix has a base
power of approximately 210 mW when no network in-
terface is present (row 1). A gumstix with an active net-
work interface typically consumes approximately 1070-
1300mW (rows 2 and 9), however with an associated
Wi-Fi interface in power save mode it consumes only
290 mW (row 8). The power consumption of the gumstix
when its network interface is active and the downloaded
data is being written to flash is around 1675 mW (row
4). Broadcast and unicast ‘storms’ (continuous traffic)
increase the power consumption by a few hundred milli-
watts*. Importantly, the power consumption of the gum-
stix is approximately one tenth that of an awake laptop in
the lowest power state, and approximately 50 times less
than an idle desktop.

4Wi-Fi broadcasts are sent at 6 Mbps while unicasts are sent at
54 Mbps in our setup. Consequently a unicast storm consumes more
power than a broadcast storm.

n
o
S

9 seconds 4 seconds
180 i

160 —> — =
140 A B C D

120
100
80
60
40
20
0

(Watts)

1
1
]
T
|
1
1
1
1
1
1
1
T

PR IR N R (P g) |

Power Consumption

\
O X2 P PRA LR RIS ACS
Time (Seconds)

Figure 5: Power consumption and state transitions for
our desktop testbed.

5.2 Somniloquy in Operation

We now report the power consumption of Somniloquy in
operation. For these measurements we use two testbed
systems: a desktop (Dell OptiPlex 745 with 2 GB RAM
running Windows Vista) with the Wired-1NIC prototype
of Somniloquy, and a laptop (Lenovo X60 tablet PC run-
ning Windows Vista) with the Wireless-2NIC version of
Somniloquy. Thus, our tests span both Ethernet and Wi-
Fi networks, and both the integrated single network in-
terface, and the higher performance versions which uses
the existing internal network interface. The test traffic is
generated using a standard desktop machine running on
the same (wireless or wired) LAN subnet as the testbed
machine.

Figure 5 shows the power consumption of our desktop
testbed. Initially the desktop’s host processor is awake
and uses the gumstix for bridging, and the whole sys-
tem draws 104 W of power. At time ‘A’ a state change
to S3 is initiated by the user. This request completes at
time ‘B’ after which the power draw of the system is
approximately 4.4 W, i.e. 24x less. This power is split
between the gumstix, the DRAM of the PC, and other
power chain elements in the PC. Subsequently at time
‘C’ the gumstix, which has been actively monitoring the
network interface, wakes up the host in response to a net-
work event. This request completes at time ‘D’ when the
host system has fully resumed. As the figures illustrate
this resume event takes about 4 seconds. We do not show
the laptop figure for space reasons; the trace looks very
similar with a starting power of 16 W with the screen on
(which drops to 11 W if the screen is turned off), a power
draw of 1 W when using Somniloquy (11x less than the
screen-off case) and a resume time of 3 seconds.

5.3 Application Performance

As described earlier there are two classes of applications
that are supported by Somniloquy: first, a large class of
applications that do not require application stubs, and
second a smaller class of applications that can be sup-

374

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

2 5 || @ Asleep (Somniloquy)
.
0 Awake

¥ 25

S

S 20

>

Q

T 15

= 10

ILS Il ' F

)

= o0

= c g v o gl o Ly Qe

2 21 %3 Z 3| % R 2133

o T 3 9 T 39 ORI O

E £ & & g g 3 g 23 £ £ 8

= 3 3 B s 3|8 = 3z 8 R
3 3 3 3

Remote desktop
connect (RDP)

List remote
directory (SMB)

Remote file copy
(SMB)

Call connect (VOIP)

Figure 6: Application-layer latency for three Somniloquy
testbeds and four application types.

ported using application stubs running on the gumstix.
We performed a number of experiments to evaluate the
performance of both these classes of applications.

5.3.1 Applications without stubs

We now quantify the end-to-end latency (as perceived by
users) incurred by the applications that are handled by
Somniloquy without using application stubs. For these
experiments, we use the same two testbeds as above, with
the addition of a third testbed based on the Wired-2NIC
prototype (using same desktop machine as the Wired-
INIC case), providing a direct comparison between the
INIC and 2NIC cases. In each case the latency reported
is the mean over five test runs.

Figure 6 reports the time taken to satisfy an incoming
application-layer request for four sample applications.
For each application, we show the latency for “awake”
operation (i.e. when the host is on and directly responds
to the request) and when the host is in S3 and Somnilo-
quy prototype receives the incoming packet and triggers
wake-up of the host.

