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Abstract—Simulating storage cache hierarchies enables effi-
cient exploration of their configuration space, including diverse
topologies, parameters and policies, and devices with varied
performance characteristics, while avoiding expensive physical
experiments. Miss Ratio Curves (MRCs) efficiently characterize
the performance of a cache over a range of cache sizes. These
useful tools reveal “key points” for cache simulation, such
as knees in the curve that immediately follow sharp cliffs.
Unfortunately, there are no automated techniques for efficiently
finding key points in MRCs, and the cross-application of existing
knee-detection algorithms yields inaccurate results.

We present a multi-stage framework that identifies key points
in any MRC, for both stack-based (e.g., LRU) and more sophis-
ticated eviction algorithms (e.g., ARC). Our approach quickly
locates candidates using efficient hash-based sampling, curve
simplification, knee detection, and novel post-processing filters.
We introduce Z-Method, a new multi-knee detection algorithm
that employs statistical outlier detection to choose promising
points robustly and efficiently.

We evaluate our framework against seven other knee-detection
algorithms, using both ARC and LRU MRCs from 106 diverse
real-world workloads, and apply it to identify key points in
multi-tier MRCs. Compared to naı̈ve approaches, our framework
reduces the total number of points needed to accurately identify
the best two-tier cache hierarchies by an average factor of
approximately 5.5× for ARC and 7.7× for LRU.

Index Terms—multi-tier caching, miss ratio curve, knee detec-
tion

I. INTRODUCTION

A cache’s miss ratio is one of the most important predictors
of its performance. A miss-ratio curve (MRC) for a given
cache and replacement algorithm plots the cumulative miss
ratio for all accesses as a function of the cache size, providing
a powerful tool for analyzing the performance of live systems
and dynamically adjusting cache configurations as workload
conditions change [7], [28]. MRCs can also inform offline
evaluations such as comparing caching algorithms or analyzing
monetary cost vs. storage-system performance [13].

There are many efficient techniques for generating
MRCs [14], [18], [23], [25]. The MRC’s reported miss ratios
are good indicators of expected performance (e.g., throughput),
but real system performance can vary due to device char-

acteristics, write policies, and admission policies [13]. Alas,
repeatedly reconfiguring and testing a real caching system with
all possible cache sizes is prohibitively expensive due to the
slowness of storage I/O.

Since experimenting with physical devices is costly and
time-consuming, simulation offers a more practical way to
explore this large search space and evaluate trade-offs such as
latency vs. cost. A common first step is to sample a workload:
approximation algorithms enable accurate simulation of cache
behavior using only a fraction of the original trace data. Small
sampled traces can then be used to construct an MRC accu-
rately, enabling quick evaluation of cache performance [27],
[28]. Many storage-cache simulators have been developed that
replay traces while attempting to faithfully reproduce real
system behavior [1], [17], [29]. However, even simulations
can be too expensive to allow exploring a large number
of configurations or optimizing live systems in real time.
For example, consider a cache with a maximum size of
100GB. Simulating every 1GB size step would require 100
experiments. In a multi-tier setup, the number of simulations
grows with the number of tiers; a two-tier configuration would
require 1002 experiments, three-tier would need 1003, and so
on. Thus, it is essential to explore this vast configuration space
efficiently.

Creating an MRC requires a sequence of cache references.
In a multi-tier cache, references to level n + 1 come from
misses in—and write evictions and flushes from—level n; thus
the MRC for n+1 directly depends on the cache size chosen
for level n. A naı̈ve exploration of multi-tier configurations
would require a separate simulation for each point in level
n’s MRC to identify misses that become references at level
n+ 1, and hence to compute the level n+ 1 MRC. Since an
MRC may contain hundreds of points (one for each potential
cache size), this approach quickly becomes intractable. Thus,
a crucial second step for evaluating multi-tier caches is to limit
the number of simulations by intelligently selecting the cache
sizes that will be evaluated at each level.

