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Abstract—The cloud is not transparent. Users of cloud comput-
ing cannot control or monitor important information about their
VMs or services, such as placement, true resource allocation,
virtualization overhead, etc. Likewise, cloud providers cannot
obtain important information about their users’ deployment such
as the application model, the role of each VM, etc. While such
information is not required to be revealed, we claim that this
lack of information prevents users from fully understanding
their resource availability, and limits the feasibility of various
performance management solutions. We refer to this lack of
information as the “Unobservability” problem.

In this paper, we describe the unobservability problem and
present various use cases from our experience managing a
medium-scale cloud deployment with several hundred VMs and
experiments on EC2 that highlight the severe impact of unobserv-
ability on performance, and the limitations it imposes on users
and cloud providers. We show that, interestingly, unobservability
often diminishes the potential benefits of cloud computing. To
address unobservability, we present and evaluate a practical
solution to the unobservability problem that reveals important
unobservable information without requiring any instrumentation
or changes to the cloud.

I. INTRODUCTION

Cloud computing offers several benefits over traditional
physical deployments such as low cost, elasticity, high avail-
ability, and access to useful services such as automated de-
ployment and monitoring. Importantly, the ability to pay-as-
you-go makes it lucrative for small and medium businesses to
economically deploy their dynamic applications in the cloud.
However, cloud computing does have its shortcomings.

In this paper, we focus on the “unobservability” problem
which relates to the inability of those involved in cloud
computing, such as Cloud Service Providers (CSPs) and users,
from observing each others’ configuration and settings. In
other words, we focus on the lack of transparency in the
cloud. The unobservability problem typically manifests itself
by restricting the information available to users and CSPs.
For example, cloud users typically do not know the identity
of the physical servers that are hosting their VMs or the
specifics of the virtualization technology used by the hosts.
Likewise, CSPs are often not aware of the services and
software employed by the cloud users in their VMs or the
role of each VM in the user’s application deployment.

A good example of challenges related to unobservability
in clouds is running applications in the IBM Bluemix [1]
environment. IBM Bluemix is a cloud application development
platform allowing users to rapidly develop, test, and publish
cloud applications. It is powered by the IBM IaaS Cloud [2]
and also offers base IaaS services such as OpenStack-based
VMs [3]. Because of the well established cloud layering

principles, applications written in Bluemix do not have insight
into infrastructure specifics on which they execute, such as
the identity and configuration of the physical machine on
which they are hosted and the resource contention at the host.
Obtaining such insights and information could help developers
predict and optimize the performance of their applications.

Note that the cloud is not required to be transparent. In
fact, by design, the cloud is expected to be opaque to some
extent. The opaque nature of the cloud allows CSPs to offer
low-cost services to users by independently managing VM
placement and resource allocation as aggressively as needed
without revealing their decision logic. Likewise, users do
not have to reveal any information about their intended use
of cloud resources, thus protecting them from CSPs and
other users. However, this lack of transparency limits the full
potential of the cloud. We present various examples using
public and private clouds that highlight the severity and spread
of unobservability in clouds. We find that, interestingly, unob-
servability often hampers the many benefits of cloud computing
such as elasticity and availability.

While the unobservability problem is more widespread in
public clouds, it also affects private clouds. Users in a managed
dedicated cloud, such as IBM’s Cloud OpenStack Services [4]
which runs on SoftLayer [2] Bare Metal Servers, typically
cannot control their VM placement and scheduling. Of course,
the private cloud administrator can expose such functionality
to specific users, if needed. Likewise, the CSP cannot observe
all user operations that are being performed within the VMs.
Our experience managing a medium-scale private OpenStack-
deployed cloud (with KVM hypervisors) has revealed several
cases of unobservability that significantly impact performance.

We assert that addressing, even partially, the unobserv-
ability problem can significantly improve cloud adoption
among users. As a concrete example, consider the autoscaling
functionality that helps users leverage the elastic nature of
cloud computing. Many CSPs today, including Amazon [5],
RightScale [6], and cloud software solutions such as Open-
Stack [7], offer rule-based solutions (not necessarily for free)
to users for autoscaling their deployments. Such rule-based
autoscaling solutions place the burden of determining the
scaling thresholds and rules on the users as the CSPs do not
have any information about the users’ deployments. If the
unobservability problem can be addressed, however, then CSPs
can offer a fully automated autoscaling functionality to users.

