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Abstract—In this paper, we propose and evaluate a simple
mechanism to accelerate iterative machine learning algorithms
implemented in Hadoop map-reduce (stock), and Apache Spark.
In particular, we describe a technique that enables data parallel
tasks in map-reduce and Spark to be dynamically and adaptively
scheduled on CPU or GPU, based on availability and load. We
examine the extent of performance improvements, and correlate
them to various parameters of the algorithms studied. We
focus on end-to-end performance impact, including overheads
associated with transferring data into and out of the GPU, and
conversion between data representations in the JVM and on GPU.
We also present three optimizations that, in our analysis, can be
generalized across many iterative machine learning applications.
We present a case study where we accelerate four iterative
machine learning applications – multinomial logistic regression,
multiple linear regression, K-Means clustering and principal
components analysis using singular value decomposition, im-
plemented in three data analytics frameworks – Hadoop Map-
Reduce (HMR), IBM Main-Memory Map-Reduce (M3R) and
Spark. We observe that the use of GPGPUs decreases the
execution time of these applications on HMR by up to 8×, M3R
by up to 18× and Spark by up to 25×. Through our empirical
analysis, we offer several insights that can be helpful in designing
middleware and cluster managers to accelerate map-reduce and
Spark applications using GPUs.

I. INTRODUCTION

The popularity and affordability of GPUs has renewed
interest in using GPUs for “ordinary” Machine Learning (ML)
applications, such as regression, classification, and clustering,
beyond the well established use of GPUs for deep learning
workloads. Previous research to exploit GPUs for accelerating
ML applications [2], [26] typically (i) used traditional C/C++
with CUDA and MPI, with explicit co-ordination, failure
handling, and distribution of tasks across nodes and between
CPU and GPU, or (ii) proposed entirely new GPU-optimized
programming frameworks and libraries. Unfortunately, both
approaches have limited applicability in the industry due to the
widespread popularity and market penetration of established
analytics frameworks such as Map-Reduce and Spark, and
libraries that build on them (e.g., MLib [9], MLbase [5],
Mahout [16]). Since these existing frameworks are routinely
employed by ML software in production, they have the ad-
vantage of being extensively tested, resulting in lower in-
cidence of erroneous code (when compared to a C++/MPI
application written from scratch). Further, the Map-Reduce
and Spark frameworks and their commercial offerings au-

tomatically handle task distribution, high-availability, fault-
tolerance, and elasticity (e.g., Amazon Elastic Map-Reduce [3]
and Databricks Elastic Spark [22]), allowing practitioners who
use such frameworks to focus on the results of the analyses.

Organizations, including Databricks, which commercializes
Spark, have acknowledged the potential of GPUs to signif-
icantly improve the performance of ML applications [22].
Analytics frameworks like Apache Hadoop Map-Reduce and
Apache Spark, do not automatically generate code that lever-
ages GPUs, but do support the use of external GPU-optimized
libraries within user code (e.g., within the user’s map func-
tion). Several researchers have attempted to first quantify
the performance benefits of using GPUs to accelerate map-
reduce [12]. For a detailed discussion, we refer the reader
to Section VI. However, despite their claimed performance
benefits, these approaches suffer from several drawbacks that
have limited their adoption in practice:

• The end-to-end performance benefits of using GPUs to ac-
celerate map-reduce has remained unclear. Previous papers
have not considered the overhead of transferring data from
main memory to GPU memory, network communication
overhead, shuffle overhead, and serialization of data between
the Java Virtual Machine (JVM) and the GPU runtime.

• Several previous projects have either omitted fault-tolerance
from GPU accelerated map-reduce [12], [20], [29], [32], or
redesigned the map-reduce API [29], [32], or assumed that
all data fits in GPU memory [12] – all of which limit their
usefulness in practice.

• Previous systems and papers do not provide evidence of their
ability to handle large datasets and have not been evaluated
on datasets larger than 1GB.

In this paper, we examine the extent to which the use of
GPUs improves the performance of iterative ML algorithms
implemented in Apache Hadoop Map-Reduce (HMR) [6] and
Apache Spark [18], along with IBM’s own Main-Memory
Map-Reduce (M3R) framework [31]. We propose a simple
mechanism to adaptively distribute data-parallel tasks in said
frameworks between CPUs and GPUs. We empirically analyze
the performance of four popular iterative ML algorithms on
the above frameworks under different parameter settings and
different deployment sizes (number of nodes); we employ
Amazon EC2 GPU-equipped instances for all our experiments.
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Notably, we focus on end-to-end performance benefits (in
terms of execution time), and do not modify these frameworks.
All the code necessary to use GPGPUs is within the applica-
tion code, e.g., in the case of Hadoop map-reduce, it is within
the map and reduce functions. To the best of our knowledge,
this is the first paper to accelerate stock implementations of
Hadoop Map-Reduce, M3R and Apache Spark on a multi-node
cluster combining CPUs and GPUs, without modifying (and
affecting) the interfaces, implementations and fault-tolerance
properties of these frameworks.

