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ABSTRACT
Microservices architecture is quickly replacing monolithic and
multi-tier architectures as the implementation choice for large-scale
web applications as it allows independent development, scalability,
and maintenance. However, even with careful node scheduling and
scaling, the microservices applications are still vulnerable to perfor-
mance degradation due to unexpected (dependent or independent)
events like anomalous node behavior, workload interference, or
sudden spikes in requests or retries. These events can adversely
affect the performance of one or more microservices (bottlenecks),
degrading the overall application performance. To ensure a good
customer experience and avoid revenue loss, it is crucial to detect
and mitigate all bottlenecks swiftly.

This work introduces GAMMA, a novel, explainable graph learn-
ing model that integrates a mixture of experts to detect multiple
bottlenecks. We evaluated GAMMA using a popular open-source
benchmarking application deployed on Kubernetes under various
practical bottleneck scenarios. Our experimental evaluation results
show that GAMMA provides significantly better performance (46%
higher F1 score) than existing works that employ deep learning,
machine learning, and statistical techniques, demonstrating its abil-
ity to detect multiple bottlenecks by learning complex interactions
in a microservices architecture.

The dataset is made publicly available [49] for reproducibility
and further research in the field.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• Computing methodologies→ Neural networks; • Computer
systems organization→Maintainability and maintenance.
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1 INTRODUCTION
Microservice architecture (MSA) is quickly becoming the choice of
implementation for large-scale web applications owing to its mod-
ular nature [1, 9, 19, 24, 33, 34, 37, 54–56, 60]. Indeed, MSA is re-
placing monolithic and multi-tier application architectures as MSA
designs applications as fine-grained, modular, and independent
services called microservices, enabling independent development,
scalability, and maintenance [19, 24, 33]. Even existing web and
online gaming applications implemented using monolithic archi-
tecture are being transformed to MSA [1, 16, 21, 30, 36].

A critical problem for online web applications is performance
management as it affects customer experience and revenue [10].
Among various aspects of performance management, detecting per-
formance degradation and identifying the sources of performance
degradation are crucial for providing a consistent user experience.
We define anomaly detection as the process of detecting an applica-
tion’s performance degradation at the level of individual requests
or over a time period, and bottleneck localization as the process of
identifying which specific microservices are affecting the applica-
tion’s performance. Despite careful application design and proactive
capacity planning, performance anomalies still happen due to un-
expected surges in load or workload interference [24, 33, 56]. For
that reason, bottleneck localization is a must. The microservices
with degraded performance, i.e., performance bottlenecks, often arise
due to resource saturation, resource contention, or microservice
application misconfiguration [19, 20, 43, 51], and do not necessarily
lead to errors or faults, making them difficult to detect.

Anomaly detection and bottleneck localization in MSA appli-
cations are challenging for various reasons. Firstly, bottlenecks
can manifest in different ways, impacting one or more microser-
vices, even propagating across microservices over time and sus-
taining even after the source of anomaly is mitigated [19, 23, 50].
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This exacerbates bottleneck localization, multiplies the engineer-
ing hours needed to mitigate with time, and delays the restoration
of applications’ performance. Secondly, the effect of performance
anomalies (e.g., host interference) differs across microservices. For
example, two microservices hosted on the same node that is experi-
encing CPU saturation will react differently in terms of degradation
depending on how compute-bound the microservices are. This
necessitates solutions that learn the unique characteristics of the
microservices. Thirdly, complex interactions among the microser-
vices can complicate bottleneck localization. The dynamicity that
arises from asynchronous calls, caching, queues, feature additions,
deprecations, and design changes can further complicate these in-
teractions. As such, the solution must utilize and learn from the
interactions of these microservices. Lastly, the absence of publicly
available datasets with metrics, traces, and logs containing multiple
bottlenecks from various sources has hindered the ability of re-
searchers to evaluate their methods for multi-bottleneck detection
and localization [28].

The key challenge, and the focus of this paper, is the presence of
multiple bottlenecks in MSA applications. Existing works, includ-
ing those in recent editions of The Web Conference, have primarily
focused on single bottlenecks and have ignored the practical case of
multiple bottlenecks [34, 47, 58]. There are different ways in which
multiple bottlenecks can arise in practice.
• Multiple, independent bottlenecks arise in one or more microser-
vices. For example, a microservice responsible for logins could
be bottlenecked due to a sudden spike in user logins, while si-
multaneously, another microservice could be bottlenecked due to
resource contention at its host node. In such cases, all bottlenecks
must be (independently) detected and mitigated.

• Multiple, dependent bottlenecks arise in one or more microser-
vices, due to the same underlying problem. For example, if the un-
derlying VM that hosts multiple microservices is under resource
contention from different colocated VMs, then all microservices
on this VM can experience performance degradation.

• Multiple, cascading bottlenecks appear in sequence in multiple
microservices. For example, a database microservice that is ex-
periencing workload interference can result in request queues
building up in dependent microservices, causing their perfor-
mance to degrade as well. Undetected, these bottlenecks can
cascade to interacting microservices, increasing the number of
bottlenecks over time. In such cases, it is important to first detect
all bottlenecks, and then alleviate them to quickly revive the
application performance.
Prior works in this space have mainly focused on anomaly de-

tection [31, 58, 59] or providing solutions for single bottleneck
localization that cannot be easily adapted for multiple bottleneck
localization [18, 20, 22, 28, 34]. Even solutions that are capable (with
some effort) of detecting multiple bottlenecks are not evaluated on
traces or datasets with multiple bottlenecks [47]. FIRM [43] evalu-
ates multi-bottleneck localization [43] but is not effective (Section 4)
as it does not utilize the distributed traces to learn the complex in-
teractions among microservices. To the best of our knowledge, our
solution is the first work specifically designed with multi-bottleneck
anomaly detection and bottleneck localization for MSA in mind.