Intuitively, the most promising candidates are points where
a little extra cache space produces a relatively large drop in the
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Fig. 1: MRC for trace w10, annotated to illustrate several key
points: useful “knees” (points A, C, and D), a useless “cliff”
(B), and a large range of cache sizes with relatively gradual
miss-ratio improvement.

miss ratio; such points are often visible as “knees” in MRCs—
e.g., points A, C, and D in Figure 1. (Note that although B has
sharp curvature, it is not of interest since C provides a much
lower miss rate.) Given enough computational time, we may be
interested in also selecting some points in the large gradually
sloping regions that cover a significant range of cache sizes.
We refer to both types of points as key points from here on.

In this paper we describe a multi-stage framework designed
to pick an appropriate yet small number of key points in
MRCs: (1) We first approximate the MRC accurately using
a hash-based sampling technique [27], [28]; (2) Next, we
use the Ramer-Douglas-Peucker (RDP) line simplification
algorithm [20] to reduce noise by eliminating minor varia-
tions in the curve; (3) We then run a multi-knee detection
algorithm on the remaining points to find cache sizes that
provide the greatest miss-ratio improvement for the lowest
cost. Our framework currently implements eight different
knee-detection algorithms, including our novel Z-Method and
modified, multi-knee versions of five widely used single-knee
detection algorithms [4], [21], [22], [26]; and (4) Finally, in
post-processing we remove less interesting points, add points
in gradually-sloped regions (if desired), and then select the
final points based on a ranking that uses hierarchical clustering
and relevance metrics.

Our framework substantially reduces the number of sim-
ulated configurations needed to evaluate multi-tier caches
without compromising accurate identification of the best con-
figurations. This work makes several contributions:

1) We establish the novel methodology of using multi-knee
detection to efficiently identify optimal multi-tier cache
configurations;

2) We present a framework that combines several techniques
to find a minimal number of key points in MRCs for both
stack and non-stack caching algorithms;

3) We introduce Z-Method, a new multi-knee detection
algorithm that uses statistical outlier detection;

4) We release the code library containing all techniques used
in this work;1 and

1https://github.com/mariolpantunes/knee

5) We demonstrate that, compared to naı̈ve approaches, our
framework significantly reduces the number of 2-tier
cache evaluations needed to identify good configurations
by a factor of 5.5× for ARC and 7.7× for LRU.

II. BACKGROUND

A. Miss Ratio Curves (MRCs)

A key feature of some MRCs is their monotonicity. Cache
replacement algorithms such as LRU are stack-based, which
means they satisfy the cache-inclusion property: the content
of a cache of size n is always a subset of a cache of size
n+1. Ultimately, this property ensures that the miss ratio will
never degrade as we increase the size of the cache, producing a
monotonically decreasing curve. However, more sophisticated
algorithms such as ARC [19] are not stack-based and thus
the inclusion property does not hold, causing them to produce
MRCs that may contain both convex and concave regions [28].
Thus, non-stack-based MRCs need not be strictly decreasing.

B. Knee-Detection Algorithms

Many heuristic algorithms have been developed that find
a single knee in a curve, although the definition of a knee
can vary for any given algorithm. For example, one can
define a knee as the point with the maximum curvature in a
function [26]. However, a formal definition of a “good knee”
is elusive, because whether a point is “good enough” to be
classified as a knee depends on the application.

There are several algorithms that can find multiple knee
points in a curve, but they have limitations that make them
unsuitable for MRCs. The Kneedle algorithm’s primary use
case is anomaly detection, where it serves as an initial filter to
reduce the number of candidates needing further analysis [22].
As such, for Kneedle, recall is more important than precision:
it aggressively captures all anomalies, producing many false
positives. In some cases, it is possible to reduce the number
of false positives, but this requires extensive tuning of its
sensitivity parameter. A few multi-knee detection algorithms
have been developed for use in multi-objective optimization
problems, where the notion of a knee guides the exploration of
meaningful candidate solutions [30]. However, these problems
use a stricter definition of a knee that assumes a set of well-
behaved, Pareto-optimal points. Several other knee-detection
methods [3]–[5], [21], [26] are only effective at finding a
single knee in a small and relatively smooth set of points.
In contrast, MRCs can consist of a relatively large number of
points, can be noisy or non-monotonic, and commonly contain
more than one significant knee. In this work, we had to develop
techniques to overcome these limitations (see Section III) by
enabling these algorithms to find multiple knee points.