Unfortunately, the unobservability problem is difficult to
address because of the nature of clouds. For example, while
instrumenting user VMs can improve visibility for CSPs, it
is not desirable, especially for privacy reasons. Fortunately, it



Fig. 1. Abstract cloud model with the three distinct entities.

is possible to infer some missing information by analyzing
the performance of cloud-deployed VMs. We describe one
such inference solution to the unobservability problem in this
paper, and employ it to enable CSP-driven autoscaling of
user applications. Importantly, our inference solution does not
require any changes to the cloud platform or user deployment.

The rest of the paper is organized as follows. We describe
the unobservability problem in detail in Section II. We then
present, in Sections III, IV, V, and VI, several use cases
based on our experience with a medium-scale OpenStack-
deployed cloud platform (hosting several hundred VMs) and
our experiments on EC2 that highlight the unobservability
problem in public and private clouds. We then present a po-
tential solution to the unobservability problem in Section VII
based on inference techniques that requires no changes to
the cloud platform or application. We discuss related work
in Section VIII, and present our conclusions in Section IX.

II. THE UNOBSERVABILITY PROBLEM

The unobservability problem refers to the lack of visibility
and control among the entities in a cloud computing environ-
ment. Consider the cloud deployment example in Figure 1.
Here, there are three distinct entities that interact with the
cloud. The first is the CSP, for example, AWS [8], Microsoft
Azure [9], and Google Cloud Platform [10]. The second is the
cloud user, for example, Netflix [11] and BestBuy [12], who
purchase services, such as VMs or storage, from the CSPs.
The third is the end user of these customers, for example,
Netflix customers, who contract various cloud-based services
through cloud users. Note that end users could also directly
purchase services from CSPs. Based on this model, there are
at least four different types of unobservability problems that
can be identified:

• (Type I) Cloud user-cloud user: Cloud users whose
deployments are co-located on the same physical machines
are typically unaware of each others’ resource consumption

Fig. 2. Performance variation on EC2. Public cloud VMs exhibit significant
variation in performance, probably due to resource contention from (unob-
servable) colocated VMs.

or application model. This unobservability often leads to
physical resource contention and performance interference,
and is an important research topic in itself [13], [14], [15].

• (Type II) Cloud user-CSP: In this case, the cloud user
cannot observe the configuration and control logic used by
the CSP. For instance, the cloud user is typically unaware
of (and has limited control on) the placement of her VMs
on the physical machines in the cloud, is unaware of the
exact amount of resources allocated to her VMs at all times
(due to contention), and is also unaware of the decision
logic that guides placement and allocation of new VMs.

• (Type III) CSP-Cloud user: The CSP typically does not
encroach into the cloud user’s deployment. For example,
the CSP cannot observe the software and services employed
by the user, or their configuration settings. However, the
CSP can monitor a few parameters, such as resource
utilization. The lack of transparency in this case limits
the assistance that the CSP can provide to the cloud
user (see Section VI-A). Note that Type III and Type II
unobservability occur simultaneously in the same scenario.

• (Type IV) End user-cloud user: End users who employ
services offered by cloud users face the same unobservabil-
ity problems as experienced by cloud users in Type II. That
is, the end user cannot observe the model and deployment
of the cloud user. Thus, the end user cannot determine how
the cloud service will respond in case of a load spike or
a gradual increase in traffic. Likewise, the end user cannot
ascertain if and when the service will be unavailable or slow
due to, for instance, maintenance or resource contention.

In the following sections, we present several use cases that
highlight the Type I, Type II, and Type III unobservability
problems. A good example of Type IV unobservability is
discussed in Deng et al. [16].

III. PERFORMANCE VARIATION (TYPE I)

In this section, we present our empirical results illustrating
the variability in performance experienced by public cloud
VMs. We set up 15 micro instances on EC2 [17], 5 each on



Fig. 3. When VM network traffic is high, the hypervisor vhost processes
consume significant CPU, as shown in the top output above, thereby affecting
the CPU capacity available to the VMs.

the N.Virginia, Oregon, and N.California regions. We then run
a CPU-bound microbenchmark repeatedly on all 15 VMs over
the span of a few days, and record execution times.