Our analysis provides several interesting insights:
• We demonstrate that speedups are significant (as much as

16–24×), even for highly optimized in-memory analytics
platforms such as M3R (1.26–18.46×) and Spark (1.87–
24.68×).

• We find that the speedup achieved by using GPUs initially
increases with the number of nodes and eventually flatlines
due to communication overheads.

• We find that the speedup achieved using GPUs increases
with the amount of computation involved in the algorithms.

• We explore several optimizations when implementing itera-
tive algorithms in all three frameworks, and we outline three
generic optimizations that provide significant performance
improvements.
The rest of the paper is organized as follows. We describe

the data analytics frameworks and ML applications we em-
ploy in Sections II and III, respectively. We then present
our approach to accelerating ML applications, including the
optimizations we leverage, in Section IV. We present our
evaluation results using four different ML applications on three
different data analytics frameworks in Section V. We discuss
related work in Section VI and conclude in Section VII.

II. FRAMEWORKS

Our goal in this paper is to analyze the performance of
popular ML algorithms on commonly employed analytics
frameworks when leveraging GPUs. We thus consider the
following frameworks and applications in our study.
Hadoop Map-Reduce (HMR): Hadoop Map-Reduce [6]
started as the open-source implementation of MapReduce [19],
and has since evolved to assimilate insights and optimizations
from the thousands of organizations that use it. We use
Hadoop Map Reduce [6] version 3.0.3, which also includes
the Apache Hadoop YARN [8] cluster manager and the HDFS
distributed file system. For the experiments in this paper, no
other application frameworks are executing on top of YARN,
and the map reduce framework has full access to the GPUs in
the cluster, along with all the CPUs and RAM.
Main-Memory Map-Reduce (M3R) [31]: HMR applications
involve significant disk access (HDFS) and shuffle over-
heads; this limits the speedup that GPUs can provide for
HMR. To mitigate these overheads, IBM Research devel-
oped a new implementation of the HMR API, called Main-
Memory Map-Reduce (M3R) [31], targeted at data analytics
on high mean-time-to-failure clusters. M3R is implemented in

X10 [14], a type-safe, object-oriented, multi-threaded, multi-
node, garbage-collected programming language. M3R stores
key value (KV) sequences in a family of long-lived JVMs,
sharing heap-state between jobs. On input from the file system,
M3R associates the input splits with the global (multi-place)
KV sequence obtained from this input. Subsequent invocations
of the input splits (e.g. by subsequent jobs in the sequence)
are fulfilled by reading the KV sequence from the heap,
eliminating the need to read from the file system again,
and deserialized. Similarly, output to an output formatter is
associated with the global KV sequence so that subsequent
input requests can be fulfilled from the KV sequence. The
shuffle of KV pairs is done in memory, using X10 inter-
process communication; this has the benefit of de-duplication
performed by the X10 serialization mechanism.
Spark [18] [33]: We also use Apache Spark in our experiments
because of its tremendous increase in popularity, and also
because it has eliminated several of the overheads of HMR.
Analytics applications are significantly faster (5-25×) when
programmed in and executed on Apache Spark [33]. We use
native Spark (version 2.3.0), i.e., Spark without any cluster
manager like YARN or Mesos [25] or Kubernetes [23]. Spark
provides a unified framework to manage big data processing
requirements with a variety of data sets that are diverse in
nature (text data, graph data, etc.) as well as the source of
data (batch vs. real-time streaming data). The fundamental
programming abstraction of Spark is called Resilient Dis-
tributed Datasets (RDDs), an in-memory logical collection of
data partitioned across machines. RDDs can be created by
referencing datasets in external storage systems, or by applying
coarse-grained transformations (e.g. map, filter, reduce, join)
on existing RDDs.
Fairness of Evaluation: The frameworks we have chose have
different properties, and were invented at different timeframes
for different usage scenarios. We choose them mainly because
of their popularity and because all three of them are industrial-
grade and used in production deployments. All three of them
have varying fault-tolerance guarantees. Also, we are forced
to use YARN when deploying Hadoop Map-Reduce because
that is the only way to do so (beyond version 1, Hadoop
Map-Reduce requires YARN while Spark can execute natively
on a cluster). Due to these factors, we do not undertake
inter-framework performance comparisons in this paper. We
focus, instead, on comparing the performance of an application
implemented in a framework with and without GPUs.