This work introduces and evaluates GAMMA, a novel model
to detect anomalies and multiple bottlenecks in web applica-
tions implemented using the microservices architecture. Specifi-
cally, GAMMA uses (a) an attention-based graph convolution net-
work to learn the complex interactions between microservices, (b) a
holistic multi-source end-to-end joint training framework to detect
the presence of bottlenecks in an explainable manner, and (c) a mix-
ture of experts to account for possibly multiple bottlenecks across
microservices.

In designing and evaluating GAMMA, this work makes the fol-
lowing key contributions:
(1) We present the design of GAMMA, a holistic multi-source end-

to-end joint training framework that learns complex interac-
tions between microservices using an attention-based graph
convolution trained over distributed traces of observable met-
rics (e.g., CPU and memory utilization), which are readily avail-
able in production systems [35]. Further, it uses a mixture of
experts to learn the unique characteristics of microservices and
account for possibly multiple bottlenecks across microservices.

(2) To evaluate GAMMA, we generate and open-source a dataset
consisting of around 40 million request traces [49].

(3) We evaluate GAMMA against existing techniques on the above
bottleneck dataset; we also extend a seminal prior work [20]
created for localizing single bottlenecks to localize multiple
bottlenecks.

(4) We perform a detailed ablation study to understand and explain
the impact of telemetry on evaluation results.
Our experimental evaluation results show that GAMMA pro-

vides an F1 score of up to 0.92 and 0.89 for anomaly detection
and bottleneck localization, respectively. GAMMA significantly
exceeds the performance of prior works (3–4× improvement for
anomaly detection and 46% improvement for bottleneck localiza-
tion) based on deep learning, machine learning, and statistical tech-
niques, demonstrating its ability to detect multiple bottlenecks by
learning complex interactions in microservices architecture.

Our analysis reveals that the performance gap between GAMMA
and other baselines increases with the increasing complexity of
the evaluation scenario. While existing works perform reasonably
well when there is a single source of anomaly, their performance
drops when evaluated in scenarios consisting of multiple sources
of anomaly, unlike GAMMA. Further, while existing works can
perform better if they are separately trained on each source of
anomaly, GAMMA provides consistently better performance de-
spite not being trained separately on individual anomaly sources,
making GAMMA easier to deploy in practice. Finally, we show that
GAMMA can provide explainability with its bottleneck localization,
thereby aiding the bottleneck mitigation task.

2 RELATEDWORK
Related prior works can be broadly categorized into (a) anomaly
detection works, and (b) bottleneck localization (or root cause anal-
ysis) works. Since there are numerous prior works in these general
areas, we limit our discussion below to closely related works and
refer readers to relevant surveys for further detail [48].
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2.1 Anomaly Detection
DeepTraLog [59] uses a unified graph embedded with log events,
called trace event graphs, to represent the complex interaction
among microservices. It finds anomaly scores for each trace or re-
quest by training a gated graph neural network-based deep support
vector data description model on the trace event graphs. Trace-
VAE [58] is an unsupervised anomaly detection model that uses a
novel dual-variable graph variational autoencoder with Negative
Log-Likelihood (NLL) as the anomaly score. TraceAnomaly [31] is
an unsupervised anomaly detection system that uses novel trace
representation and deep Bayesian networks with posterior flow.
The model is trained offline periodically to learn normal patterns
in traces and then classifies traces as anomalous when they deviate
from these learned patterns.

2.2 Bottleneck Localization
Groot [55] is Ebay’s graph-based framework for bottleneck localiza-
tion in MSA applications. Groot constructs a causality graph with
events that include anomalies in metrics, abnormal log statements,
etc., as the nodes and causal links between these nodes are based
on domain knowledge. However, Groot requires domain knowl-
edge for creating links between nodes and additionally requires
continuous human involvement to track changes to the causal links
between nodes. CRISP [60] is Uber’s tool for critical path analysis
over traces from MSA applications which can be used for anomaly
detection and bottleneck localization. The critical paths in MSA,
however, are dynamic [43], requiring constant recomputation of
critical paths. Murphy [22] is an automated performance diagnosis
system that detects bottlenecks in complex enterprise environments
by monitoring data to define associations between entities in an
MSA application. However, Murphy uses a linear model that cannot
capture the complexities in production microservices [22, 23].

FIRM [43] proposes a Support Vector Machine (SVM) model for
detecting bottlenecks on the critical path in the call graph. The
SVMmodel is trained on hand-crafted features that capture the per-
critical-path and per-microservice performance variability. FIRM
only considers latency as a feature and also ignores the structural
information in the call graphs of the MSA application, limiting its
ability to detect multiple bottlenecks (as we show in Section 4.4).

Seer [20] is an online performance debugging system that lever-
ages deep learning to detect and mitigate bottlenecks in MSA. Seer
uses a hybrid network of Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) networks to learn spatial
and temporal patterns that lead to bottlenecks. However, analy-
sis of Alibaba’s production systems suggests that CNN-based ap-
proaches fail to characterize complex graph dynamics and do not
apply to real-world applications; instead, the authors suggest us-
ing GNNs [33]. Our evaluation of Seer on a dataset consisting of
multiple bottlenecks further substantiates this claim (Section 4.4).