Figure 2 shows the various percentiles of execution times
recorded for EC2, broken down by region. The percentage
values above the bars represent the increase in execution
time relative to the 50%ile (median) value. We see that the
performance varies significantly - the top 5% execution times
are a factor 1.5 larger than the median, and the top 1% are
almost a factor 3 larger than the median. Ideally, there should
be no difference in execution time for various percentiles.
However, even if we allow for some minor variations, the sub-
stantial difference in execution times for the higher percentiles
cannot be easily explained. We attribute this variation in
performance to possible resource contention due to colocated
instances. Similar performance degradation has been reported
in prior work [15], [18], [14]. These are examples of Type I
unobservability (cloud user-cloud user).

IV. VIRTUALIZATION OVERHEAD (TYPE II)

We now illustrate several examples of Type II unobserv-
ability (cloud user-CSP) by analyzing the overhead of vir-
tualization and its non-trivial effects on VM performance
based on our experience managing a multi-node OpenStack
deployment. For this case study, we use our SoftLayer-hosted
OpenStack deployment with 24 compute nodes (KVM hy-
pervisors) named kvm001-kvm024 and 3 controllers named
ops001-ops003. Each compute node has 32 Intel(R) Xeon(R)
CPU E5-2650 v2 (2.60GHz) and 128GB RAM.

A. Networking overhead

The network traffic created by VMs can impact the CPU
availability of the compute nodes in a non-trivial manner.
In order to examine the effect of VM network traffic on
compute node resources, we employ the network-intensive
Netperf benchmark [19] on 375 client and server pairs, for a
total of 750 VMs (each VM is allocated 1 CPU) deployed over
time in batches. With this high network load, in addition to
the qemu-kvm processes, there are additional corresponding
vhost processes running on the compute nodes that handle
(among other things) the virtual network traffic, and use high

Fig. 4. High network traffic at the hypervisor due to image transfers (shown
above) can significantly slowdown other hypervisor operations, thus affecting
the performance of hosted VMs.

Fig. 5. I/O-intensive applications running on the VMs can overwhelm the
hypervisor and affect cloud operations, such as delaying the launch of new
VMs as depicted above.

CPU as shown in Figure 3. Due to the high vhost overhead,
each VM effectively uses 2 CPUs (1 for VM, 1 for vhost).
This dynamic additional CPU usage is not accounted for by the
scheduler, resulting in possible over-allocation of resources.
Due to Type II unobservability, the future VM users on these
compute nodes will receive compromised CPU resources.
Note that existing VMs also experience some performance
degradation due to the CPU contention at the compute nodes.

As another example, consider the case where multiple VMs
are simultaneously booted. Before booting a VM with the
specified image, the image must be copied from the repository
by the controller to the compute node hosting the VM. In this
case, the controller is bottlenecked when the glance-api
process is busy copying images (especially large images) from
glance to the compute nodes during cold start. We illus-
trate this example by simultaneously booting 30 VMs whose
(30GB) images were pre-loaded with the DayTrader [20]
benchmark application. Figure 4 shows the high network traffic
transmitted over eth1 from one of the controller nodes to the
compute nodes. Note that each of the 3 controllers copies the
images to 8 compute nodes, for a total of 24 compute nodes.
The cold start (for simultaneous boot) takes anywhere between
20 minutes for the start of the first VM instance to 45 minutes
for the start of the last VM instance. During this entire time,
the controller is network bottlenecked, significantly slowing
down any other tasks that the controller is responsible for,
such as the OpenStack API services and schedulers.

B. I/O overhead

The I/O activity of VMs can likewise affect the compute
nodes hosting the VMs (in addition to affecting colocated



(a) I/O transfer rate. (b) CPU usage.

Fig. 6. I/O overhead due to hypervisor activities can lead to wasted CPU cycles. Figure 6(a) shows the high I/O activity at the hypervisor due to the
simultaneous provisioning of several VMs, resulting in under-utilization of the CPU as depicted by Figure 6(b).

VMs). In order to analyze I/O overhead, we employ the
Filebench benchmark [21] on several VMs. We sequentially
launch 220 VMs, and run the benchmark on the provisioned
VMs. The iowaits on the compute nodes when running
Filebench overwhelm the server, delaying the launch of new
VMs. Figure 5 shows the provisioning time, in order, of all
220 VMs. We see that the newer VMs (on the right) take much
longer to boot, almost a factor 5 longer than the first few VMs,
due to the server being overwhelmed by iowaits. The “VM
ready” indicates the time when OpenStack considers the VM
to be ready, and “Network ready” indicates the time when we
can successfully ssh into the VM. The delay in launching new
VMs is caused by the overhead involved in servicing multiple
VM I/O requests (Filebench) simultaneously.