III. APPLICATIONS USED

In terms of ML applications, we focus on the broad cate-
gories of clustering, classification, regression, and dimension-
ality reduction; this categorization is based on the output of
the algorithm, as suggested by Bishop [13]. We choose one
popular algorithm from each class to accelerate using GPUs,
as discussed below.
Clustering : K-Means++. K-Means clustering is a method of
classifying/grouping N items into K groups/clusters (where
K is the number of pre-chosen groups). The grouping is done
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by minimizing the sum of squared distances (Euclidean dis-
tances) between items and the corresponding cluster centroid.
Although finding an exact solution to the K-Means problem
for arbitrary input is NP-hard, the standard approach to finding
an approximate solution (often called Lloyd’s algorithm or
the K-Means algorithm) is used widely and frequently finds
reasonable solutions quickly. This algorithm’s guarantees can
be further improved by using a good initialization technique
to pick the initial set of centroids – a technique proposed by
Arthur and Vassilvitskii called K-Means++ [10], which we use
for our case study (as is the case in Spark MLlib and Apache
Mahout).
Classification : Multinomial Logistic Regression. Multi-
nomial logistic regression is a classification method that
generalizes logistic regression to multiclass problems (more
than two classes). It is a model that is used to predict
the probabilities of the different possible outcomes of a
categorically distributed dependent variable, given a set of
independent variables (which may be real-valued, categorical-
valued, etc.). Our implementation uses the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [13] algorithm,
similar to Spark’s MLib library [9] for parameter estimation.
Multiple Linear Regression. Multiple Linear regression is
an approach for modeling the relationship between a scalar
dependent variable y and more than one explanatory variables
(or independent variables), denoted as ~X . Our implementation
uses the linear least squares algorithm with Stochastic Gradient
Descent (SGD), similar to Spark’s MLib library [9].
Dimensionality Reduction : Principal Components Analy-
sis (PCA) through Singular Value Decomposition (SVD).
Dimensionality reduction is the process of reducing the num-
ber of random variables under consideration. PCA is a popular
dimensionality reduction algorithm, commonly employed in
face recognition and image compression, to identify patterns
in data and express the data in a lower dimensional space
PCA performs a linear mapping of the data to a lower-
dimensional space in such a way that the variance of the
data in the low-dimensional representation is minimized. In
practice, the correlation matrix of the data is constructed and
the eigenvectors on this matrix are computed through SVD.
SVD, by itself, is one of the cornerstones of linear algebra and
has widespread application in signal processing and pattern
recognition [13].

IV. APPROACH TO ACCELERATION

We now describe how we accelerate the ML applications
listed above. We start with an overview of our implementa-
tion requirements and basic approach. We then discuss the
various challenges in effectively accelerating iterative ML
applications and the optimizations we employ to address them
(Sections IV-C–IV-E).

A. Implementation Constraints

Recall that we aim to accelerate ML applications imple-
mented in stock HMR, M3R and Spark without changing the
APIs of these frameworks or without redesigning them. This

also implies that we perform all GPU offloading inside high-
level functions like map(...), combine(...) and reduce(...).
This approach aligns with our long-term goals for designing an
automated framework, consisting of a compiler and runtime,
to transparently accelerate map-reduce and Spark applications.
We evaluate all our accelerated applications on realistic plat-
forms.

B. Basic Approach

HMR and M3R require applications to be programmed in
Java, while Spark supports Scala, Python and Java. To ensure
uniformity and fairness, we choose Java to implement all
our applications, and accelerate them by using JCUDA [21].
Consider the map-reduce programming paradigm. For exam-
ple, to accelerate map using GPUs, we re-implement the
logic of map as a CUDA kernel [27], and call it from map
using JCUDA bindings. This means that the map task starts
executing on a CPU, loads data from HDFS into main memory,
and moves this data into GPU memory before launching the
CUDA map kernel. This CUDA map kernel internally creates
multiple threads (we use 1024 threads), which are then divided
by the GPU runtime into thread blocks and warps.

GPUs are effective at massive parallelization; one rec-
ommended way to use them is to move enough data into
GPU memory, and parallelize computation on said data, while
minimizing the frequency of data movement into/out of GPU
memory. We thus change the default HDFS block size from
64MB to 128MB. After the kernel finishes processing, control
transfers back to the map task on CPU, which returns to
the Hadoop scheduler. The map task performing the GPU
offloading does not block the CPU because both HMR and
M3R already schedule multiple map and reduce tasks on
every machine for concurrency. For maximum efficiency, we
implement map-reduce combiners [7] in all our applications
to perform a local reduce before shuffling and a distributed
reduce. We also accelerate combine and reduce using GPUs
following a similar approach.

For Spark, although the engine is implemented in Scala and
there are no viable native-Scala bindings for CUDA, Spark
and the Scala runtime are compatible with Java, and Spark
provides a Java API. We implement our Spark applications
in Java, and use JCUDA inside the high-level user-defined
functions like map, reduceByKey, join , filter , etc. Each
Spark task processes an RDD block; we set the RDD block
size to be the same as the HDFS block size (128 MB).

