
Evaluating the energy impact of device parameters
for DNN inference on edge

Anurag Dutt*, Sri Pramodh Rachuri*, Ashley Lobo, Nazeer Shaik, Anshul Gandhi, Zhenhua Liu
Stony Brook University, Stony Brook, NY, 11794

{anurag.dutt, sripramodh.rachuri, ashley.lobo, nazeer.shaik, anshul.gandhi, zhenhua.liu}@stonybrook.edu

Abstract—With advancements in edge inference accelerating
the shift from cloud to edge computing, there is a need for
research on sustainable edge deployments of DNN workloads.
However, the energy consumption of DNN workload execution is
affected by numerous parameters and knobs. This paper studies
the impact of hardware knobs (CPU and GPU frequency) across
six different DNN inference workloads on two different Jetson
edge devices. We find that default parameter settings need not be
energy optimal; for example, tuning the CPU and GPU frequency
can save as much as 19% energy over DVFS.

Index Terms—Energy efficiency, edge computing, DNN infer-
ence, measurements.

I. INTRODUCTION

In recent years, Deep Neural Networks (DNN), including
Large Language Models (LLMs), have gained significant trac-
tion. While the training of these models has received attention,
research on efficient deployment for inference, especially at
the edge, is still ongoing [2], [11]. Edge computing is the
layer closest to the users in IoT stack for real-time data
processing, aimed at bringing computation closer to users.
The edge devices are often deployed using batteries or solar
panels for various critical applications in remote locations,
which motivates our investigation in this paper on the energy
consumption for these devices [8].

Efficient deployment of DNN on edge faces challenges due
to the complex models straining the limited edge resources and
the need to tune the various available hardware parameters.
In fact, parameters like GPU frequency can impact energy,
power, and inference time. This impact could also be non-
monotonic making it difficult to find the optimal settings.
Consequently, practitioners often settle for sub-optimal energy
savings by not carefully tuning these parameters and resorting
to existing tools, such as Dynamic Voltage and Frequency
Scaling (DVFS), for configuring hardware knobs [18].

In this paper, we study the impact of hardware knobs on the
energy consumption of DNN inference, specifically for edge
devices. There has been some related work recently that looks
at the energy efficiency of DNN inference. Holly et al. [4]
profile Mobilenet-V2 as a function of hardware parameters
(e.g., number of cores); however, the workloads are limited to
CNNs. DeepEdgeBench [1] analyzes the power consumption
of running DNN models on different edge devices, but the

This work was supported by NSF grants 2214980, 2106434, and 1750109.
∗First two authors contributed equally to this work.

TABLE I: Specifications for Jetson Nano and Xavier NX [9], [10].
Specification Jetson Nano Jetson Xavier NX

CPU 4-core ARM A57 8-core Nvidia Carmel
CPU Freq. range 102 MHz – 1.48 GHz 115 MHz – 1.9 GHz
CPU Freq. step 100 MHz (15 steps) 77 MHz (25 steps)
GPU Nvidia Maxwell NVIDIA Volta
CUDA Cores 128 384
Tensor Cores - 48
Memory 4 GB LPDDR4 8 GB LPDDR4
GPU Freq. range 76 MHz – 921 MHz 114 MHz – 1.1 GHz
GPU Freq. steps 77 MHz (count 12) 90 MHz (count 15)
Throughput 472 GFLOPs 21 TOPs
Power Modes 5W, 10W 10W, 15W
Jetpack 4.6.3 [L4T 32.7.3] 4.5.1 [32.5.2]
Framework PyTorch 1.10.0, Dark-

net (OpenCV 4.6.0)
PyTorch 1.10.0, Dark-
net (OpenCV 4.6.0)

Libraries CUDA 10.2 + cuDNN
8.2.1

CUDA 10.2 + cuDNN
8.0.0

Operating Sys. Ubuntu 18.04 Ubuntu 18.04

authors do not investigate the impact of hardware parameter
changes on energy. Likewise, there has been a lot of recent
work on analyzing energy-efficient training of DNN workloads
on edge (e.g., Prashanthi et al. [14], Trainer [17], Efficient-
Grad [5]) and on servers (e.g., Zeus [18]). However, insights
from energy analysis for training need not translate to in-
ference since training is more sensitive to memory, network
delays, and parallelization.