As another example, consider the case where multiple VMs
are being provisioned on a compute node. We simultaneously
boot 30 VMs on a single node using a RedHat 6.5 image.
While the image is being expanded to the 60GB instance
disk size, multiple (interleaved) I/O writes to the physical disk
occur simultaneously. Figures 6(a) and 6(b) show the aggregate
I/O write rate and the CPU usage at the compute node during
the provisioning of the 30 VMs. We see that the node spends
a significant fraction of time waiting for I/Os to complete.
During this time, the CPU is under-utilized. The VMs take as
much as 30mins to boot because of the slow I/O. By contrast,
a single (isolated) RedHat image VM boot takes only 70s.

C. Overhead of controller processes

In OpenStack, cloud management processes such as
the openstack-nova-compute, libvirt daemon, and
neutron-dhcp-agent may be installed and running on
the compute nodes. The scheduler does not account for their
(phantom) resource usage, and this overhead can impair the
resources allocated to the VMs deployed on these nodes.

V. LIMITED CONTROL OVER VM PLACEMENT AND
RESOURCE ALLOCATION (TYPE II)

The private cloud is not immune to the unobservability
problem. Common examples of lack of transparency in private
clouds include VM placement logic and resource allocation,
which we discuss below. In general, private clouds can be just

as vulnerable to unobservability problems as public clouds.
However, the private cloud can have more transparency as
the users and cloud administrator(s) are typically from the
same or affiliated organizations. In our experience managing
an OpenStack-based private cloud at IBM, we find that there
are some significant unobservability problems, specifically of
Type II (cloud user-CSP), that affect private clouds.

A. VM placement

OpenStack users can launch new VMs by issuing nova
boot commands. Unfortunately, the VM placement on phys-
ical nodes cannot be controlled by users. The placement is
either dictated by the OpenStack scheduler logic (round-robin,
by default), or is manually enforced by the administrator
(via OpenStack directives such as HostAggregates and
AvailabilityZones). While the default round-robin pol-
icy helps balance load among the available compute nodes,
it can have undesirable performance effects for users. For
instance, the round-robin policy does not help users who wish
to launch multiple VMs on the same compute node to reduce
network latency. Likewise, users who wish to launch additional
VMs on the same compute nodes as their previous VMs cannot
do so unless they know exactly which compute node their
previous VMs were on. Because of Type II unobservability,
such users cannot optimize their placement.

Consider the concrete example where we wish to provision
multiple DayTrader application VMs sequentially on a private
cloud. For this, we use our 30GB custom DayTrader image.
The first VM that we launch takes about 4 minutes to boot
because of the cold start required to copy the 30GB image
from the glance repository to the target compute node. Now,
if successive VMs are launched on this same compute node
(which already has a copy of the image), the boot time is
only about 40 seconds. However, because of the default round-
robin scheduling policy, our successive VMs are launched
on new compute nodes, thus requiring the full 4 minutes of
provisioning time each.

B. Resource allocation

Cloud users can typically choose their instance size from
a selection of pre-configured “flavors”. These flavors describe



the number of CPU cores, the amount of memory, and the
disk size that the VM will have. Unfortunately, VMs with
the same flavor can have very different configurations due
to the difference in hardware specifications of the underlying
compute nodes. For example, our private cloud consists of two
different types of compute nodes: one with 4 cores at 3.4GHz,
and the other with 8 cores at 2GHz. When a user launches a
2-core flavor VM, then depending on the scheduling logic, the
VM might be launched on the 3.4GHz node or the 2GHz node.
Thus, the configuration (and performance) of the VM will be
different depending on the compute node that it is launched
on. Consider another example where we have only one type of
compute node, but the node has hyper-threading which enables
8 threads for 4 cores. If a user requests a 1-core flavor VM,
then depending on the availability, the VM might be launched
on a hyperthreaded core that is being shared (two threads on a
core) by other VMs. Thus, configuration can be affected even
if the cloud has homogeneous hypervisors.