𝜖-diagnosis [47] uses a threshold technique to detect anomalies
and distance correlation [53] to compare metrics of anomalous
traces and normal traces for localizing bottlenecks. The localization
algorithm runs on each microservice without utilizing any struc-
tural information available through distributed tracing. As we show
in Section 4.4, this and other drawbacks significantly impact the
performance of 𝜖-diagnosis in the case of multiple bottlenecks.

Figure 1: A simultaneous failure in machines M3 and M4 will
affect the RPC calls in the invocation chain while other RPC
calls in the call graph are not affected.

AutoMAP [34] relies on a heuristic algorithm using forward, self,
and backward random walks on a graph representing the interac-
tion between services to localize bottlenecks. Since it is a heuristic,
AutoMAP may not be accurate and can suffer for large call graph
sizes [6, 60]. B-MEG [50] is a two-staged graph-learning-based clas-
sifier that does anomaly detection and bottleneck localization in
the first and second stages, respectively. However, B-MEG is only
designed to detect single bottlenecks. Eadro [28] is a framework
that uses traces, logs, and metrics along with multiple models to
learn representations, which in turn are used to detect anomalies
and localize bottlenecks jointly. The framework, owing to the series
of models it uses, makes it difficult to interpret the results. Mi-
croCU [25] is a framework that uses API logs and Granger causal-
ity to detect bottlenecks. Ablation studies on the importance of
telemetry, traces, and logs in detecting bottlenecks reveals that logs
provide the least information to detect bottlenecks [28]. Sage [18]
uses a Causal Bayesian Network (CBN) to capture the dependencies
between microservices. However, the assumption in Sage that the
latency of non-leaf nodes in the call graph is determined by the
wait time of its child nodes might not always hold (e.g., when a
non-leaf child node is a message queue [33]). Moreover, Sage [18]
can only work on call graph DAGs (no cycles), but call graphs in
production systems have cycles [22, 33].

In summary, prior works provide solutions or evaluate their
solutions only for single bottlenecks [18, 20, 28, 34, 43, 47, 50, 55]
and do not fully utilize the rich telemetry and distributed tracing
that is part of the MSA [25, 35, 43, 47]. Our work, described next,
addresses this important gap by using a graph learning module to
understand the complex interaction among microservices and a
mixture of experts model to detect multiple bottlenecks effectively.

3 DESIGN OF GAMMA
Traditional bottleneck localization techniques (deep learning or
heuristic-based) often operate in a linear or isolated manner, failing
to capture the dependencies and interactions inherent in MSA [39].
Consider Figure 1, which shows a small subgraph of the entire social
network call graph fromDeathStarBench suite [19]. A simultaneous
failure in Machines 3 and 4 will impact the corresponding on-chain
RPC calls but will not affect the off-the-chain ones.

Graph Neural Networks (GNNs) are ideally suited to model such
intricacies in graphical data and to capture dependencies between
nodes [20, 50]. GNNs are designed to naturally assimilate and pro-
cess information from nodes and their respective neighborhoods
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Figure 2: Architectural overview of GAMMA.

in a graph. GNNs can also handle the complexities of enterprise
environments, especially cycles in the call graphs [57].

The key idea behind GAMMA is to understand patterns in call
graphs using inputs from multiple system metrics and the graph
dependency structure; this information can help identify the in-
terconnections among microservices and guide system diagnosis.
Figure 2 shows the architectural overview of GAMMA, which is
broadly divided into 4 stages: Multi-Source Temporal Embeddings
Learning, Graph-Representation Learning, Anomaly Classifier, and
Bottleneck Localizer.

3.1 Multi-Source Temporal Embeddings
Learning

Capturing temporal patterns helps to reveal the dynamic nature
of system performance, highlighting fluctuations and evolving
trends over time. Since bottlenecks may be induced due to episodic
anomalies in the system, analyzing temporal chunks allows us
to capture correlations and sequences across requests while also
providing macroscopic trends in the system for the anomalous
episodes [13, 59]. Multi-input temporal embeddings encapsulate the
spatio-temporal behavior of a system, providing a comprehensive
view of spatial relations and time-evolving patterns within a given
window. Consider a call-graph with 𝜂 microservices. For the mi-
croservices, we organize the system metrics into an 𝜂-dimensional
time-seriesM𝜂 . The system metrics (e.g., RPC latency, CPU usage)
act as our model features. We split the entire feature tensorM𝜂 into
windows of length 𝜏 , thus giving us window inputs of sizeM𝜂𝑥𝜏 .
The parameter 𝜏 is trainable and is decided based on validation met-
rics during training. Analyzing windows as opposed to individual
traces allows us to aggregate the temporal dynamics of the system.

The input tensor is processed using a Multivariate Temporal
Convolution Attention Network, which is designed to recognize
patterns over time. This network employs Dilated Causal Convolu-
tion (DCC), a method that efficiently captures relationships within
and between features over time. DCC is highly scalable, and it has
proven to be superior to traditional methods, like CNNs and LSTMs,
especially when predicting future events based on past data. For a
more detailed explanation of DCC, please refer to Appendix E.1.