C. Cliff Removal Techniques

An alternative to detecting knees in an MRC is to modify
the underlying cache-replacement policy so that it does not
have any cliffs, yielding a convex MRC. Talus [6] removes
cache performance cliffs by dividing the cache into two
shadow partitions, each receiving a fraction of the input load.



Varying the sizes and input loads of each partition emulates the
behavior of smaller or larger caches. Given an MRC as input,
Talus computes the partition sizes and their respective input
fractions to ensure that their combined aggregate miss ratio lies
on the convex hull of the original MRC. Originally proposed
for processor caches, Talus inspired the SLIDE [28] technique
for transforming sophisticated non-LRU replacement policies
used in software caches. CliffHanger [12] applied a similar
idea to key-value web caches, but instead estimated the MRC
gradient without explicitly constructing one.

The recent eMRC [16] technique generalized Talus’s cliff
removal to multi-dimensional miss ratio functions, such as
the three-dimensional miss-ratio surface for a two-tier cache.
The eMRC convex-hull approximation technique leverages
the absence of cliffs to efficiently generate the miss ratio
function for a multi-tier cache. However, eMRC requires
convexity, which limits its applicability to modeling multi-
tier cache systems that employ cliff removal. As real-world
multi-tier cache systems do not yet perform cliff removal,
eMRC is unable to approximate their non-convex MRCs. In
contrast, our approach does not require convexity to accelerate
multi-tier cache evaluations, making it broadly applicable to
production deployments of existing caches.

III. POINT SELECTION TECHNIQUES

In this section, we introduce our framework for finding
multiple key points in MRCs. We first designed a pre-
processing stage to deal with the large volume of data (Sec-
tion III-A). Next, we made substantial modifications to each
point-selection technique, enabling them to output a set of
multiple knees instead of just one (Section III-B). Finally, we
added a post-processing stage (Section III-C) that filters and
ranks knees based on an appropriate definition.

A. Pre-Processing

A curve can contain an arbitrary number of data points. The
largest MRC that we evaluated contains 276K points even
after sampling-based size reduction [28]; the original MRC
is 10,000× larger. However, the knee-detection algorithms
evaluated in this work were originally designed to work with
small or partial data, such as for clustering optimizations
Our main idea is to reduce the number of points while
preserving those that follow the shape of the curve; this greatly
reduces the computational costs of subsequent steps while also
improving knee-detection accuracy by minimizing irrelevant
fine-grained variation.

The Ramer-Douglas-Peucker (RDP) algorithm modifies a
curve by finding a similar one with fewer points [20]. RDP
fits a line between the curve’s endpoints and then finds the
point in between that is farthest from this line. If the distance
between that point and the line is over a given threshold, the
curve is split there and the algorithm is reapplied recursively
on the two new segments. Once the distance is smaller than
the threshold, all intermediate points are removed. The main
drawback of RDP is the need to define a threshold, which can
be understood as the maximum allowed reconstruction error.

The choice of threshold is difficult because it depends on the
curve’s complexity.

We modified the original RDP algorithm to address this
difficulty. Instead of defining a threshold for the maximum
allowed perpendicular distance between a point and the fitted
straight line, we use a relevance-based cost metric that com-
putes the difference between the fitted straight line and the
data points in the current segment.

We evaluated four different metrics that assess how far our
linear reduction is from the original data: Root Mean Squared
Log Error (RMSLE), Root Mean Squared Percentage Error
(RMSPE), Relative Percent Difference (RPD), and symmetric
mean absolute percentage error (SMAPE). Of these four, the
best performance came from SMAPE: it found the smallest
set of points that minimized the reconstruction error.