We conduct our empirical study using smart edge devices
with compact ARM-based microprocessors with GPU accel-
eration. For our experiments, we use two devices: (1) Jetson
Nano, an entry-level edge device, and (2) Jetson Xavier NX,
a mid-tier, more powerful version, as shown in Table I. Both
devices are capable of serving DNN models for a variety of
practical application tasks. Our experimental results show that
we can reduce inference energy by as much as 19% compared
to DVFS by optimally tuning the CPU and GPU frequencies.

II. EXPERIMENT DESIGN

Both Jetson Nano and Xavier NX provide multiple onboard
sensors measuring power for different components and can be
accessed through an I2C interface. We log power consumed
by the entire module every 100ms with an overhead of less
than 0.5%. We found that more frequent polling (e.g., 10ms
or 1ms) can result in higher energy overheads of more than
2%.

TABLE II: DNN workload specifications
Model Layers Params Ops

(GFLOPs)
Batch
Size

Input

AlexNet 8 61M 0.727 4, 8, 16,
32, 64

Tensor
(3,224,224)

ResNet-
18

18 11M 2 4, 8, 16,
32, 64

Tensor
(3,224,224)

MobileNet-
V2

53 3.4M 0.57 4, 8, 12 Tensor
(3,224,224)

YOLOv4-
Tiny

29 6.1M 6.9 4, 8, 16,
32, 64

Tensor
(3,416,416)

BERT-
Tiny

4 4.4M 0.0353 4, 8, 16,
32, 64

String (512
words, 1.1kb)

DistilBERT 6 43.2M 4.3 4, 8, 16 String (512
words, 1.1kb)

Both devices have three main hardware knobs that can be
changed during runtime—CPU clock frequency, GPU clock
frequency, and the number of cores. We focus on the first
two since the number of cores did not impact the power
consumption in our experiments as the DNN models are im-
plemented in Python, which is effectively single-threaded due
its Global Interpreter Lock (GIL) mechanism. Both devices
offer a large range of CPU and GPU frequencies. Jetson Nano
has 180 possible GPU and CPU frequency combinations and
Xavier NX has 375 possible configurations. We use sysfs
APIs to set static CPU and GPU frequencies. Baselines were
established using the default DVFS module.

We executed the DNN inference process and logged the
workload execution checkpoints and their requisite timestamps
while recording the power metrics on a separate thread. Merg-
ing these logs and correlating them with inference events (e.g.,
model initialization, inference start) allowed us to compute
the power, energy, and execution time for each inference
workload. During testing, we disconnected all peripherals from
the device and killed unnecessary background tasks.

Each experiment consisted of running a DNN inference
workload under a specific CPU and GPU frequency setting.
For our workloads, we used AlexNet [7], ResNet-18 [3],
and MobileNet-v2 [12] for image classification, YOLOv4-
Tiny [6] for object detection, and DistilBERT [13] and BERT-
Tiny [15] for natural language classification. The workload in
every experiment was kept constant at 3,200 inferences. Each
experiment was repeated 10 times and average values were
reported; the variation between runs was low (less than 5%).
The workload parameters have been summarized in Table II.