3.2 Graph Representation Learning
In this stage, our goal is to understand the end-to-end status of
the MSA application and provide a detailed overview of the entire
system including the dependent interactions between the microser-
vices themselves. This requires three key actions: (1) merging the
multi-channel embeddings generated in the previous stage to get
concatenated embeddings for each microservice; (2) incorporat-
ing the microservice call-graph and the concatenated embeddings
to generate the dependency graph and microservice-level status
representations (node representations) for the application; and (3)
modeling this dependency graph. We begin by creating a directed
graph from the call-graph that illustrates how microservices are
interconnected. Next, we integrate the output embedding sourced
from earlier stages into unified node representations, showcasing
the status at the microservice-level. Information within this graph
is then channeled through a GNN, enabling the understanding of
neighboring interconnections and interactions.

3.2.1 Generating the Dependency Graph. The process of extracting
a call graph from microservices traces can be systematically under-
stood by visualizing microservices as nodes and their invocations
as directed edges. A dependency graph 𝐺 = {𝑉 , 𝐸} can be derived
from traces, where 𝑉 denotes the set of nodes with |𝑉 | = 𝑀 , with
𝑀 being the total number of distinct microservices. 𝐸 represents
the set of edges; an edge 𝑒𝑎,𝑏 = (𝑣𝑎, 𝑣𝑏 ) ∈ 𝐸 indicates a directed re-
lationship from node 𝑣𝑎 to node 𝑣𝑏 , implying that the microservice
associated with node 𝑣𝑏 has made an invocation to that associated
with node 𝑣𝑎 at least once in recorded history.

Since it is essential for us to calculate temporal representations of
microservices that capture both inter- and intra-feature correlations
for our inputs, we concatenate our embeddings at an intermediate
stage before we generate our dependency graph [26, 28]. Studies
in cross-modal learning [27, 32, 38] hint that intermediate fusion
tends to be more effective for processing temporal representations.
Initially, we concatenate ([·∥·]) the representations of each mi-
croservice acquired from the prior phase, ensuring comprehensive
data retention. The resulting tensor is then projected on a lower
dimensional subspace by passing it through a fully-connected layer
and subsequently passed through a Gated Linear Unit to fuse the
representations while controlling for vanishing gradients and in-
creasing resiliency to gradient forgetting [15]. The microservice
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levels concatenated embeddings O𝜂×𝜖 serve as node embeddings
for the GNN with each node 𝜂𝑛 having the embedding vector O𝜖𝜂𝑛 .

3.2.2 Graph-Attention Network. We employ the Graph Attention
Network (GAT) [12], a specialized GNN variant that offers several
advantages in the context of microservices [28]. Unlike traditional
GNNs, GAT is capable of learning node and edge representations
while dynamically assigning importance weights to neighboring
nodes. This attention mechanism ensures that the network can
focus on more influential or anomalous microservices, potentially
acting as communication hubs or displaying abnormal behavior
patterns. The local representation O𝜖𝜂𝑛 encapsulates the feature set
for individual nodes. The model digests this information and learns
a holistic representation of the entire graph. For a more detailed
explanation of Graph Attention, please refer to Appendix E.2.

3.3 Detection and Localization
In the final phase, GAMMA performs two functions: it predicts if a
given observation window indicates an anomaly (anomaly detec-
tion), and if so, it discerns which microservices are the root cause
(bottleneck localization). Contrary to traditional approaches [20, 43]
which treat anomaly detection and bottleneck localization as sepa-
rate functionalities, GAMMA adopts a holistic approach to leverage
the knowledge of the inter-related functionalities.

Leveraging the earlier acquired representation O𝜁 , an initial de-
tector performs a binary assessment to ascertain the presence of any
anomalies. If the outcome is negative, GAMMA directly presents
the results. However, if an anomaly is detected, a subsequent lo-
calizer arranges the microservices in order of their likelihood to
be the origin of the issue. This two-step mechanism, comprising
the detector and the localizer, employs multiple experts comprising
of connected neural networks followed by a binary classifier. Each
microservice in the call-graph has a dedicated expert assigned to
predict if the microservice is bottlenecked or not. Both these com-
ponents, the detector and localizer, are trained in tandem with a
shared goal. The model’s primary focus is to curtail the total binary
cross-entropy loss of the detector (𝜆𝑑 ) and localizer (𝜆𝑙 ). The joint
loss function is given as:

𝜆𝑡𝑜𝑡𝑎𝑙 = 𝛼 · 𝜆𝑙 +
∑︁
𝑘∈𝜂

(1 − 𝛼 )
𝜂

· 𝜆𝑘 , (1)

where 𝜆𝑙 =
∑
𝑘∈𝜂 𝜆𝑘 ; and 𝛼 is a hyperparameter to tune the con-

tribution of 𝜆𝑙 and 𝜆𝑑 towards the total loss. Should an anomaly
be detected, GAMMA outputs a binary vector of 0s and 1s which
predicts the bottleneck and non-bottlenecked microservices. We
defer the details of hyperparameter tuning to Appendix C.

4 EVALUATION
We now present our experimental evaluation results for GAMMA
under various bottleneck scenarios. We also compare GAMMA’s
performance with that of recent works on bottleneck localization.

4.1 Experimental Setup
We evaluate GAMMA on a cluster of 17 VMs (4 vCPUs, 8GB mem-
ory) managed by Kubernetes. The VMs are synchronized via NTP
for accurate measurements. The metrics (CPU, memory, network)

are collected via Prometheus [44], while Jaeger [4] collects dis-
tributed traces. To generate a variety of bottlenecks, we use a CPU
load generator [2] and stress-ng tool to generate interferences on
one or more host VMs. This generates multi-bottlenecks of varying
intensities and duration that may overlap in time.