B. Methods

Except for Kneedle, the algorithms we evaluate in this work
(see Section II-B) were not designed to detect multiple knees.
Thus, we developed a recursive algorithm that can be used to
adapt any single-knee detection technique to handle multiple
knees. The basic idea is to use a single-knee technique to
select the best knee in a segment. We then split the current
segment at that knee, and for each new segment check whether
it is sufficiently linear (computed using the SMAPE metric).
If not, we repeat the process recursively. Apart from applying
this recursive generalization, we do not alter the core knee-
detection technique, using it as a black box. All of the
methods we evaluated, even Kneedle, require our pre- and
post- processing methods to work properly on MRCs.

C. Post-Processing

Given the differences between single- and multi-knee de-
tection, and the large number of points produced by using our
recursive strategy on some of the knee-detection algorithms,
we developed three different filters to further reduce and select
the most relevant knees.

The first filter removes useless knees. When dealing with
non-monotonic curves, a knee-detection algorithm can incor-
rectly choose a knee that is above a previously detected one.
We remove such knees since they are sub-optimal and do not
add useful information.

The second filter removes cliff points, located after a
smooth, near-horizontal area that precedes a sharp descent.
Point B in Figure 1 is a good example of a cliff point. Relevant
knee points are generally located around the last point (i.e.,
at the bottom) of the descent, such as points C and D, since
those are the points most worth evaluating.

The third and final filter uses a hierarchical clustering
algorithm to group knees by their distance along the x-
axis, using a percentage of the x range as a threshold. After
grouping the knees into clusters, the knees within each cluster
are ranked based on their relevance score, computed from two
metrics: (i) the improvement given by each knee (i.e., how
much it decreases on the y-axis from the highest knee in the
cluster) and (ii) the smoothness of the improvement, computed



using the coefficient of determination (R2). Specifically, the
relevance score S is given by Equation (1):

S(Ki, L⃗) = |Kh −Ki| ·R2(L⃗), (1)

where Ki is the ith knee, and Kh is the knee with the
highest value on the y-axis (in a single cluster). L⃗ is a vector
containing all the knees in the cluster up to and including the
ith one: L⃗ = [K0, ...,Ki]. The highest-ranked knee in each
cluster is selected as its representative knee.

IV. Z-METHOD

Our design for Z-Method was inspired by the DFDT [4]
and DSDT [5] knee-detection algorithms, which use first and
second derivatives, respectively. In statistics, a z-score (also
known as a standard score) is a transformation that normalizes
a data value by quantifying how many standard deviations
away it is from the mean; typically, a point whose z-score
has an absolute value greater than three is considered an
outlier [2]. For the purpose of detecting knees, such outliers
in the second derivative indicate a significant change in the y-
axis. The foundation of our Z-Method technique is in detecting
such outliers and intelligently selecting knees among them.

Although the second derivative is useful, we found that large
and small knees often tend to cluster, causing several points
in close proximity to be selected, rather than the single most
optimal knee in the vicinity. To remedy this, we introduced two
hyper-parameters, dx and dy, that specify the minimum x and
y distances, respectively, between all selected points. These
parameters limit the total number of knees selected and give
users control over the algorithm. For example, users interested
only in large knees can give relatively high values for dx and
dy to minimize the number of points.

Z-Method was designed to function independently of the
techniques described in Sections III-A and III-C. As such, it
works for curves that are non-monotonic, with both convex
and concave regions (see Section II-A).

As shown in Algorithm 1, Z-Method takes as input a
discrete curve D consisting of an ordered list of (x, y) points,
along with parameters dx, dy, and dz. The parameters dx
and dy both influence the size and number of selected knees,
while dz controls the maximum number of iterations in the
main selection loop (lines 7–22).

We first convert dx and dy, specified as percentages, into
absolute values ∆x and ∆y for the input curve (lines 1–
2). This normalization ensures that these parameters function
similarly for different curves. We then approximate a list
of second derivatives of the curve, D′′, using second-order
polynomial fitting [10]; next we calculate the z-scores of all
points in D′′ as Z, both of which are found in linear time (lines
3–4). We initialize a list K to contain all selected knees, and
set our starting value of zLimit to 3, since a z-score ≥ 3 is a
widely accepted value for outliers [2] (lines 5–6).