III. EVALUATION RESULTS

Frequency Scaling Sweep and DVFS: We start by analyzing
the impact of GPU frequency scaling on power and inference
time, as shown in Figure 1(a) for an AlexNet inference work-
load on Jetson Nano for a batch size 16. We see that power
consumption increases almost linearly with GPU frequency.
However, the decrease in inference latency starts to plateau
out at higher GPU frequencies as GPU is no longer the
bottleneck and the performance is limited by other components
such as memory and I/O bandwidth; similar effects have been
noted in prior work on servers [16]. Both power and latency
vary greatly as GPU frequency changes from lowest to highest

0.2 0.4 0.6 0.8
GPU Freq (GHz)

0

100

200

300

400

La
te

nc
y

(S
ec

on
ds

)

Latency
Power
DVFS

0

1

2

3

4

5

6

7

Po
we

r (
W

at
ts

)

(a) Changing GPU frequency

0.5 1.0 1.5
CPU Freq (GHz)

0

20

40

60

80

100

120

La
te

nc
y

(S
ec

on
ds

)

Latency
Power
DVFS

0

1

2

3

4

5

6

7

Po
we

r (
W

at
ts

)

(b) Changing CPU frequency

Fig. 1: Comparison of inference latency and power consumed under different
CPU/GPU frequencies when running AlexNet on Jetson Nano.

(CPU frequency was fixed at 1132.8 MHz); the span of power
consumed is 4.7W, whereas the span of latency is 532s.

Figure 1(b) shows a similar result, but for changing CPU
frequencies; here, we fix the GPU frequency at 0.6912 GHz.
While the trend is somewhat similar, we see that the span
of power (1W) and the span of latency (60s) are much
narrower, indicating that CPU frequency has a smaller impact
compared to GPU frequency. This is because computationally
intensive operations, such as tensor operations, are done by the
GPU, whereas the CPU is responsible for less intensive tasks
such as data preprocessing, initialization, and control flow.

Next, we evaluate the impact of DVFS on power and
latency. The dashed lines in Figure 1 show the behavior
when using DVFS (defaults are ‘nvhost podgov’ for GPU and
‘schedulutil’ for CPU) instead of manually setting frequencies.
We see that DVFS affords low latency but incurs very high
power consumption, suggesting that default DVFS opts for
higher frequencies. This was confirmed by profiling, which
revealed that DVFS operated at the highest CPU and GPU
frequencies 89% and 83% of the time, respectively.

We also experimented with the other DVFS governors
available (e.g., ‘powersave’, ‘performance’, ‘ondemand’). We
found that ‘powersave’ consumes <0.01% more energy than
the default governors, primarily because although the average
power is reduced by 30%, the execution time of the workload
is increased by 43%. Likewise, we found that all other DVFS
governors perform similarly to the default governor, with the
difference in energy consumption being within 1%. With CPU
DVFS, the best among other governors had 2.9% lower power
but with 2.6% higher inference latency.

Energy Topology under Jetson Nano: To study the impact
of energy, we plot the energy consumed for inference as a
function of CPU and GPU frequency for the 6 DNN workloads
for Jetson Nano in Figure 2. The batch size is fixed at 16 for all
workloads except MobileNet-v2, for which we use a batch size
of 8 due to memory constraints. We see that energy does not
change much with CPU frequency for a given GPU frequency.
However, for a given CPU frequency, the energy consumption
does change substantially with GPU frequency. While not
always visible, the impact of GPU frequency on energy is not
monotonic; there exist some moderately high GPU frequencies
at which the energy is minimized, as shown by the cyan dot
in the plots.

GPU Freq (GHz)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 CP
U

Fre
q (

GH
z)0.25

0.50
0.75

1.00
1.25

En
er

gy
 (J

ou
le

s)

300

400

500

600

Minima = 262.6 Joules
DVFS = 303.7 Joules

300

350

400

450

500

550

(a) AlexNet
GPU Freq (GHz)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 CP
U

Fre
q (

GH
z)0.25

0.50
0.75

1.00
1.25

En
er

gy
 (J

ou
le

s)

1000

1500

2000

2500

Minima = 891.0 Joules
DVFS = 1104.0 Joules

1000

1200

1400

1600

1800

2000

(b) ResNet-18
GPU Freq (GHz)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 CP
U