The four applications we tested were:

Remote desktop access (RDP): Here we used a stop-
watch to measure the latency between initiating a remote
desktop session to the host and the remote desktop be-
ing displayed. A stopwatch was used to ensure that true
user-perceived latency was measured. The gumstix was
configured to wakeup the main processor on detecting
TCP traffic on port 3389 (the RDP port).

Remote directory listing (SMB): A directory listing
from the Somniloquy testbed was requested by the tester
machine (via Windows file sharing, which is based on the
SMB protocol). The time between the request being ini-
tiated and the listing being returned was measured using
a simple script. The secondary processor was configured
to initiate wake-up on detection of traffic on either of the

TCP ports used by SMB,i.e. ports 137 and 445.

Remote file copy (SMB): The SMB protocol was
used again, but this time to transfer a 17 MB file from
the Somniloquy testbed to the tester machine.

VoIP call (SIP): A Voice-over-IP call was placed to
a user who had been running a SIP client on the Som-
niloquy laptop before it had entered S3. On receipt of
the incoming call the SIP server responded with a TCP
connection to the testbed, causing the gumstix to trig-
ger wakeup. A similar procedure was used in [2]. Once
again, the latencies were measured using a stopwatch to
measure true user-perceived delay.

As Figure 6 shows, Somniloquy adds between 4-10s
latency in all cases. As described in Section 5.2 earlier,
part of this latency is attributed to resuming from S3, i.e.
4-5 s for the desktop and 2-3 s for the laptop, and is in-
dependent of Somniloquy. Further latency is due to the
delay for TCP to retransmit the request, and for the host
to respond to the request (which may take longer since
it has just resumed). Note that the Wired-1NIC proto-
type shows higher latency than the Wired-2NIC proto-
type. This is purely an artifact of our prototype caused
by the overhead of MAC bridging and largely the slower
speed of the USBNet IP link between the gumstix and
the host. The latter is particularly obvious in the file copy
test, where the file copy time with the Wired-2NIC case
is much faster than for Wired-1NIC (although the Wired-
INIC speed is still faster than Wireless-2NIC). While
Somniloquy does result in 4-10 s additional application-
layer latency, these delays are acceptable for real usage
(including VoIP [2]) in exchange for the substantial ben-
efit of 20x-50x power savings.

5.3.2 Applications Requiring Stubs

In this section we present evaluations for applications
that require stub support on the gumstix, primarily look-
ing at the overhead in terms of memory consumption
and processing capabilities that they impose on the gum-
stix. We have implemented application stubs for three
common applications — background downloads using
the http protocol, P2P file sharing using BitTorrent, and
maintaining presence on IM networks — as described in
Section 4.

To study the overhead of IM clients, we run the cor-
responding application stub using up to three different
IM protocols simultaneously — MSN Messenger, AOL
Messenger and ICQ Chat. Table 4 shows the processor
utilization and memory footprint of the Wired-1NIC pro-
totype when running these IM clients. Since the behav-
ior of the IM stub is such that it maintains presence of
the user on various networks and on receipt of an appro-
priate trigger (IM from someone) wakes up the host, the
latency values are similar to those of the VoIP application

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

375

Accounts Processor Memory Configuration Processor Memory
95th percentile | 95th percentile 95th percentile | 95th percentile
None 0.0% 5.9MB Single download

MSN only 10.0% 6.5 MB 2Mbps 9.2% 1.8MB
MSN+AOL 21.6% 6.7MB 4Mbps 21% 1.8MB
MSN+AOL+ICQ 26.0% 6.9 MB 8Mbps 50% 1.8 MB
T imult downloads (4 Mb, h

Table 4: Processor and memory utilization for the IM Wo simultaneous downloads (ps each)
b for vari o Total - ih 1st download 31% 1.8 MB
stub for various configurations. Total memory for the 2nd download 26.3% 1.8 MB

gumstix is 64 MB.

Configuration Processor Memory

95th percentile | 95th percentile
Single download

4MB cache 16.0% 6.5 MB

8MB cache 16.0% 10.6 MB

16MB cache 16.1% 18.9MB

Two simultaneous downloads (4 MB cache)

1st download 16% 6.5 MB

2nd download 24% 7.0MB

Table 5: Processor and memory utilization for the Bit-
Torent stub for various configurations. Total memory for
the gumstix is 64 MB.

as reported in Figure 6. For our Wired-1NIC prototype
the additional latency for the IM stub when using Som-
niloquy is around seven seconds.