We then enter the main selection loop (lines 7–22), which
selects points and progressively decrements the zLimit value.
First, we create a new list C that contains candidate points:
points in Z that have a z-score greater than the current zLimit

Algorithm 1: Z-Method Multi-Knee Detection
Input: Data D with (x, y) points, dx, dy, dz
Output: List of (x, y) points corresponding to knees

1 ∆x ← length(D) · (dx/100)
2 ∆y ← (max(y) − min(y)) · (dy / 100)
3 D′′ ← calculate second derivative of D
4 Z ← calculate z-scores for D′′

5 K ← empty list
6 zLimit ← 3 # standard outlier threshold [2]
7 while TRUE do
8 C ← points in Z with z-score ≥ zLimit
9 and at least ∆x and ∆y apart from all

points in K
10 Z ← Z - C
11 if zLimit ≤ 0 and length(C) == 0 then
12 Remove points from K to ensure that
13 y always decreases as x increases
14 return K

15 G ← group all points in C such that
16 all adjacent points in each group are < ∆x

apart
17 sort G in descending order by max z-score of each

group
18 foreach group in G do
19 p ← point in group with the lowest y value
20 if p is at least ∆y from all points in K then
21 K.append(p)

22 zLimit ← zLimit − dz

and are at least a minimum ∆x and ∆y distance from all other
already-selected points (lines 8–9). The complexity of this step
is O(|C| × |K|). All candidate points C are removed from Z
so that we will not consider them again in future iterations
(line 10). The termination clause is then checked (lines 11–
14) to ensure that we have candidate points to operate on.

We next group the candidate points C into G, such that the
adjacent points in each group are less than ∆x apart, based on
the dx parameter constraint (lines 15–16). This takes O(|C|)
time, effectively forming groups of points such that there is
at least ∆x distance between every group. We then sort the
groups in G in descending order by the maximum z-score of
each group (line 17). Here, we are sorting the location of each
group in the list of groups G rather than the points within each
group. From each group, we select the point with the lowest
y value (line 19); we then check that the selected point is not
within a minimum ∆y distance from other points that have
already been selected, enforcing the dy parameter (line 20).
The complexity of this loop is O(|G|×|K|). A point is added
to the list of knees K if it satisfies this constraint (line 21).
We then decrement the zLimit by dz and continue with the
next loop iteration (line 22).

This loop terminates only after we have reached a zLimit
≤ 0 and there are no remaining points that can be selected



given the dx and dy parameters (line 11). At zLimit = 0, we
consider all points in D that have not already been considered
in previous iterations. By starting at z-score ≥ 3 and iteratively
approaching 0, we select the largest knees first and gradually
lower our threshold for how big a knee should be.

Finally, we eliminate any points that may have been poorly
selected due to non-monotonicity in the curve. A final pass
removes points where increasing the x value makes the y value
worse (lines 12–13); in our MRC application, such points are
clearly undesirable. This simple pass requires time linear in the
size of K. The overall complexity of this algorithm is therefore
O(|D| × |K|), where D is the size of the input curve and K
is often a trivially small value. For example, with dx set to
5%, enforcing at least 5% distance on the x-axis between each
selected knee point, the maximum size of K would be 20.

V. EVALUATION

We first compared the accuracy of 8 different knee-detection
algorithms, including Z-Method, then evaluated our frame-
work’s ability to quickly find optimal multi-tier configurations.

A. Experimental Setup

We evaluated our techniques on 106 real-world block traces
collected by CloudPhysics [27], each representing a week of
virtual disk activity from production VMware environments.
We used hash-based spatial sampling [27], [28], with a sized-
based sampling rate ranging from 0.1 to 0.0001, to reduce
these workloads and thus the running time while maintaining
an accurate representation of the originals. We dynamically
varied the rate by powers of 10, such that each sampled trace
was guaranteed to contain between 100K and 1M requests. The
traces contain heterogeneous request sizes, so we also trans-
formed all requests into 4KB block-aligned operations to fa-
cilitate accurate sampling, consistent with previous work [16].