Fre
q (

GH
z)0.25

0.50
0.75

1.00
1.25

En
er

gy
 (J

ou
le

s)

1000

1500

2000

Minima = 916.7 Joules
DVFS = 1086.3 Joules

1000

1200

1400

1600

1800

2000

(c) MobileNet-V2

GPU Freq (GHz)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 CP
U

Fre
q (

GH
z)0.25

0.50
0.75

1.00
1.25

En
er

gy
 (J

ou
le

s)

800

1000

1200

1400

1600

Minima = 797.2 Joules
DVFS = 884.9 Joules

800

900

1000

1100

1200

1300

1400

(d) YOLOv4 - Tiny
GPU Freq (GHz)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 CP
U

Fre
q (

GH
z)0.25

0.50
0.75

1.00
1.25

En
er

gy
 (J

ou
le

s)

200

300

400

Minima = 154.2 Joules
DVFS = 186.4 Joules

175
200
225
250
275
300
325
350
375

(e) BERT-Tiny
GPU Freq (GHz)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 CP
U

Fre
q (

GH
z)0.25

0.50
0.75

1.00
1.25

En
er

gy
 (J

ou
le

s)

2000

3000

4000

Minima = 1657.1 Joules
DVFS = 2000.1 Joules

1750

2000

2250

2500

2750

3000

3250

3500

3750

(f) distilBERT

Fig. 2: Inference energy consumption as a function of CPU and GPU frequency under Jetson Nano; the color shade denotes the energy consumption, also
shown on z-axis. Also highlighted is the point at which energy is minimized. The blue line represents the energy consumed under DVFS.

GPU Freq (GHz)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 CP
U

Fre
q (

GH
z)0.5

1.0
1.5

En
er

gy
 (J

ou
le

s)

225
250
275
300

325

Minima = 208.3 Joules
DVFS = 213.4 Joules

220

240

260

280

300

(a) ResNet-18
GPU Freq (GHz)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 CP
U

Fre
q (

GH
z)0.5

1.0
1.5

En
er

gy
 (J

ou
le

s)

600

700

800

900

1000

Minima = 614.7 Joules
DVFS = 705.6 Joules

650

700

750

800

850

(b) YOLOv4-Tiny
GPU Freq (GHz)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 CP
U

Fre
q (

GH
z)0.5

1.0
1.5

En
er

gy
 (J

ou
le

s)

80

90

100

110

120

Minima = 73.9 Joules
DVFS = 87.1 Joules

75

80

85

90

95

100

105

(c) BERT-Tiny

Fig. 3: Inference energy consumption as a function of CPU and GPU frequency under Xavier NX; the color shade denotes the energy consumption, also
shown on the z-axis. Also highlighted is the point at which energy is minimized. The blue line represents the energy consumed under DVFS.

The minimum energy obtained by sweeping over all the
CPU and GPU frequencies does lower energy significantly
when compared to DVFS, as noted in the legend for each
subfigure. The percentage reductions in energy afforded by the
minima over DVFS for Figures 2(a)–2(f) are 13.5%, 19.3%,
15.6%, 9.9%, 17.3%, and 17.2%, respectively. However, we
found that the latency under the minima configuration is typ-
ically 28%–35% higher than that achieved under DVFS. The
minima usually occurred at a GPU frequency of 614.4 MHz,
with the optimal CPU frequency varying across the workloads.

Energy Topology under Jetson Xavier NX: Figure 3 shows
a similar energy vs. frequencies plot for three workloads
with batch size 16 but under Xavier NX. We see similar
trends here as with the Nano (thus omitting figures for other

workloads), with the minima affording an energy reduction
of 2.5%, 12.9%, and 15.1% for ResNet-18, YOLOv4-Tiny,
and BERT-Tiny, respectively; the reduction afforded for other
models was in the 13–15% range. The energy minima usually
occur at a GPU frequency of 803.25MHz.