To evaluate the overhead of P2P file sharing using the
BitTorrent stub on the gumstix, we initiated downloads
using a torrent from a remote website® into the 2 GB SD
card of the Wired-1NIC gumstix. We varied the mem-
ory cache available to the stub while conducting a single
download, and then tested two simultaneous downloads.
The results in Table 5 show that the memory footprint of
the stub increases proportionally to the cache size as ex-
pected, while the processor utilization remains constant.
When there are two simultaneous downloads, each in-
stance of the stub uses memory proportional to its speci-
fied 4 MB cache.

Finally, to evaluate the web-download stub on the
gumstix we initiate download of a large (300 MB) file
from a local web server. We varied the throughput of
the downloads and measured the processor utilization
and the memory consumption of the gumstix, and exper-
imented with two simultaneous downloads. As shown in
Table 6, the processor utilization increases as the down-
load rate increases although the memory footprint for
each download remains constant.

The above results show that using application stubs,
we can support fairly complex tasks and applications, in-
cluding background web downloads and P2P file shar-

Shttp://www.legaltorrents.com/

Table 6: Processor and memory utilization for the web
download stub for various configurations. Total memory
for the gumstix is 64 MB.

ing using relatively modest resources on the gumstix. It
is important to note that the power consumption of the
gumstix did not exceed 2 W in all of these experiments.

5.4 Energy Savings using Somniloquy

In addition to evaluating the operating performance of
our Somniloquy prototypes, it’s also important to assess
the higher level goal of this work, namely the impact on
PC energy consumption. In this section we present some
data which demonstrates the potential of Somniloquy to
reduce both desktop and laptop energy usage in general
terms. We also verify the energy saving model presented
in Section 3.3, which allows the specific savings in a
given application scenario to be calculated. Unless other-
wise noted, we are using the Wired-1NIC version of our
prototype for the desktop energy measurements and the
Wireless-2NIC version for the laptop energy measure-
ments.

5.4.1 Reducing Desktop Energy Consumption

Our testbed desktop PC consumes 102 W in normal op-
eration and <5 W in S3 with Somniloquy. Somniloquy
therefore saves around 97 W. On this basis, if Somnilo-
quy were to be deployed in an environment where a PC
is actively used for an average of 45 hours each week
(i.e. 27% of the time), this would result in 620 kWh
of savings per computer in a year. Assuming 0.61kg
CO5/kWH® and US$0.09/kWH’, this means an annual
saving of 378 kg of CO- (to put it in perspective, the av-
erage US residents annual CO4 emissions are 20 metric
tonnes as compared to a worldwide average of 4 met-
ric tonnes per person®) and US$ 56 per computer. We

Shttp://www.eia.doe.gov/cneaf/electricity/
page/co2_report/co2report.html

7http://www.eia.doe.gov/cneaf/electricity/
epa/epa_sum.html

8http://www.sciencedaily.com/releases/2008/
04/080428120658.htm

376

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

IBM X60 Power Consumption

n
o

16W
(4.1 Hr.

®

16

11.05W
(5.9 Hrs)

‘ X

>

)
L

©
L

Power Consumption (Watts)
=

o1 074w 1.04W
5 (88 Hrs) (63 Hrs)
0
Sleep (S3) Somniloquy Baseline (Low Normal

Power)

Figure 7: Power consumption and the resulting estimated
battery lifetime of a Lenovo X60 using Somniloquy. The
lifetime is calculated using the standard 65 Watt hour
battery of the laptop.

believe this is significantly higher than the bill of ma-
terials cost of the components required to implement
a commoditized Somniloquy-enabled network card. In
this case, deployments of Somniloquy-enabled devices
would pay for themselves within a year.

5.4.2 Desktop Energy Savings for Real Workloads

We now estimate the energy savings enabled by Somnil-
oquy under realistic workloads. We use the data provided
by [20], relating to the use patterns of twenty two distinct
desktop PCs; each of which is classified as being either
idle, active, sleep or turned off. We then compute the
energy consumed by each of the PCs with and without
Somniloquy using the formula of Section 3.3. For ease of
exposition, we bin the data into three different categories:
PCs that are idle for <25% of the time (7 machines), idle
for 25%-75% of the time (6 machines) and finally those
that are idle for >75% of the time (9 machines). The
average energy savings for these twenty two PCs when
using Somniloquy is 65%, as compared to normal oper-
ation without Somniloquy. The average energy savings
for the PCs in the individual categories are 38%, 68%
and 85% respectively. As expected, the most energy sav-
ings are for the PCs with larger idle times since they have
more opportunity to use Somniloquy.