To evaluate multi-tier systems, we extended PyMimir-
cache [29], a cache simulator with an easily modifiable Python
front end and an efficient C back end. Our extension generates
two-tier MRCs by simulating an L1 cache with the original
sampled trace, then simulating L2 with the requests that
missed in L1. L1 cache sizes were selected using the MRC of
the original trace, while L2 sizes were chosen using the MRCs
of each intermediate trace. The total miss ratio of the two-tier
configuration was calculated as the product of the miss ratios
of L1 and L2. We modeled a simple write-back policy by
treating both reads and writes as cache references, as done in
previous work [16]. The cache eviction policy was configured
as either LRU or ARC and was the same in both tiers. We
generated two-tier MRCs for each trace, for both LRU and
ARC replacement policies, resulting in a total of 212 MRCs.

B. Knee Detection Algorithms

We evaluated the accuracy of our framework using Z-
Method and several other knee-detection algorithms: Curva-
ture, DFDT, Kneedle, L-Method, and Menger.

We also included the Fusion method, which considers all
points retained by RDP and relies on our post-processing

Cu
rv
at
ur
e

DF
DT

Fu
sio

n
Kn
ee
dle

Kn
ee
dle

Re
cu
rsi
on

L-M
et
ho
d

Me
ng
er

Z-
Me

th
od

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

Fig. 2: An MCC evaluation of 8 knee detection algorithms
using our optimized hyper-parameters for accurately identi-
fying knees that were manually selected by experts. Higher
MCC values and lower standard deviations are better. Kneedle
and Z-Method have the highest median MCC values of 0.45
and 0.5, respectively, with Z-Method achieving much tighter
bounds.

filters to select relevant knees. Kneedle finds knees with peak
detection methods, and can be used for single-knee detection
by selecting only the highest possible peak; we call that
Kneedle Recursion. We analyzed each method’s ability to find
knee points that had been manually curated in the 212 single-
tier MRCs by four domain experts.

Most of our techniques have one or more hyper-parameters
that can influence which points are selected. While the default
parameters offered acceptable performance, a more complete
evaluation requires optimized parameters [9]. Therefore, we
developed a cost function and ran an optimization algorithm
for each knee-detection method using all 212 MRCs.

Although the knee-detection problem is better modeled as a
regression, we based our cost function on binary classification,
since we wanted to control the impact of false positives
and negatives (i.e., non-relevant points being classified as
knees and vice-versa). The Matthews correlation coefficient
(MCC) [11] measures classification quality by considering the
balance ratios of the four confusion matrix categories: true
positives and negatives, and false positives and negatives.

Figure 2 shows our evaluation. Three techniques stand
out: Fusion, Kneedle, and Z-Method. Fusion achieves tighter
margins than all other techniques, spanning only 0.23 MCC
between the upper and lower quartiles, suggesting that the ex-
pected performance in unseen traces would be well-bounded.
Kneedle and Z-Method achieve the highest median MCC
values of 0.45 and 0.50 respectively, with Z-Method having
a smaller standard deviation when compared with Kneedle.
The much tighter bounds of Z-Method are more significant
than the improvement in median, making Z-Method the ideal
candidate for our multi-tier evaluation.

C. Multi-Tier MRCs

Miss-ratio curves are typically used to find configurations
that minimize both miss ratio and cache size(s). We seek mul-
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Fig. 3: An example of how the HyperVolume Indicator (HVI)
is calculated for a single point of a 3-dimensional data series.
A cube is drawn from the reference point (10,10,10) to the data
point (5,5,5) creating a 5× 5× 5 cube with a hypervolume of
125.

tiple configurations that are optimal in two or more objectives.
Consider designing a multi-tier cache, with many device

options, for a large workload. With an unlimited budget,
one could simply purchase enough DRAM to hold the entire
data set, but that is rarely economical. Instead, most system
administrators will want to trade cost off against performance,
meaning that they will be interested in Pareto-optimal solu-
tions, i.e., those where a given objective cannot be improved
without making one or more others worse.