VI. INEFFICIENT MANAGEMENT SOLUTIONS (TYPE III)

We now present more complex case studies that highlight
the limitations imposed by unobservability on management
solutions. Such unobservability problems significantly impact
the efficacy of performance management solutions on cloud
deployments. We present two such scenarios, namely cloud
autoscaling and virtual desktop services, in the following
subsections. We then present a solution in Section VII that
can help address some of the challenges that unobservability
poses for management solutions.

A. Cloud autoscaling

Autoscaling is a functionality that automatically scales (up
or down) an application deployment in response to variations
in workload so as to meet user-specified performance targets.
Cloud users are typically interested in autoscaling their cloud-
deployed applications while minimizing their VM rental costs.
However, due to Type II unobservability (cloud user-CSP),
new VMs launched by the users might not provide the
expected level of performance (see Sections V-A and V-B).
Further, determining the autoscaling rules and thresholds is a
challenging task [22], [23] that requires a deep understanding
of the application and the necessary performance modeling
expertise to develop the scaling rules. Small and medium
businesses and casual cloud users typically lack the resources
required to overcome these hurdles. By contrast, the CSP is
ideally suited to schedule and place new VMs on the user’s
behalf as it can monitor the resource consumption of all hy-
pervisors and typically employs several system administrators
to manage resource allocation. Unfortunately, due to Type III
unobservability (CSP-cloud user), the CSP cannot determine
when to scale the user’s deployment [24], [25]. Consequently,
CSP-offered autoscaling solutions today require the user to
determine the scaling thresholds and rules, thus placing the
burden of developing the scaling logic on the users.

Clearly, in this scenario, even a limited amount of infor-
mation sharing between the users and the CSP can greatly
improve the efficacy of cloud autoscaling. In Section VII we
present a solution that leverages limited information sharing
to improve the efficacy of cloud autoscaling without requiring
any significant changes to the cloud or user application.

B. Virtual desktop service

Consider a virtual desktop service, such as VMware Hori-
zon [26]. This service allows end-users to connect to VMs
running desktop operating systems on servers in a remote data
center. The only device local to the user is a “thin-client” - an
inexpensive machine with limited computing power designed
to render screen images received from the desktop server and
forward keyboard and mouse events to the server. The device
provides GUI interaction but does not necessarily perform any
end-user computing. The data exchange between the “thin-
client” and data center is facilitated using remoting protocols
such as VNC.

Since the actual computation happens on commodity servers
in the remote data center, the allocated virtual resources can
be reused by end-users for other tasks when desktop users are
not active. This results in increased average data center uti-
lization, thus contributing to reduction of energy consumption
and maintenance costs. However, reusing allocated resources
requires direct access to underlying hypervisors. In a private
cloud, the resource usage for each VM can be obtained
directly from the hypervisor, and any configuration (relative
VM shares) and operation changes (power and reset) to the
VMs can be relayed via available APIs. By contrast, in a
public cloud environment, the CSP assumes all responsibil-
ity for allocation of resources, placement of the VMs, and
workload management of the physical servers. Deploying a
virtualization-aware solution such as the one discussed above
is not feasible in such opaque environments. Either the solution
must rely on the CSP’s physical resource management or the
CSP must incorporate solution space knowledge and informa-
tion in its management decisions. The latter is not feasible
because of Type III unobservability.

VII. POSSIBLE SOLUTION: INFERENCE

We believe that the unobservability in clouds is largely
caused by business needs. We argue that limited sharing of
information in clouds across different entities will not jeopar-
dize business interests. Instead, such sharing of information
can provide collective benefits to all entities. This limited
sharing can be exploited to develop, for instance, solutions for
allocation and management of cloud resources, as we show in
Section VII-B.

A. Inference

In order to enable sharing of information without requiring
any changes at the user or CSP level, we propose using infer-
ence techniques. Inference techniques, such as those based on



machine learning or statistical methods, estimate unobservable
system parameters based on the available limited information.
For example, by examining the network latency of a VM, as
reported by ping, we can deduce the location of the VM in
a geographically distributed public cloud such as AWS [8].
Likewise, a change in device throughput or execution time as
experienced by a cloud user can provide some information
about the load on colocated VMs.