C. Adaptive CPU-GPU Scheduling and Load Balancing

Utilizing both the CPU and GPU for a single application is
challenging by itself, because different parts of the application
may be best suited to (one of) CPU or GPU. This is even
more challenging with frameworks like map-reduce and Spark
because the framework, and not the programmer, schedules
the tasks; further, we want our implementations to work with
existing HMR, M3R and Spark task schedulers. Also, different
applications spend varying fractions of their time on map,
reduce and the other stages. Hence, deciding which task gets
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the GPU, while ensuring that other tasks proceed in parallel
on the CPU, requires co-ordination between tasks.

To explain our approach to CPU-GPU scheduling, consider
the example of map. For each stage in the application, all three
frameworks take a single map function. In the GPU acceler-
ated version of our application, this function is responsible
for offloading computation (i.e. the GPU kernel) once it has
been scheduled on an available CPU – the GPU kernel in turn
creates several threads (and warps). Each GPU can effectively
execute a small number (typically less than 16) of kernels
concurrently – we denote this by GPUMaxConcurr. But, the
HMR/M3R/Spark schedulers typically schedule several map
tasks on each machine in the cluster. To ensure that all the
tasks on a machine do not attempt to “acquire” the GPU and
schedule tasks on it, we use per-machine “atomic counters”
to co-ordinate between the tasks. We implement these atomic
counters using ETCD [17] and ETCD’s compare and swap
operation. In our implementation of map, we implement a
logical switch, which first checks whether the GPU is available
(i.e., the atomic counter for that machine is less than GPUMax-
Concurr), and then decides whether to continue executing on
the CPU or to offload computation. We thus implement co-
operative GPU load-balancing between tasks in all the three
frameworks. This is a simple and effective solution that avoids
changes to both the API and the schedulers in the frameworks.

D. Avoiding Warp Divergence

NVIDIA GPUs have a number of multiprocessors, each of
which executes in parallel with the others. A Kepler multipro-
cessor, for example, has 12 groups of 16 stream processors.
We will use the more common term, core, to refer to a
stream processor. Each core can execute a sequential thread,
but the cores execute in SIMT (Single Instruction, Multiple
Thread) fashion; all cores in the same group execute the
same instruction at the same time, much like classical SIMD
processors. Code is thus actually executed in groups of threads,
referred to as a warp. If there is branch divergence among
the threads in a warp, i.e., if two threads in a warp execute a
conditional (if..then) and follow different execution paths, then
the performance of the entire warp suffers. Consequently, we
either ensure the absence of conditionals when parallelizing
map and reduce tasks, or choose not to parallelize the task
if conditionals cannot be avoided.

Grouping of threads into warps is not only relevant to
computation, but also to global memory accesses. The device
coalesces global memory loads and stores issued by threads of
a warp into as few transactions as possible to minimize DRAM
bandwidth. Thus, when moving data into GPU memory, we
reorder the data so that two parallel map or reduce threads
access consecutive locations in GPU global memory.

E. Utilizing GPU Memory Effectively

GPUs have their own memory hierarchy. Each thread in a
warp has its own local memory, mainly registers managed by
the processing core. There is also a small software-managed
data cache attached to each multiprocessor (GPU L1 cache),

shared among the cores (called “scratchpad” memory or shared
memory). This is a low-latency, high-bandwidth (typically
over 1TB/s), indexable memory which runs close to register
speeds; but it is much smaller compared to global GPU
memory. Global GPU memory is off-multiprocessor memory,
which can be accessed by all threads executing on the GPU,
across all multi-processors. Global GPU memory also has
high bandwidth, typically over 170 GB/s, but accessing it is
typically slower than shared memory. Consequently, GPUs
also have an L2 cache to cache contents between global
memory and the processing cores; all accesses to global GPU
memory go through L2 cache.

While implementing the GPU kernel, we manually store
elements that are used frequently on the GPU L1 cache. This
is key for iterative machine learning algorithms. We examine
each loop in the iterative algorithm, and if the loop involves
a computation with respect to a fixed set of data points, we
store them in L1 cache. For example, in the case of K-Means
clustering, every map task computes Euclidean distance to a
fixed set of centroids per iteration. Consequently, at the start
of each iteration, we store the current set of centroids in L1
cache.

V. EVALUATION

We first discuss our experimental setup and evaluation
methodology, and then discuss our evaluation results for ac-
celerating Hadoop Map-Reduce, Main-Memory Map-Reduce,
and Spark.