Comparing the energy topologies of Nano (Figure 2) and
Xavier NX (Figure 3), we clearly see that the energy consump-
tion of Xavier NX is significantly lower, often by at least 2×,
and sometimes as much 4×. Given the newer generation of
Xavier NX, this is not wholly unexpected. We also observe a
greater increase in energy (compared to the minima) at higher
frequencies for Xavier NX, resulting in a steeper trough-like
surface; by contrast, the energy values appear to plateau and
only slightly increase at higher frequencies under Nano.

REFERENCES

[1] S. Baller, A. Jindal, M. Chadha, and M. Gerndt. Deepedgebench:
Benchmarking deep neural networks on edge devices. In 2021 IEEE
International Conference on Cloud Engineering (IC2E), pages 20–30,
Los Alamitos, CA, USA, oct 2021. IEEE Computer Society.

[2] Linux Foundation. Sharpening the edge: Overview of the lf edge
taxonomy and framework, Jul 2020.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition, 2015.

[4] Stephan Holly, Alexander Wendt, and Martin Lechner. Profiling Energy
Consumption of Deep Neural Networks on NVIDIA Jetson Nano. In
Proceedings of the 11th International Green and Sustainable Computing
Workshops (IGSC), pages 1–6, 2020.

[5] Ziyang Hong and C. Patrick Yue. Efficient-grad: Efficient training
deep convolutional neural networks on edge devices with gradient
optimizations. 21(2), feb 2022.

[6] Zicong Jiang, Liquan Zhao, Shuaiyang Li, and Yanfei Jia. Real-time
object detection method based on improved yolov4-tiny, 2020.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira, C.J.
Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc.,
2012.

[8] Yu-Jen Ku and Sujit Dey. Sustainable vehicular edge computing using
local and solar-powered roadside unit resources. In 2019 IEEE 90th
Vehicular Technology Conference (VTC2019-Fall), pages 1–7, 2019.

[9] NVIDIA. NVIDIA Jetson Nano System-on-Module. https://developer.
download.nvidia.com/assets/embedded/secure/jetson/Nano/docs.

[10] NVIDIA. NVIDIA Jetson Xavier NX System-on-Module.
https://en.miivii.com/uploads/file/20200511/NV Jetson Xavier NX
DataSheet v0.1.pdf.

[11] Sri Pramodh Rachuri, Francesco Bronzino, and Shubham Jain. De-
centralized modular architecture for live video analytics at the edge. In
Proceedings of the 3rd ACM Workshop on Hot Topics in Video Analytics
and Intelligent Edges, HotEdgeVideo ’21, page 13–18, New York, NY,
USA, 2021. Association for Computing Machinery.

[12] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks, 2019.

[13] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter,
2020.

[14] Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan. Char-
acterizing the performance of accelerated jetson edge devices for training
deep learning models. Proc. ACM Meas. Anal. Comput. Syst., 6(3), dec
2022.

[15] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-
read students learn better: On the importance of pre-training compact
models, 2019.

[16] Qiang Wang and Xiaowen Chu. Gpgpu performance estimation with
core and memory frequency scaling. IEEE Transactions on Parallel
and Distributed Systems, 31(12):2865–2881, 2020.

[17] Yang Wang, Yubin Qin, Dazheng Deng, Jingchuan Wei, Tianbao Chen,
Xinhan Lin, Leibo Liu, Shaojun Wei, and Shouyi Yin. Trainer:
An energy-efficient edge-device training processor supporting dynamic
weight pruning. IEEE Journal of Solid-State Circuits, 57(10):3164–
3178, 2022.

[18] Jie You, Jae-Won Chung, and Mosharaf Chowdhury. Zeus: Understand-
ing and optimizing GPU energy consumption of DNN training. In 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 119–139, Boston, MA, April 2023. USENIX Associ-
ation.