5.4.3 Increasing Laptop Battery Lifetime

Figure 7 shows the average power consumption of the
laptop testbed when operating normally (i.e. no power
saving mechanisms), with standard power saving mech-
anisms in place (the baseline power), when Somniloquy
(Wireless-2NIC) is operational, and in the standard S3
mode (without the gumstix attached). Somniloquy adds
a relatively low overhead of 300 mW to S3 mode, result-
ing in a total power consumption which is close to just

%Energy Savings (Analytical) M %Energy Savings (Measured)

%Latency Increase (Analytical) M %Latency Increase (Measured)

80 I
& [| |

40 +—

20 +—

512Kbps 1Mbps 1Mbps

(200MB)

2Mbps 1Mbps

(Ideal)

Figure 8: Comparing the analytical results with the mea-
sured values for the web-download stub. The flash stor-
age available on the gumstix is set to 100 MB, unless
stated otherwise.

1 W, as compared to the 11 W of the idle laptop. This
means that when the laptop needs to be attached to the
network and available for remote applications but is oth-
erwise idle, it can be put into Somniloquy mode to enable
an order of magnitude decrease in power consumption
and a resulting increase in battery lifetime from 5.9 hours
to 63 hours (using the standard 65 Watt-Hour battery).

5.4.4 Energy Savings for Specific Applications

The basic analysis of energy consumption and battery
lifetime presented above is very generic; for a given us-
age scenario it should be possible to use the energy sav-
ing model presented in Section 3.3 to predict savings
much more accurately. In order to validate this model
we ran experiments downloading content from a remote
web server, and measured both energy consumption and
latency so as to compare them with their corresponding
analytical values. Note that we only measure the energy
consumption for the duration of the application.

The web download stub was chosen since it was rela-
tively easy to change the duty-cycle of the host, i.e. the
duration for which the host can sleep (7s;cep) after which
it needs to be woken up to transfer data from the gumstix
(Tawake)- As discussed in Section 3.3, Ty, depends on
the download bandwidth and the amount of flash storage
on the gumstix, while Tp,,4%e depends on the amount of
flash storage on the gumstix and the transfer rate between
the gumstix and the host. We downloaded a 300 MB
file at various link bandwidths ranging from 512 Kbps
to 2 Mbps, and used two different flash storage sizes at
the gumstix - 100 MB and 200 MB, effectively varying
Tjeep from approximately 1600 seconds down to 400
seconds. We measured the power consumed during the
download using the methodology described in the begin-
ning of this section. In Figure 8, we present the measured
energy savings and the corresponding predicted values

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

377

using our model for four different data points. As we
can see from the figure, the predicted energy savings and
the increased latency closely match the measured values
(within 1.5%). The values do not exactly match since
the actual measured power values vary over time, and
the time taken to suspend and resume also varies across
runs. We used a fixed value for these in the formula.

Figure 8 also illustrates that increasing the bandwidth
from 512 Kbps to 2 Mbps reduces the energy savings
from 85% to 50%, and increases the latency from 11% to
43%, although a larger amount of flash storage improves
the energy saving and latency. As explained earlier this
is due to the limited transfer speed of the USBnet inter-
face in our prototype (<5 Mbps), because of which the
PC is awake for longer periods of time while transfer-
ring the data from the gumstix (75,4%.= 181 seconds to
transfer 100 MB of data). In Figure 8 we have also plot-
ted an ideal case (1 Mbps-ideal) where the host can read
the flash storage of the gumstix directly. For the ideal
case the duration for which the host needs to stay awake
to transfer data from the gumstix reduces considerably
(Tywake= 23 seconds). This improves energy savings to
91% and limits the increase in latency when using Som-
niloquy to less than 5%.

6 Related Work

There have been several proposals to reduce the en-
ergy consumption of desktop PCs and laptops. Prior
work can largely be grouped in three categories: re-
ducing the active power consumption of devices (when
awake) [3, 5, 9, 10, 16, 17], reducing the power con-
sumption of the network infrastructure (e.g. routers and
switches) [11, 12, 21], and opportunistically putting the
devices to sleep. Somniloquy falls in the third category.
Since a machine in sleep state consumes significantly
less power than in lowest power active state [11, 27] (ver-
ified by us in Section 5), significant energy savings are
possible by putting the machine to sleep whenever pos-
sible.