B. Evaluation

1) Deducing VM location: We first start with a simple
evaluation. Consider a CSP that allows users to launch new
VMs. If the CSP employs several geographically distributed
data centers to provide capacity for hosting VMs, then the
location of a newly launched VM might depend on the
scheduling policy used by the CSP, which is not known to
the user due to Type II unobservability (cloud user-CSP).
However, by examining the ping times to the VM, one can
infer the possible location of the physical server hosting the
VM. For example, our experiments on Amazon EC2 [17] show
that a ping time in excess of 200ms to a VM from New York
suggests that the VM is located in the Asia Pacific region of
EC2 (Tokyo, Sydney, or Singapore).

2) Inferring the bottleneck in a distributed system: Con-
sider a private cloud where the cloud administrator is trying
to debug the performance of a user’s distributed cloud appli-
cation. In this case, the administrator cannot directly monitor
the user’s deployment due to Type III unobservability (CSP-
cloud user). However, if the user is willing to provide some
information, then the CSP can infer the bottleneck VM.

We evaluate this inference approach on a small-scale cloud
deployment. As a cloud user, we set up a popular web
application benchmark, RUBiS [27] (Apache + Tomcat +
MySQL). RUBiS supports multiple request classes, such as
browse, store, and home (index.html). Now, as the CSP, we
use a queueing network model with missing parameters (such
as per-tier service times and end-to-end network delays) to
model RUBiS. Here, the parameters are unobservable from the
CSP’s perspective (Type III unobservability), but are known
to the user as the user can easily benchmark her application.
We employ a workload generator to create varying load for
RUBiS and collect CPU utilization, per-class request rate,
and per-class response time. We allow the CSP to observe
these values; however, the CSP cannot observe per-tier service
times and network delays (limited information sharing). In
order to infer the missing parameters, we (CSP) use a Kalman
filter, a popular online estimation tool. Our inference approach
estimates the service times for the browse request at the
Apache frontend web tier, the Tomcat application tier, and
the MySQL database tier to be 1.3ms, 5.7ms, and 1.1ms,
respectively. These rightly suggest that the browse requests
are bottlenecked at the application tier. We validate this
finding by directly accessing the application and individually
scaling each of the three tiers in response to increased load

to determine the bottleneck tier. For the store requests, our
estimated service times for the three tiers are 2.3ms, 3.1ms,
and 16.9ms, respectively. These rightly suggest that the store
requests are bottlenecked at the database tier. Note that the
bottleneck tier for an application cannot simply be detected by
looking at the CPU utilization, since the utilization at a tier is
a result of multiple request classes. Further, the database tier
exhibits performance degradation even at a moderately low
CPU utilization of 15%, as in our experiments.

Using our inference approach, we also estimate the network
delays for each of the request types. Our estimates for the
end-to-end network delays for the browse and store request
classes are 14.1ms and 0.5ms. The browse request involves
multiple (GET) queries between the application tier VM and
the database tier VM, both of which are hosted on different
hypervisors. Thus, the end-to-end network delay is significant.
The store request involves a single (PUT) query between the
application tier VM and the database tier VM, resulting in
a lower delay. The fact that browse requests in the RUBiS
application are bottlenecked at the application tier and incur
significant network delays was also observed by previous
studies (for example, Malkowski et al. [28]) that employed
offline benchmarking.

The above is an example of how inference can be used
to address unobservability by providing limited information
sharing. In this case, the user allowed the CSP to only observe
end-to-end performance to infer the bottleneck tier.

3) CSP-managed autoscaling: Due to Type II unobservabil-
ity (cloud user-CSP), autoscaling is typically left to the users,
as discussed in Section VI-A. However, inference, with the
help of limited information sharing, enables the CSP to control
and manage the autoscaling of a user’s cloud deployment. In
our inference approach above, the CSP can infer the bottleneck
tier and estimate the network delays and per-tier service
times for a user-deployed cloud application. If the arrival
rate to the user’s cloud application increases, the CSP can
leverage the inferred information to suggest scale-out of the
bottleneck tier to maintain acceptable response times. Such
a service (CSP-managed autoscaling) can then be offered to
cloud users for an additional price. We employ this approach
to successfully autoscale the application tier when the browse
workload intensity increases under RUBiS.