Only a subset of all possible cache configurations are
Pareto-optimal. When a set contains every Pareto-optimal
configuration for a given workload and no others, it is called
the true Pareto-optimal front. Any point in this front minimizes
the cache size(s) and the miss ratio; the front as a whole can
be considered to mark the “best” points.

However, it is often not feasible to find the true Pareto
front for a large configuration space. Instead, the space can
be sampled in an attempt to find optimal points, creating
a Pareto approximation. Our work aims to find a minimal
number of key points in MRCs. Thus, we are trying to find the
most significant Pareto-optimal points by efficiently generating
accurate Pareto approximations of multi-tier MRCs.

There are multiple metrics for evaluating the quality of
Pareto approximations [15]; the most commonly used is the
HyperVolume Indicator (HVI) [8], which measures the size
of the space between the points in a front and a user-defined
reference point; a larger space is better.

Figure 3 shows an example of how HVI is measured in a 3-
dimensional space. The blue shape represents a simple linear
series descending from (0,0,10) to (10,10,0). If this were a
2-tier MRC, the x-axis would be the L1 size, y-axis the L2
size, and the z-axis the miss ratio. The hypervolume is the
volume between points on the Pareto front (here, the blue
shape) and a user-defined reference point, here the nadir point2

at (10,10,10), where all objectives are maximized. To find the

2Although the reference point is placed at the largest coordinates, prior
literature on hypervolume indicators uses the term “nadir” rather than “zenith”
because it represents the worst performance; we follow that convention.

Method
Avg. Points Avg. HVI % Avg. RNI
ARC LRU ARC LRU ARC LRU

Even4 20 20 59.63 61.00 0.30 0.28

Even10 110 110 86.43 83.31 0.39 0.40

Even13 182 182 90.41 91.07 0.41 0.34

Even50 2550 2550 100.00 100.00 0.33 0.34

Z-Method 23.33 20.33 86.99 90.75 0.94 0.97

TABLE I: Evaluation results of our framework using Z-
Method across 2-tier ARC and LRU MRCs, derived from
106 real-world block traces collected from CloudPhysics. The
averages of 3 metrics are presented for each algorithm: number
of points (lower is better), HyperVolume (HVI) as a percentage
of Even50’s HyperVolume (higher is better), and Ratio of Non-
Dominated Individuals (RNI) (higher is better).

hypervolume of the point at (5,5,5), we draw a rectangular
prism from it to the reference point. The resulting 5 × 5 × 5
cube has a hypervolume of 125. If we were to instead find the
hypervolume of the point (4,4,4), we would have a 6× 6× 6
cube with a hypervolume of 216. Thus, configurations with
lower cache size and miss ratio result in a larger hypervolume.
The total hypervolume of a dataset is the non-overlapping
hypervolume of all points on its Pareto front, making HVI
a useful metric for our multi-knee detection framework.

Another metric highly relevant to our problem is the Ratio of
Non-Dominated Individuals (RNI) [24], which is the fraction
of dataset points that are on the Pareto front. As discussed
earlier, points not on the front represent sub-optimal configu-
rations, so a higher ratio is better. RNI does not measure the
magnitude of quality; instead, it informs us of a point selection
technique’s efficiency. Therefore, evaluating HVI and RNI
together is a comprehensive approach to analyzing techniques
that find the minimal number of key points in MRCs.

We evaluated our framework across all 212 two-tier MRCs
using Z-Method, compared to a naı̈ve approach of select-
ing evenly-spaced points. We also tried geometrically-spaced
points, but this yielded worse results than even spacing so
we omit them from this analysis. It was not practical to
evaluate every point in MRCs containing thousands of points,
so we used 50 evenly-spaced points (Even50) as a reasonable
approximation of the full configuration space and the true
Pareto front. We varied the number of evenly-spaced points
to most closely match Z-Method’s average HVI or number of
points, resulting in Even4, 10, and 13.