For opportunistic-sleep systems, the biggest challenge
is to ensure connectivity when the host is asleep. Prior
techniques to solve this problem either use advanced
functionality in the NIC [18] or use extra network in-
terfaces [26, 27]. We now compare and contrast Somnil-
oquy to both these classes of work.

Among schemes that do not use an extra net-
work interface, the most well-known are Wake-on-LAN
(WoL) [18] and its wireless equivalent, Wake-on-WLAN
(WoWLAN). In both these schemes, the NIC parses in-
coming packets when the host is asleep. It wakes up
the host PC whenever an incoming “magic” packet is re-
ceived. According to the specification [18], the magic
packet payload must include 6 characters of a wakeup

pattern that is set by the host PC, followed by 8 copies
of the NIC’s MAC address. In WoWLAN, the only dif-
ference is that this packet is sent over the Wireless LAN.
Although most modern NICs implement WoL function-
ality, few deployed systems actually use this function-
ality, due to four main reasons. First, the remote host
must know that the PC is asleep and that it must wake
it up before pursuing application functionality. Second,
the remote host must have a way of sending a packet to
the sleeping PC through any firewalls/NAT boxes, which
typically do not allow incoming connections without spe-
cial configuration. Third, the remote host must know
the MAC address of the sleeping PC. Fourth, WoWLAN
does not work when laptops change their subnet because
of mobility. In contrast, Somniloquy does not require the
extra configuration of firewalls/NAT boxes, and is trans-
parent to remote application servers. It can handle mo-
bility across subnets since the secondary processor can
re-associate with services such as Dynamic DNS (to redi-
rect a permanent host name to the PC’s new IP address),
and re-log-in to servers such as IM servers. In addition
to these differences, Somniloquy also allows applications
to be offloaded to the low power processor. There is no
such concept in WoL, which instead wakes up the host
when any pattern is matched.

Intel recently announced its Remote-Wake’ [14]
chipset technology (RWT) that claims to extend WoL on
new motherboards by allowing VoIP calls to wake up a
system, although its general applicability to other appli-
cations is not known. The details of this technology are
not published. In contrast, Somniloquy goes beyond just
WoL or RWT. It allows low power operation for various
applications other than VoIP. Furthermore, Somniloquy
does not require modifications to application end points
or servers. RWT requires applications to first contact a
server, which then sends a special packet to the PC to
signal a wake up.

Another approach is to use additional “low-power”
network interfaces to maintain connectivity to the PC that
is asleep. This approach has been proposed for use with
mobile devices. For example, Wake-on-Wireless [26]
wakes up the host PC on receiving a special packet on
the low power network interface. Turducken [27] uses
several tiers of network interfaces and processors with
different power characteristics, and wakes up the upper
tier when the lower tier cannot handle a task. In con-
trast to these schemes, Somniloquy requires only a single
network interface, and presents the paradigm of a single
PC to users rather than a multi-tiered system, preserv-
ing the current user experience and therefore requiring
less training to use. Somniloquy also gives the impres-
sion to remote application servers that a device remains
awake all the time even though it is actually asleep, since
the same MAC and IP addresses are used. This level of

378

NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

transparency is not provided either by Wake-on-Wireless
or Turducken. Finally, we have gone into more detail
than previous work on ways of supporting applications
that require interactions among the secondary and the
host processor to perform offload — such as IM, BitTor-
rent and web downloads.

To reduce the power consumed by desktop PCs, some
early proposals have suggested the use of proxies on the
subnet that function on behalf of the desktop PC when it
is asleep [4, 7, 11]. The proxy monitors incoming pack-
ets for the PC, and wakes it up using WoL. when the PC
needs to handle the packet. We are not aware of any pub-
lished prototype implementations of such systems. Re-
cently, Sabhanatarajan et. al. [25] propose a smart NIC
that can act as proxy for a host to save power. How-
ever, the authors focus primarily on the design of a high
speed packet classifier for such an interface. In compar-
ison, Somniloquy has much wider applicability than the
above schemes. It can be used in homes and small offices
where it might be infeasible to deploy a dedicated server
to handle processing for another PC.