We use the popular social networking benchmark from Death-
StarBench [19] that consists of 28 microservices implementing
several features of real-world social networking applications. The
constituent microservices are Nginx, Memcached, MongoDB, Redis,
as well as microservices that implement the logic of the application.
The workload consists of Compose requests that create a post, User
requests that read the timeline of other users, and Home requests
that read the user’s own timeline. We use wrk2 [7] to generate
workloads of different intensities. We benchmark the application to
find the peak load (800 requests per second, or RPS) beyond which
it is unstable. We use different intensities in the range of 100–800
RPS. We deploy monitoring services like Prometheus and Jaeger on
a separate VM to avoid unintended interference. We provide more
details about the social networking application in Appendix A.

4.2 Dataset Creation
A key contribution of this work is constructing a dataset for re-
search on anomaly detection and multi-bottleneck localization.
Prior works have noted that existing public traces [42] on anomaly
detection and bottleneck localization only contain single, severe
bottlenecks that are not representative of real-world scenarios [50].
When such a bottleneck is introduced, the resulting latency in-
creases by an order of magnitude (100×), making it trivial to detect
that singe bottleneck using a simple grid search or threshold-based
approaches.

To create a more realistic dataset that includes traces with mul-
tiple bottlenecks at different intensities, we carefully benchmarked
the social networking application under different interference in-
tensities and duration of interference. We chose intensities and
duration values that degrade the application performance but do
not cause any faults or errors that can be trivially detected. We
induced interference on different VMs at different times and also
simultaneously. A single VM could be induced with different types
of interference (e.g., CPU and memory), resulting in the hosted
microservices experiencing a mixture of interference patterns. The
resulting dataset consists of around 40 million request traces along
with corresponding time series of CPU, memory, I/O, and network
metrics. The dataset also includes application, VM, and Kubernetes
logs. Appendix D provides additional information about the dataset.
We have open-sourced the dataset [49] to facilitate further research
in the area of performance management of microservices.

4.3 Metrics and Baselines
For evaluation of anomaly detection and bottleneck localization,
we use the following performance metrics:
• Recall is the ratio of true positive predictions to the total number
of positive data points. It measures how many of the positive
data points were classified as positive by the model. A high recall
is essential for MSA-based web application deployments as it is
important to detect all anomalies and bottlenecks.
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(a) Compose request type.
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(c) Home request type.

Figure 3: F1 score, Recall, and Precision for anomaly detection over the entire dataset.

• Precision is the ratio of true positive predictions to the total posi-
tive predictions. It measures how many of the data points that
were classified positive by the model are actually positive. A high
precision is desirable as it implies fewer engineer hours wasted
investigating false positives.

• F1 score is the harmonic mean of precision and recall. It is a metric
that balances the trade-off between precision and recall.

We experimentally compare the performance of GAMMA with
the following state-of-the-art baselines from recent works:
(1) FIRM is a framework that uses SVM and hand-crafted features

to localize bottlenecks on the critical path. We use Scikit-learn
library [41] to implement FIRM’s SVM model.

(2) 𝜖-diagnosis performs both anomaly detection and bottleneck
localization. It uses a simple threshold scheme for anomaly de-
tection and distance correlation for bottleneck localization. We
use the dcor [46] library to implement the 𝜖-diagnosis’ localiza-
tion module.

(3) Seer is an online bottleneck localization framework that uses
CNN and LSTM to learn spatial and temporal features, respec-
tively, to recognize patterns that lead to anomalies. We imple-
ment Seer using Pytorch [40].

(4) Seer* is our modified version of Seer for multi-bottleneck local-
ization which works by adapting softmax to individual binary
classification for each microservice in the call-graph and replac-
ing cross-entropy loss with hinge-loss [14].
To evaluate 𝜖-diagnosis and FIRM on multi-bottleneck data, we

run these baselines on all the microservices serially. Since the orig-
inal Seer model cannot be directly applied for multi-bottleneck
localization, we evaluate how well it localizes the most dominant
bottlenecked microservice. We tune the hyperparameters of all
baselines and present the best results in our evaluation.

4.4 Results
4.4.1 Aggregate results for anomaly detection. We start by evaluat-
ing GAMMA and the baselines using our entire dataset (with all
resource bottleneck traces). Figure 3 shows the F1 score, Recall, and
Precision for anomaly detection using the entire trace dataset for
GAMMA and 𝜖-diagnosis. Note that 𝜖-diagnosis is the only baseline
among those considered that does anomaly detection. Starting with
Figure 3a, which shows the results when analyzing Compose traces,
we see that GAMMA provides significantly better results than 𝜖-
diagnosis. The F1 score, Recall, and Precision values for GAMMA
are 0.91, 0.89, and 0.94, respectively.

By contrast, the corresponding values for 𝜖-diagnosis are lower
by 78%, 87%, and 6%, respectively. We do observe that 𝜖-diagnosis
achieves reasonable Precision because of the low confidence thresh-
old that its localizer uses, which ensures the quality of predictions.
Recall, from Section 2, that 𝜖-diagnosis does not leverage any struc-
tural information about the application, thus losing out on impor-
tant information. Further, 𝜖-diagnosis uses a static threshold to
detect anomalies. While this threshold might work well for scenar-
ios where only a single, severe performance bottleneck exists, this
static threshold does not adapt to the more realistic case of multiple,
different bottlenecks. In fact, when we evaluated 𝜖-diagnosis for
the simpler, pathological dataset where a single bottleneck exists
that causes performance to degrade significantly [43], 𝜖-diagnosis
resulted in near-perfect F1 scores. This underscores the difficulty
in anomaly detection when multiple bottlenecks exist.