A. Experimental Setup and Methodology

All experiments, unless otherwise mentioned, are conducted
on the Amazon EC2 IaaS cloud. We use EC2 G2 instances
(g2.2xlarge) [4], each with one NVIDIA GRID K520 GPU
with 1536 CUDA cores at a clock frequency of 800 MHz and
4GB of global GPU memory. Each instance also has 8 vCPUs,
15GB of RAM and a 60GB SSD drive.

For each application, we vary the number of EC2 instances
from 1 to 15, and consequently the number of vCPUs and
GPUs. We use the open-source data generator included with
Apache Spark [18] to generate a 100GB workload for the
applications with different characteristics. We believe that
using a data generator as opposed to using a single dataset
enables us to vary the parameters of the workload and correlate
speedups to workload characteristics. This data generator has
been used extensively in industry for benchmarking Spark
and various implementations of Hadoop Map-Reduce. For K-
Means, we generate a single 100GB dataset where points have
20 dimensions (features), and measure the impact of using
GPUs by varying the number of clusters, K. The three values
of K we use are 0.001%, 0.01% and 0.1% of the number of
items in the dataset. In the case of multiple linear regression,
we vary the number of dimensions (features) of the data –
2, 5 and 20 dimensions. We do the same for multinomial
logistic regression. For principal component analysis, we also
use a 100GB dataset, and determine the top 10, 100 and
1000 principal components. We note that the parameters we
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(b) Accelerating Multinomial Logistic Regression in Map-Reduce using GPUs
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(c) Accelerating Multiple Linear Regression in Map-Reduce using GPUs
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Fig. 1: Accelerating Map Reduce with GPUs
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(a) Accelerating K-Means Clustering in Main Memory Map Reduce (M3R) using GPUs
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(b) Accelerating Multinomial Logistic Regression in Main Memory Map Reduce (M3R) using GPUs
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(c) Accelerating Multiple Linear Regression in Main Memory Map Reduce (M3R) using GPUs
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(d) Accelerating PCA through SVD in Main Memory Map Reduce (M3R) using GPUs

Fig. 2: Accelerating Main Memory Map Reduce (M3R) with GPUs
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(a) Accelerating K-Means Clustering in Spark using GPUs
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(b) Accelerating Multinomial Logistic Regression in Spark using GPUs
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(c) Accelerating Multiple Linear Regression in Spark using GPUs
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Fig. 3: Accelerating Spark with GPUs
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have chosen to vary for each application in our experiments
are typical of real-world scenarios. For K-Means clustering,
the maximum number of centroids used in our experiments
corresponds to 0.1% of the number of data items. Similarly,
many real-world datasets have tens of features.

The results of our experiments are illustrated in Figures 1–
3. The reported values are averages based on 10 runs of
each experiment. Each row of graphs corresponds to one
application, and shows the application execution time, with
and without GPUs, as a function of the size of the analytics
cluster (in terms of the number of EC2 instances) using HMR,
M3R, and Spark frameworks. We also report the speedup in
execution time afforded by GPU acceleration in each case
(denoted by the numbers on top of the bars). The different
graphs in each row correspond to the different parameter
settings we experiment with for each application.

B. Hadoop Map-Reduce (HMR)

The first set of bars (diagonal lines hatch) in Figures 1a–
1d shows our results for execution time under HMR with and
without GPU acceleration for all four applications. We observe
the following trends:
• The performance benefits of using GPUs are clear. Except

in a few cases (Logistic and Linear Regression with two
features), the speedup of using GPUs is at least 2×. Even
in the case of two features, where the amount of computation
is less than other scenarios, the speedup is at least 30% (and
often higher).

• For each application, an increase in the amount of com-
putation increases the speedup as a result of using GPUs.
Note the increase in y-axis range in each row of figures as
we increase the parameter (from left to right). In the case
of K-Means, increasing the number of centroids increases
computation. That is, since every data point’s Euclidean dis-
tance has to be computed against every centroid to find the
nearest centroid, more centroids implies more computation.
Consequently, the speedups are greatest when K is 0.1%
of the data items in the dataset. GPUs are most effective
when the proportion of computation with respect to I/O in
an application is the greatest; and since the computation
of Euclidean distance for a point is independent of the
other points, the scenario with the most centroids results in
the greatest speedup, irrespective of the size of the cluster.
Similarly, for logistic regression, an increase in the number
of dimensions (features) significantly increases computation.
Consequently the speedups are greatest for 20 features. We
see a similar trend in the case of Linear Regression and
PCA through SVD.

• As expected, the speedup increases for all four applications
when the number of available GPUs increases. This is
because we parallelize all possible map, combine and
reduce tasks, and increasing the number of GPUs decreases
the execution time of the application. But, we observe that
the “magnitude of increase” in speedup decreases as the
cluster size increases. This is because, when the size of the
dataset remains constant at 100GB, beyond a certain point,

the proportion of time spent in communication, disk I/O and
shuffling data increases when compared to compute.