A contemporaneous effort to Somniloquy is the idea
of a Network Connection Proxy (NCP) [15, 20], which
is a network entity that maintains the presence of a sleep-
ing PC. In [15], the authors define the requirements of
an NCP and propose modifications to the socket layer
(similar to Split TCP) for keeping TCP connections alive
through a PC’s sleep transitions. In [20], the authors ex-
tend these APIs to support other protocols as well. Som-
niloquy is similar in spirit to NCP, and NCP’s socket
APIs can reduce Somniloquy’s overhead when waking
up from sleep (Section 3.1). Furthermore, to the best of
our knowledge, Somniloquy is the first published proto-
type of any proxying system.

We note that the concept of adding more process-
ing to the network interface is not new. Existing prod-
ucts offload processing to the NIC to improve perfor-
mance (TCP offload [19]) and remote manageability (In-
tel AMT [13]). Somniloquy uses a similar offloading
paradigm, but to conserve energy instead of improving
performance or manageability.

7 Conclusions

We have presented Somniloquy, a system that augments
network interfaces to allow PCs to be put into low-power
sleep states opportunistically, without sacrificing func-
tionality. Somniloquy enables several new energy sav-
ing opportunities. First, PCs can be put to sleep while
maintaining network reachability, without special net-
work infrastructure as needed by previous solutions (e.g.
WoL). Second, some applications can be run in sleep
mode thereby requiring much less power. In this paper,
we have shown the feasibility for three such applications

to be run in sleep mode: BitTorrent, instant messaging,
and web downloads.

Somniloquy achieves these energy savings without re-
quiring any modifications to network, to remote appli-
cation servers, or to the user experience of the PC. Fur-
thermore, Somniloquy can be incrementally deployed on
legacy network interfaces, and does not rely on changes
to the CPU scheduler or the memory manager to imple-
ment this functionality, thus it is compatible with a wide
class of machines and operating systems.

Our prototype implementation, based on a USB pe-
ripheral, includes support for waking up the PC on net-
work events such as incoming file copy requests, VoIP
calls, instant messages and remote desktop connections,
and we have also demonstrated that file sharing/content
distribution systems (e.g. BitTorrent, web downloads)
can run in the augmented network interface, allowing for
file downloads to progress without the PC being awake.
Our tests show power savings of 24x are possible for
desktop PCs left on when idle, or 11x for laptops. For
PCs that are left idle most of the time, this translates to
energy savings of 60% to 80%. The electricity savings
made are such that deploying a productized version of
Somniloquy could pay for itself within a year.

Acknowledgements

We would like to thank John Dunagan, Gunjan Gupta,
Srikanth Kandula, Jitu Padhye, Patrick Verkaik, Kashi
Vishwanath and the anonymous reviewers for their com-
ments on various versions of this paper. We would also
like to acknowledge the feedback received from Alex
Snoeren, Stefan Savage and Geoff Voelker. Finally, we
are grateful to our shepherd, Jeffrey Mogul for meticu-
lously guiding us towards the final version of the paper.
His help was invaluable.

References

[1] ACPI. Advanced Configuration and Power Interface
Specification, Revision 3.0b. http://www.acpi.
info.

[2] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin,
and R. Gupta. Wireless Wakeups Revisited: Energy Man-
agement for VoIP over Wi-Fi Smartphones. In MobiSys
"07: Proceedings of the 5th international conference on
Mobile systems, applications and services, pages 179—
191, New York, NY, USA, 2007. ACM.

[3] Y. Agarwal, T. Pering, R. Want, and R. Gupta. “SwitchR:
Reducing System Power Consumption in a Multi-Clients,
Multi-Radio Environment”. In Proceedings of IEEE In-
ternational Symposium on Wearable Computing (ISWC),
2008.

USENIX Association

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

379

(4]

[5]

(6]

(71

(8]

9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(7]

M. Allman, K. Christensen, B. Nordman, and V. Paxon.
Enabling an Energy-Efficient Future Internet Through Se-
lectively Connected End Systems. In 6th ACM Workshop
on Hot Topics in Networks (HotNets). ACM, November
2007.

M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning
Wireless Network Power Management. In MobiCom ’03:
Proceedings of the 9th annual international conference
on Mobile computing and networking, pages 176—189,
New York, NY, USA, 2003. ACM Press.