Results are similar for User (Figure 3b) and Home (Figure 3c)
requests, with GAMMA significantly outperforming 𝜖-diagnosis
and achieving high performance values. Specifically, in Figure 3b,
GAMMA’s F1 score (0.91) is 355% higher than that of 𝜖-diagnosis
(0.20). Likewise, in Figure 3c, GAMMA’s F1 score (0.92) is 441%
higher than that of 𝜖-diagnosis (0.17). We note that User and Home
requests have smaller call graphs than Compose. Additionally, Com-
pose has asynchronous calls, caches, queues, and other complexities,
that are inherent in MSA applications, making Compose a popular
choice for analysis in prior works [28, 43]. While we experimented
with all request types, due to lack of space, we will primarily focus
on the complex Compose request type in our results.

4.4.2 Aggregate results for bottleneck localization. Figure 4 shows
our results for the more challenging bottleneck localization task
using the entire trace dataset for GAMMA and all baselines. Across
all request types, GAMMA outperforms all other baselines for all
performance metrics. In particular, GAMMA achieves a high F1 score
of 0.83–0.87 across Figures 4a–4c. Further, GAMMA also achieves
a high Recall of 0.77–0.84 and a high Precision of 0.90–0.92 across
all subfigures.

Starting with Figure 4a, we see that GAMMA outperforms all
other baselines under all metrics. GAMMA achieves an F1 score,
Recall, and Precision of 0.83, 0.77, and 0.91, respectively. 𝜖-diagnosis
again performs poorly, with an F1 score of only 0.1; this is due to the
weaknesses of 𝜖-diagnosis identified above which limit its accuracy
for the multi-bottleneck scenario.

FIRM performs better than 𝜖-diagnosis, but still only achieves
an F1 score of 0.57 compared to the 0.83 (46% higher) obtained
by GAMMA. This is likely because FIRM does not leverage the
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Figure 4: F1 score, Recall, and Precision for bottleneck localization over the entire dataset.
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Figure 5: Bottleneck localization results by interference type.
structural information in the call graphs of the MSA application
or resource metric timelines, unlike GAMMA. We note that FIRM
can perform quite well if we only consider single bottleneck traces,
again highlighting the challenge of dealing with multiple bottle-
necks.Whenwe evaluated FIRM for the simpler, pathological dataset
where a single, severe bottleneck exists [43], FIRM resulted in a
much higher F1 score of 0.83 with a Recall and Precision of about
0.7 and 0.9, respectively.

Seer also performs poorly, with an F1 score of only 0.16. This
is to be expected, however, as the unmodified Seer only focuses
on localizing one bottleneck. Since real-world request traces may
contain multiple bottlenecks (e.g., our traces contain as many as 12
bottlenecks each), Seer’s performance is limited. To account for this
shortcoming, we extended Seer to Seer* by replacing softmax in
the prediction layer with individual binary classification for every
microservice in the call graph, and then replaced cross-entropy loss
with hinge-loss [14], as discussed in Section 4.3. With this extension,
Seer* performs better, with an F1 score of 0.51. However, this is still
significantly below GAMMA’s F1 score of 0.83. We believe this is
because while Seer* does leverage multiple neural network models,
it does not make use of GNNs, which are ideally suited to MSA
application call graphs [33]. As we show later in Table 3, the GNN
component of GAMMA is crucial for good performance.

The results for User (Figure 4b) and Home (Figure 4c) request
types are qualitatively similar to that of Compose in Figure 4a, with
GAMMA outperforming all other baselines for all metrics.

4.4.3 Results per bottleneck source. We now evaluate GAMMA and
the baselines by separately training and testing over traces that
contain bottlenecks from a specific source (CPU, Memory, Network,
CPU+Memory). This will allow us to assess the performance under
specific bottleneck types. Figure 5 shows the F1 score for GAMMA
and all baselines for bottleneck localization (under Compose request

type) separated by the interference type that creates the bottleneck.
(GAMMA continues to be significantly better than 𝜖-diagnosis for
anomaly detection so we omit those results.)

Across all subfigures, we see that GAMMA is always superior to
the other baselines with an F1 score of at least 0.77 and as much as
0.89 (for Network interference type). However, the performance of
each baseline does differ across the subfigures. For example, FIRM
performs much better when the bottlenecks are caused by CPU
interference as opposed to other interference types. Seer* has the
opposite behavior, with performance being close to that of GAMMA
for non-CPU interference types, but worse for CPU interference.
This suggests that specific baselines may perform better if they
are separately trained for each source of bottleneck. However, this
is tedious in practice. By contrast, GAMMA shows consistently
good performance whether it is trained on each interference type
(Figure 5) or more efficiently trained once on all interference types
(Figure 4).

4.4.4 Overhead analysis. To compare the overhead of GAMMA and
the baselines, we computed the average inference time across all
traces for the combined tasks of anomaly detection and bottleneck
localization, as applicable. Table 1 shows the overhead time in
seconds for processing each window; for Seer*, which operates at
the granularity of traces, we converted the times to per window by
normalizing by the average number of traces in a window.