• The application with the maximum amount of computation
also has the greatest speedup. GPUs are particularly effec-
tive for matrix computations [12], [20]. Consequently, PCA
(through SVD) has the most speedup among all the ML
applications.

C. Main-Memory Map-Reduce (M3R)

The second set of bars (circles hatch) in Figures 2a–2d
shows our results when accelerating M3R with GPUs for all
four applications. We observe the following trends:
• Except in cases where compute is relatively small (Logistic

and Linear Regression with two features), the speedup is
significant, at least 3×, and often greater than 5×. For the
case of Logistic and Linear Regression with two features, the
speedup (26% – 92%), while modest, may still be beneficial
cost-wise.

• In terms of absolute execution times, we find that M3R is
faster than HMR, even when only CPUs are used. This is
because M3R does not store intermediate results on disk.

• Since the proportion of disk I/O is reduced significantly
in M3R when compared to HMR, the speedups when
accelerating M3R with GPUs are generally higher than the
corresponding scenarios in HMR. We observe that the use
of GPUs speeds up K-Means by up to 16.5×, Logistic
Regression by up to 12.3×, Linear Regression by up to
12.6× and PCA by up to 17.5×.

• Similar to HMR, an increase in the amount of computation
in the workload correspondingly increases the speedup of
M3R. Consequently, we observe the greatest speedup for
K-Means when K=0.1%, with 20 features in logistic and
linear regression, and with 1000 components for PCA.

• Although M3R eliminates a number of overheads from
HMR, any map-reduce implementation involves data shuf-
fling and network communication. When the cluster size
is increased, there comes a point when the time spent on
computation is smaller in proportion to communication cost.
As a result, we observe from Figures 2a–2d that the speedup
of using GPUs decreases and almost flatlines between 12
and 15 EC2 instances.

D. Apache Spark

The third set of bars (squares hatch) in Figures 3a–3d shows
our results for accelerating Apache Spark with GPUs for all
four applications. We observe the following trends:
• The trends for Apache Spark are similar to that of M3R

and HMR, but the magnitude of execution times is much
smaller. In general, a Spark application takes much less time
than either HMR or M3R to execute, because Spark, by
design, eliminates several unnecessary overheads of HMR
while retaining a fault tolerance model similar to HMR.

• The speedups are significantly higher – up to 24.5× for K-
Means, up to ∼24× for Logistic and Linear Regression, and
24.7× for PCA. In fact, the minimum speedup is 87% even
if only logistic and linear regression with two features are
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considered. This is because the I/O and shuffle overheads of
Spark are much lower than that of M3R and HMR, and thus
do not hinder the speedup potential of GPUs. In absolute
terms, Spark with GPUs is able to crunch all the datasets in
less than one hour in all cases; in many cases, in less than
30 minutes.

• The correlation between increased computation and in-
creased speedup remains. The highest speedup for K-Means
occurs in the case of K being 0.1%, logistic and linear re-
gression with 20 features, and PCA with 1000 components.

• Despite the shuffle and I/O overheads being the lowest of
all three frameworks, with a constant dataset size, their
proportion relative to compute increases with an increase
in cluster size. Therefore, speedups also flatline between 12
and 15 EC2 instances.

VI. RELATED WORK

When compared to related work, this is the first paper to ac-
celerate stock implementations of Hadoop Map-Reduce, M3R
and Apache Spark on a multi-node cluster combining CPUs
and GPUs, without modifying the interfaces, implementations
and fault-tolerance properties of these frameworks. This is also
the first paper to demonstrate that significant speedups are
possible by using simple GPU acceleration strategies, without
the need for complicated scheduling that only works for certain
classes of workloads [15].

Mars [12] was the first project to accelerate map-reduce
using GPUs. It reimplements the map-reduce programming
model in C++, without fault tolerance and only works for
a single physical machine. Also, Mars does not use coupled
CPU-GPU execution, instead opting to execute programs on
GPU only. Furthermore, the speedups reported in Mars [12] do
not account for the time taken to load data into/out GPU mem-
ory; and Mars only works when the entire data set fits in GPU
memory. This severely limits its applicability. MapCG [20]
is a MapReduce framework to provide source code level
portability between CPU and GPU. Programmers only need to
write one version of code that can be compiled and executed
on either CPUs or GPUs efficiently without modification.
Similar to Mars, MapCG is also not distributed and is only
applicable to single-machine workloads. The Phoenix [29]
and its successor Phoenix++ [32] platforms from Stanford are
also non-distributed, but target the implementation of map-
reduce for multi-core CPUs and shared-memory multiproces-
sors (SMPs and ccNUMAs). Both are implemented in C++,
and follow a design vastly different from that of HMR, because
they target different hardware platforms. They also do not
handle fault tolerance. CellMR [28] is an efficient and scalable
implementation of the MapReduce framework for asymmetric
Cell-based clusters. The novelty of CellMR lies in its adoption
of a streaming approach to supporting MapReduce, and its
adaptive resource scheduling schemes: Instead of allocating
workloads to the components once, CellMR slices the input
into small work units and streams them to the asymmetric
nodes for efficient processing. Moreover, CellMR removes I/O
bottlenecks by design, using a number of techniques, such as