N. Borisov, D. Brumley, H. J. Wang, J. Dunagan, P. Joshi,
and C. Guo. A generic application-level protocol ana-
lyzer and its language. In Proceedings of the 14th An-
nual Network and Distributed System Security Sympo-
sium (NDSS), 2007.

K. Christensen, C. Gunaratne, and B. Nordman. The Next
Frontier for Communication Networks: Power Manage-
ment. Computer Communications, 27(18):1758-1770,
2004.

W. Cui, J. Kannan, and H. J. Wang. Discoverer :
Automatic Protocol Reverse Engineering from Network
Traces. In Proceedings of the USENIX Security Sympo-
sium, 2007.

K. Flautner, S. K. Reinhardt, and T. N. Mudge. Auto-
matic Performance Setting for Dynamic Voltage Scaling.
In MobiCom ’01: Proceedings of the 6th annual interna-
tional conference on Mobile computing and networking,
pages 260-271, 2001.

J. Flinn and M. Satyanarayanan. Managing Battery Life-
time with Energy-Aware Adaptation. ACM Trans. Com-
put. Syst., 22(2):137-179, 2004.

C. Gunaratne, K. Christensen, and B. Nordman. Manag-
ing Energy Consumption Costs in Desktop PCs and LAN
Switches with Proxying, Split TCP Connections, and
Scaling of Link Speed. Int. J. Netw. Manag., 15(5):297—
310, 2005.

M. Gupta and S. Singh. Greening of the Internet. In
SIGCOMM °03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 19-26, New York,
NY, USA, 2003. ACM.

Intel. Intel Active Management Technology (AMT).
http://www.intel.com/technology/
platform-technology/intel-amt/.

Intel. Intel Remote Wake Technology. http://www.
intel.com/support/chipsets/rwt/.

M. Jimeno, K. Christensen, and B. Nordman. A Network
Connection Proxy to Enable Hosts to Sleep and Save En-
ergy. In IEEE International Performance Computing and
Communications Conference, 2008.

R. Kravets and P. Krishnan. Application-driven Power
Management for Mobile Communication. Wireless Net-
works, 6(4):263-277, 2000.

X. Li, R. Gupta, S. V. Adve, and Y. Zhou. Cross-
Component Energy Management: Joint Adaptation of

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

Processor and Memory. ACM Trans. Archit. Code Op-
tim., 4(3):14, 2007.

P. Lieberman. Wake-on-LAN technology.
http://www.liebsoft.com/index.cfm/
whitepapers/Wake On_ LAN.

J. C. Mogul. TCP Offload Is a Dumb Idea Whose Time
Has Come. In HotOS, pages 25-30, 2003.

S. Nedevschi, J. Chandrashekar, B. Nordman, S. Rat-
nasamy, and N. Taft. Skilled in the art of being idle:
reducing energy waste in networked systems. In Pro-
ceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and
D. Wetherall. Reducing Network Energy Consumption
via Sleeping and Rate-Adaptation. In Proceedings of the
Sth USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 323-336. USENIX
Association Berkeley, CA, USA, 2008.

R.Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, and T. Lee. Hypertext Transfer Protocol —- HTTP/1.1.
RFC 2616, June 1999.

J. Roberson, C. Webber, M. McWhinney, R. Brown,
M. Pinckard, and J. Busch. After-hours Power Status of
Office Equipment and Energy use of Miscellaneous Plug-
load Equipment. Lawrence Berkeley National Labora-
tory, Berkeley, California. Report# LBNL-53729-Revised,
2004.

K. Roth and K. McKenney. Energy Consumption by Con-
sumer Electronics in US Residences. Final Report to the
Consumer Electronics Association (CEA), 2007.

K. Sabhanatarajan, A. G.-R. M. Oden, M. Navada, and
A. George. Smart-NICs: Power Proxying for Reduced
Power Consumption in Network Edge Devices. In ISVLSI
’08, 2008.

E. Shih, P. Bahl, and M. J. Sinclair. Wake on Wireless:
An Event Driven Energy Saving Strategy for Battery Op-
erated Devices. In MobiCom ’02: Proceedings of the
8th annual international conference on Mobile computing
and networking, pages 160-171, New York, NY, USA,
2002. ACM Press.

J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Tur-
ducken: Hierarchical Power Management for Mobile De-
vices. In MobiSys '05: Proceedings of the 3rd interna-
tional conference on Mobile systems, applications, and
services, 2005.

380

NSDI *09: 6th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