GAMMA 𝜖-diagnosis FIRM Seer*
3.87 × 10−5 2.75 × 10−3 1.30 × 10−6 5.78 × 10−6

Table 1: Average inference time (seconds) per window.

We see that GAMMAhas amuch lower overhead than 𝜖-diagnosis,
but is slower than FIRM and Seer*. Given the design of GAMMA,
and its superior performance compared to FIRM and Seer*, we con-
sider the larger inference time as a trade-off between performance
and overhead. Regardless, we note that the overhead for GAMMA
per 1s window is only about 38.7𝜇s, representing a 0.004% overhead
for each second of window length.

4.4.5 Explainability of GAMMA. A key advantage of GAMMA is
its ability to not just localize bottlenecks, but also aid in identifying
the source of the bottlenecks. Utilizing multi-source data-based
approaches, such as GAMMA, offers a significant advantage over
other approaches that only rely on latency traces to identify and
localize bottlenecks. System metrics, such as CPU usage and net-
work congestion, can offer crucial insights, such as trends, thresh-
old breaches, and correlations, in detecting bottlenecks for large
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MSA applications. GAMMA effectively integrates multiple system
metrics with the microservice-dependency graph to understand
cross-modal and temporal patterns for system interactions. To high-
light this ability, we run GAMMA with different subsets of features.
The intuition is that the feature whose omission causes a significant
drop in performance is likely the source of the bottleneck.

Feature
Omitted

CPU inter-
ference

Memory in-
terference

CPU+Memory
interference

None 0.851 0.844 0.771
CPU 0.693 0.805 0.714
Memory 0.789 0.573 0.600
Network 0.919 0.838 0.764
CPU & Mem 0.646 0.459 0.438

Table 2: Illustrating GAMMA’s explainability by evaluating
F1 score when specific features are omitted from GAMMA.

The rows in Table 2 show the F1 score when GAMMA is run
with a specific subset of features for bottleneck localization. We
consider three different bottleneck source scenarios, one per col-
umn: bottlenecks caused by (a) only CPU interference, (b) only
Memory interference, and (c) CPU and Memory interference.

Starting with the only CPU interference scenario in the first
column, we see that GAMMA’s F1 score drops from 0.851 to 0.693
when the CPU feature is omitted, but only drops to 0.789 when the
Memory feature is omitted. When omitting the Network feature,
the F1 score actually increases to 0.919, suggesting that Network
feature data may be hurting performance in this case. Overall, the
results show that the CPU feature has a larger impact, suggesting
that CPU saturation is the source of the bottleneck. We see similar
trends across the other two columns in the table.

We acknowledge that the term “explainability” is broader than
our focus, as it provides the reasoning behind a model’s decision-
making process. By design, GAMMA can provide the probability
of confidence in its predictions since we essentially use binary
classification in the last stage for both the anomaly detector and
bottleneck localizer. For example, on average, the anomaly detector
has a probability of prediction close to 0.72 and 0.84 for traces
with memory and CPU interference, respectively. This probability
metric can be obtained at the trace level for anomaly detection and
bottleneck localization.

4.4.6 Ablation study for GAMMA. The GAMMA core model in-
volves a few stages, as discussed in Section 3. Two specific stages of
interest are the Graph Attention Network (which combines Graph
Convolution with an attention mechanism allowing nodes to ag-
gregate information from their most insightful neighbors) and Self
Attention in context of causal convolution (which allows a tem-
poral sequence to weigh the importance of its own past values).
The former provides the ability to capture the interactions between
microservices by leveraging the dependency structure. The latter
ensures that the 1D-convolution operation, which is inherently
local, is guided by a global understanding of the entire temporal
sequence, ensuring a context-aware feature extraction.

To validate our design choices, we performed an ablation study
by replacing the two specific stages of GAMMA with alternative
ones. Table 3 shows our results over the entire dataset. Comparing

Stage Omitted F1 score Recall Precision
None 0.830 0.87 0.83
Graph Attention 0.669 0.69 0.65
Self Attention 0.695 0.71 0.68

Table 3: Ablation study to highlight the importance of spe-
cific stages of GAMMA.

row 1 (GAMMA, as-is) and row 2 (GAMMA with Graph Attention
replaced with a standard fully-connected linear layer), we clearly
see that the performance numbers drop significantly, indicating
the importance of Graph Convolution in the design of GAMMA.
Similarly, comparing row 1with row 3 (GAMMAwith Self Attention
removed), we again see a drop in performance for all three metrics.
This highlights the significance of self-attention in the design of
GAMMA.

Wefind thatwhile replacingGATwith a linear layer, the dependency-
agnostic representations are not as helpful for localizing bottlenecks
as GAMMA loses the ability to factor-in the neighborhood interac-
tions in its inference. Removing self attention also has an adverse
effect on the performance of GAMMA as the model becomes my-
opic, limited by the filter-size of the convolution layers, and loses
its ability to hold long-term patterns.

5 CONCLUSION
Online web applications are increasingly adopting the microser-
vices architecture (MSA). While modular and flexible, MSA applica-
tions have numerous microservices that interact with each other
in complex ways, making it difficult to identify and pinpoint per-
formance bottlenecks. Further, since multiple bottlenecks can arise
independently or dependently for an MSA application, it is crucial
to accurately detect and localize all performance bottlenecks.