double-buffering and asynchronous I/O, to maximize cluster
performance. The Cell processor, however, is not a GPU and
has a different design from conventional GPUs – Cell is is a
microprocessor intended as a hybrid of conventional desktop
processors (such as the Athlon 64, and Core 2 families)
and more specialized high-performance processors, such as
the NVIDIA and ATI graphics-processors. [15] is the first
work to consider coupled CPU-GPU execution for map-reduce
and implements sophisticated scheduling, load balancing and
pipelining schemes. However, it is neither distributed nor fault-
tolerance. Importantly, none of the systems mentioned above
has been evaluated on more than 1GB of data.

Dandelion [30] is a recent system that provides a unified
programming model for heterogeneous systems that span
diverse execution contexts including CPUs, GPUs, FPGAs,
and the cloud. It adopts the .NET LINQ approach, integrating
data-parallel operators into general purpose programming lan-
guages such as C# and F#. It therefore provides an expressive
data model and native language integration for user-defined
functions, enabling programmers to write applications using
standard high-level languages and development tools. Dande-
lion, as mentioned, targets a different programming model than
the three frameworks in this paper. Our eventual goal is to
develop such an open-source infrastructure for Hadoop Map-
Reduce and Spark using IBM’s upcoming Lime compiler [11].
HeteroSpark [24] is a recent framework for accelerating Spark
applications by providing Java RMI interfaces for integration
with GPUs. Its overheads are much higher than our approach
due to the use of RMI for each GPU offloading task, and
also because it does not make any attempt to avoid non-
coalesced memory accesses or use GPU memory bandwidth
and hierarchy efficiently.

TensorFlow [1] is an open-source software library for
dataflow programming across a range of tasks – it helps in
improving the performance of numerical computation and neu-
ral networks and generating data flow as graphs – consisting
of nodes denoting operations and edges denoting data arrays.
Apache Spark/Hadoop Map Reduce are generic data process-
ing frameworks, whereas TensorFlow is used for custom deep
learning and neural network design. TensorFlow requires the
user to redefine the data flow graph when the number of nodes
changes; Spark and HMR, on the other hand, automatically
adapt the execution to the number of nodes.

VII. CONCLUSION

In this paper, we examine the extent to which iterative
ML algorithms implemented in Hadoop Map-Reduce, Spark
and IBM Main Memory Map-Reduce can be accelerated
with GPUs. We demonstrate that employing simple GPU
programming practices, like using GPU memory effectively
(both with respect to the memory hierarchy and by avoiding
non-coalesced memory accesses) and using atomic counters to
coordinate access to the GPU, can provide substantial perfor-
mance speedups. We also correlate performance improvements
with parameters of the iterative ML applications that increase
the amount of computation, and with the size of the cluster.

9



We observe that maximum GPU acceleration occurs in a
framework like Apache Spark with minimal disk I/O and
network communication.

Notably, we have been able to demonstrate said performance
gains using “basic” (and relatively inexpensive) GPUs. We
expect, and have observed, performance to further increase on
more expensive GPUs, such as the K40, K80, P100 and V100.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), pages 265–283, 2016.

[2] Alex Chen, Justin Basilico, and Xavier Amatriain. Distributed Neural
Networks with GPUs in the AWS Cloud, 2014. http://techblog.netflix.
com/2014/02/distributed-neural-networks-with-gpus.html.

[3] Amazon Web Services. Elastic Map Reduce, 2018. https://aws.amazon.
com/emr/.

[4] Amazon Web Services Inc. EC2 Instance Types : GPU G2, 2015. https:
//aws.amazon.com/ec2/instance-types/.

[5] AMPLab UC Berkeley. MLbase: Distributed Machine Learning Made
Easy , 2018. http://mlbase.org/.

[6] Apache Hadoop. Map Reduce, 2018. https://hadoop.apache.org/
docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html.

[7] Apache Hadoop. Map-Reduce Tutorial, 2018. https://hadoop.apache.org/
docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html.

[8] Apache Hadoop Project. YARN : Yet Another Resource Ne-
gotiator, 2018. https://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[9] Apache Spark. The MLLib Scalable Machine Learning Library , 2018.
https://spark.apache.org/mllib/.

[10] David Arthur and Sergei Vassilvitskii. K-means++: The advantages
of careful seeding. In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’07, pages 1027–
1035, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics.