In Table I, we show the averages across all 212 MRCs
of the number of points selected, HVI as a percentage of
Even50’s HVI, and RNI. When measuring the efficiency of
a method, a lower number of points and a higher RNI are
better; when measuring the accuracy of a method, higher HVI
is better. The number of points for even spacing is always
constant, calculated as X+X2 for 2-tier MRCs using EvenX.
Z-Method has HVI similar to that of Even10 for ARC and to
Even13 for LRU, but Z-Method evaluates 5.5× fewer points
for ARC and 7.7× for LRU to get those results. This efficiency
is also reflected in Z-Method’s RNI of 0.94 for ARC and 0.97
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Fig. 4: Examples of point selection on 2-tier MRCs that highlight three different commonly observed scenarios. Each point
represents the total miss ratio of a configuration of some L1 and L2 sizes. The x and y axes are the normalized L1 and L2
sizes, respectively, while the z-axis is the miss ratio. Axis labels are omitted to reduce clutter. Each row contains MRCs of
a single workload using 4 different point-selection methods, listed at the bottom of each column. The P value indicates the
total of number of points (lower is better), H is the HyperVolume as a percentage of Even50 (higher is better), and R is the
Ratio of Non-Dominated Individuals (higher is better).

for LRU. Conversely, the RNI of the evenly-spaced methods
ranges from 0.28 to 0.41, meaning that the majority of points
they select are sub-optimal and uninteresting to explore.

In Figure 4, we show visualizations of the points selected
by each method for a few selected 2-tier MRCs with fairly
different characteristics. Figure 4a (top row) displays the
MRCs for workload w04 using LRU replacement, where
several knees of various sizes are followed by gradually-sloped
regions. We can see that Z-Method accurately selects each
knee, achieving 92% of Even50’s HVI while evaluating over
100× fewer points. Conversely, Even13 and Even4 perform
poorly, selecting points at the tops of the cliffs before the
knees, resulting in lower HVI’s of 86% and 49%, respectively.
When several knees are present, Z-Method has more opportu-
nities to exploit these significant improvements in miss ratio,
performing much better than evenly-spaced points.

Figure 4b (middle row) displays the MRCs of workload w66
using ARC replacement, which exhibits large amounts of non-

monotonicity, creating several hilly regions. Z-Method finds
the interesting knee points at the hill bottoms, while the post-
processing filter prevents selecting any points at the hilltops. Z-
Method is even more efficient here than in the previous figure
while still being highly accurate, selecting only 20 points and
achieving 93% of Even50’s HVI. Even13 gets close to Z-
Method’s HVI, but requires 9.1× more points.

Finally, Figure 4c (bottom row) displays the MRCs of
workload w06 using ARC replacement, which contains only a
couple of interesting points at the very beginning of the plot. Z-
Method finds 3 points in this tiny space that are more optimal
than those found by Even4 or Even13; it also does not waste
time exploring the large, flat MRC region that offers almost
no improvement in miss ratio. With only 9 points, Z-Method
achieves 97% of Even50’s HVI, while Even13 evaluates 20.2×
more points but achieves only 94% of Even50’s HVI. MRCs
that contain only a handful of good points are fairly common,
even in multi-tier settings, and our framework dramatically



reduces the time spent exploring them.

VI. CONCLUSION

The many configurations of multi-tier caching systems pro-
duce a wide range of performance and costs. As the configura-
tion space continues to grow due to advancements in caching
and storage technology, exploring the space through physical
experiments or traditional simulation becomes infeasible.

We introduced the novel concept of applying multi-knee
detection to MRCs using a framework for selecting key points,
reducing the cost of exploration significantly. We present Z-
Method, an algorithm that robustly and efficiently identifies
multiple key points in MRCs with minimal overhead. We also
designed a recursive algorithm that enables any single-knee-
detection algorithm to find multiple knees. We demonstrated
that our framework using Z-Method can be applied to reduce
the total number of points required to identify optimal two-
tier cache configurations by an average factor of approximately
5.5× for ARC and 7.7× for LRU.
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