C. Extensions

We now formalize our proposed inference approach. Fig-
ure 7 shows a solution architecture that leverages information
provided by the user (application logic, performance) and the
CSP (cloud infrastructure) for dynamic management of cloud
resources to conform to user-specified performance SLAs.
Whereas application performance can be concretely measured
in terms of standard metrics, like throughput, average and/or
percentile end-to-end delay, etc, the application logic is a
loosely defined term. Depending on the type of application
and the willingness of the user to share information, appli-



Fig. 7. Solution architecture for CSP-managed autoscaling of user applica-
tions in the cloud via our inference approach and limited information sharing.

cation logic can have different meanings. For transactional
workloads, the application logic can include the different tiers
and their interconnection topology, and the different service
classes and their flow within the tiers. In this case, multi-class
queueing networks can effectively model the application and
its end-to-end performance [29], [30]. For other workloads,
such as data analytics, application logic may include only per-
tier delays. In this case, the application can be modeled as
a black-box. Statistical [31], [32], [33] and machine learn-
ing [34], [35], [36], [37] techniques can then be employed for
application performance modeling.

VIII. RELATED WORK

There has been some very recent work that has focused on
the unobservability problem. Kocsis et al. [38] propose run-
ning light-weight benchmarks in the background to estimate
resource availability and measure platform characteristics from
a user’s perspective to address Type I unobservability (cloud
user-cloud user). While this approach helps mitigate unobserv-
ability, it incurs overhead due to the additional load created
by the benchmarks, and only provides limited (sampled)
information. IC2 [39] is a user-level solution that addresses
Type I unobservability (cloud user-cloud user). IC2 monitors
application performance periodically to detect interference.
When interference is detected, the application parameters are
reconfigured to optimize performance based on the monitored
level and type of interference. There are also a lot of other
related works [15], [18], [14], [40], [41], [42], [43], [44] that
focus on the unobservability problem from the perspective of
a (co-located) cloud user (Type I) by measuring performance
interference in cloud instances.

DeepDive [13] proposes to understand user application
behavior in clouds by cloning the application setup (via
JustRunIt [45]) in a sandboxed environment. DeepDive and
JustRunIt focus on the unobservability problem from the
CSP’s perspective (Type III). The JustRunIt framework’s pri-
mary limitation is the requirement of an intrusive proxy to
replicate incoming user requests. Such an approach might

not be feasible for customers, such as financial companies,
who wish to protect their workloads. Stay-Away [46] regulates
the performance of a time-sensitive application by proactively
throttling other co-located batch applications. However, the
authors assume that the class of the application running on
a user VM is known, and that the VM performance can be
throttled. Unfortunately, Type III unobservability (CSP-cloud
user) makes it difficult to obtain this information from the
users, unless limited information sharing is assumed.

Deng et al. [16] consider the unobservability problem from
the perspective of an end user (Type IV) who wants to make
use of an online cloud-based service but cannot assess the
robustness of the service due to unobservability. The authors
assume a simple linear model for application response time
and employ statistical methods to derive the coefficients of
the model.

Solutions to the unobservability problem typically rely on
modeling and inference. Nathuji et al. [15] use a MIMO
feedback approach to create an online model of the application
using its VM resource allocations as input and application per-
formance as output. Pesto [47] employs a black-box approach
combined with analytical queueing results to estimate the I/O
needs of an application. Our proposed inference solution in
Section VII also relies on modeling to estimate unobservable
system parameters to aid CSPs and cloud users.

IX. CONCLUSION

In this paper, we present the unobservability problem in
clouds and discuss its many facets. We present empirical case
studies based on our experience managing a medium-scale
cloud deployment at IBM consisting of several hundred VMs
and our experiments on EC2. These case studies highlight the
many issues with unobservability that users often either ignore
or take for granted. We assert that at least some of these prob-
lems can be addressed by techniques that infer unobservable
parameters in public and private cloud deployments.

An overarching goal of this paper is to make the case for
(some form of) transparency in public clouds. We believe
that there are cases where transparency helps both the users
and the CSP. For example, by providing some information
about the application setup to CSPs, the users can benefit
from better performance since the CSP can now provide better
VM placement or suggest scaling when needed. Of course,
transparency can potentially expose the CSP and users to
security and privacy risks that must be assessed before sharing
information. We will examine security issues in future work.

The unobservability problem can also be thought of as
a by-product of commercializing clouds as it is the result
of a business choice made by CSPs to deliver best-effort
service at low cost to a large audience. Specific users who
care more about performance and transparency will likely
avoid (economical) clouds and employ (expensive) dedicated
servers. However, we believe that public and private clouds



can be made more appealing to such users by providing some
form of transparency, and by leveraging inference solutions
such as the one presented in Section VII.
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