[11] Auerbach, Joshua and Bacon, David F. and Cheng, Perry and Rabbah,
Rodric. Lime: A Java-compatible and Synthesizable Language for
Heterogeneous Architectures. In OOPSLA ’10, 2010.

[12] B. He and W. Fang and Q. Luo, Qiong N.K. Govindaraju and T. Wang.
Mars: A MapReduce Framework on Graphics Processors. In PACT ’08,
2008.

[13] Christopher M. Bishop. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer-Verlag, Berlin, Heidelberg,
2006.

[14] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: An object-oriented approach to non-uniform cluster
computing. In Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’05, pages 519–538, New York, NY, USA, 2005.
ACM.

[15] Linchuan Chen, Xin Huo, and Gagan Agrawal. Accelerating mapreduce
on a coupled cpu-gpu architecture. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 25:1–25:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[16] Contributors to Apache Mahout. Apache Mahout , 2018. https://mahout.
apache.org/.

[17] CoreOS. The ETCD Key Value Store, 2018. https://coreos.com/etcd/.
[18] Databricks Inc. Apache Spark, 2018. https://spark.apache.org/.
[19] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data

processing on large clusters. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume
6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Associ-
ation.

[20] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and
Haibo Lin. Mapcg: Writing parallel program portable between cpu and
gpu. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’10, pages 217–226,
New York, NY, USA, 2010. ACM.

[21] JCUDA.org . Java Bindings for CUDA, 2018. https://github.com/jcuda/
jcuda-main.

[22] Joseph Bradley, Tim Hunter and Yandong Mao . GPU Acceler-
ation in Databricks , 2016. https://databricks.com/blog/2016/10/27/
gpu-acceleration-in-databricks.html.

[23] Kubernetes Community. Production Grade Container Orchestration,
2018. https://kubernetes.io/.

[24] Peilong Li, Yan Luo, Ning Zhang, and Yu Cao. Heterospark: A
heterogeneous cpu/gpu spark platform for machine learning algorithms.
In 2015 IEEE International Conference on Networking, Architecture and
Storage (NAS), pages 347–348, Aug 2015.

[25] Mesosphere Inc. Mesos: A Distributed Systems Kernel, 2018. http:
//mesos.apache.org/.

[26] NVidia Inc. GPU Machine Learning Applications, 2015. http://www.
nvidia.com/object/machine-learning.html (Note: Includes links to several
research papers and technical blogs summarizing interesting results).

[27] NVIDIA Inc. The CUDA Parallel Computing Platform, 2018. https:
//developer.nvidia.com/cuda-zone.

[28] M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos. Cellmr:
A framework for supporting mapreduce on asymmetric cell-based clus-
ters. In 2009 IEEE International Symposium on Parallel Distributed
Processing, pages 1–12, May 2009.

[29] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. Evaluating mapreduce for multi-core and multi-
processor systems. In Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, HPCA ’07,
pages 13–24, Washington, DC, USA, 2007. IEEE Computer Society.

[30] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and
Dennis Fetterly. Dandelion: A compiler and runtime for heterogeneous
systems. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 49–68, New York, NY,
USA, 2013. ACM.

[31] Avraham Shinnar, David Cunningham, Vijay Saraswat, and Benjamin
Herta. M3r: Increased performance for in-memory hadoop jobs. Proc.
VLDB Endow., 5(12):1736–1747, August 2012.

[32] Justin Talbot, Richard M. Yoo, and Christos Kozyrakis. Phoenix++:
Modular mapreduce for shared-memory systems. In Proceedings of the
Second International Workshop on MapReduce and Its Applications,
MapReduce ’11, pages 9–16, New York, NY, USA, 2011. ACM.

[33] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), pages 15–28, San Jose, CA, 2012. USENIX.

10

http://techblog.netflix.com/2014/02/distributed-neural-networks-with-gpus.html
http://techblog.netflix.com/2014/02/distributed-neural-networks-with-gpus.html
https://aws.amazon.com/emr/ 
https://aws.amazon.com/emr/ 
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://mlbase.org/
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html 
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html 
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html 
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html 
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html 
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html 
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://spark.apache.org/mllib/ 
https://mahout.apache.org/ 
https://mahout.apache.org/ 
https://coreos.com/etcd/
https://spark.apache.org/
https://github.com/jcuda/jcuda-main
https://github.com/jcuda/jcuda-main
https://databricks.com/blog/2016/10/27/gpu-acceleration-in-databricks.html 
https://databricks.com/blog/2016/10/27/gpu-acceleration-in-databricks.html 
https://kubernetes.io/ 
http://mesos.apache.org/
http://mesos.apache.org/
http://www.nvidia.com/object/machine-learning.html
http://www.nvidia.com/object/machine-learning.html
https://developer.nvidia.com/cuda-zone 
https://developer.nvidia.com/cuda-zone 