This work focuses on the key gap in this problem space—the
ability to detect multiple bottlenecks efficiently for MSA appli-
cations, a realistic use-case that has been mostly ignored by prior
works. Our solution framework, GAMMA, learns complex inter-
actions between microservices using graph neural networks and
integrates this with a mixture of experts to enable multiple bot-
tleneck localization. Evaluation results using the DeathStarBench
Social Networking application highlight the superiority of GAMMA
compared to several existing techniques. Further, our results show
that GAMMA can be trained efficiently and performs well across
bottleneck types, unlike existing techniques. Finally, GAMMA’s
model lends itself to explainability, making it practical for perfor-
mance diagnosis.

We believe that GAMMA’s graph-based model is inherently scal-
able due to the efficient handling of complex and large-scale inter-
connections between nodes (microservices) by GNNs. The modular
design also enables independent scaling of resources. However, a
thorough experimental evaluation is necessary to determine if any
design changes are required, and we plan to pursue this in the
future. Additionally, future work will involve experimental evalua-
tions to assess how well GAMMA adapts to changing operational
conditions in production environments.
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A BENCHMARKING APPLICATION
The social networking application and its three request types are
representative of microservices applications as they capture the
intricacies of microservices architecture. The social networking
application is widely used by prior works as a representative mi-
croservices application workload, including those on bottleneck lo-
calization [20, 43] and in characterization studies by cloud providers
such as Microsoft [5] and Google [3]. The application services both
read (home and user) and write requests (compose). The application
has Nginx, MongoDB, Memcached, Redis, RabbitMQ, synchronous
and asynchronous calls, and logic servers implemented using the
industry-standard Thrift framework [8]. The call graphs of these
three requests are different. The call graph of compose, home, and
user requests consists of 28, 7, and 9 nodes, respectively. The nodes
and the edges of these graphs vary significantly, too. There is also
variance in system characteristics. For example, the compose re-
quest call graph has queueing and asynchronous requests, whereas
the user request has multiple levels of caching.

B GAMMA IMPLEMENTATION DETAILS
The anomaly detector is a binary classifier consisting of a 2-layer
feed-forward and a softmax. The 2-layer feed-forward network
processes and refines the input representations. The refined rep-
resentations are passed to the softmax layer, which provides the
likelihood of traces being anomalous. The motivation for choosing
this design for the anomaly detector is recently published works
for multi-task learning, such as AdaShare [52] and DynaShare [45],
which use a hard share framework for multi-task learning. The bot-
tleneck localizer is a mixture of expert (MoE) binary classifiers with
one binary classifier for each microservice. The binary classifier
consists of a 2-layer feed-forward network and a softmax layer. The
input to each classifier is the same intermediate representations,
but each expert is trained to capture the unique characteristics of
the assigned microservice. The choice of a mixture of experts for
this stage is motivated/influenced by recent works on MoE, such
as SPNet [17] and MEID [29], which use an MoE setup for a multi-
label classification task. The dimensions of the networks in both
the anomaly detector and the bottleneck localizer depend on the
number of nodes (microservices) in the call graph.

C GAMMA HYPERPARAMETERS
𝛼 is the hyperparameter that decides the contribution of the losses of
anomaly detection and bottleneck localizer in the joint loss function.
A higher value of 𝛼 would imply the model focuses onmaking fewer
errors during anomaly detection as the penalty for such errors is
high. On the other hand, a lower value of 𝛼 would mean the model
focuses on making fewer errors during the bottleneck localization.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://databank.illinois.edu/datasets/IDB-6738796
https://www.usenix.org/conference/osdi20/presentation/qiu
https://doi.org/10.1109/CVPRW59228.2023.00477
https://doi.org/10.1016/j.softx.2023.101326
https://doi.org/10.1016/j.softx.2023.101326
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1145/3501297
https://doi.org/10.1145/3501297
https://doi.org/10.34740/KAGGLE/DSV/7638732
https://doi.org/10.34740/KAGGLE/DSV/7638732
https://doi.org/10.1145/3491204.3527494
https://doi.org/10.1145/3491204.3527494
https://doi.org/10.1109/ACSOS55765.2022.00029
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1145/2741948.2741975
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1002/smr.2467
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2467
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1145/3543507.3583215
https://doi.org/10.1145/3510003.3510180
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou


GAMMA: Graph Neural Network-Based Multi-Bottleneck Localization for Microservices Applications WWW ’24, May 13–17, 2024, Singapore, Singapore

For all three call graphs (compose, user, home), we start with 𝛼 =0.5,
providing equal weights for both tasks. We change 𝛼 in steps of
0.05 and observe the training and validation loss. We observe that
values 0.2, 0.25, and 0.35 provide the best results for compose, user,
and home requests. This shows that penalizing errors for the harder
task of localizing bottlenecks provides the best overall result.

The parameter 𝜏 represents the window size the input vector
is split into. Ideally, an optimal window size would be one that is
(a) large enough to have enough data points in them to capture
temporal patterns since this allows us to see relative changes in
latency and resource usage in the window, and (b) small enough that
the data points in the window are not too noisy and are relatively
cohesive. Hence, there is scope for tuning the window size. We
looked at the validation loss for separate models trained for window
sizes starting from 0.5 seconds to 5 seconds, at 0.5 seconds intervals.
We found that a window size of 1 second gave the lowest validation
loss.

D DATASET
The train, validation, and test split was 70%, 10%, and 20%, respec-
tively, for all the graphs (compose, home, and user). So, overall,
around 28M, 4M, and 8M traces were used for training, validation,
and testing, respectively.

The proportion of normal and anomalous traces in the dataset
is 63% and 37% (the proportion of normal traces in prior works
ranges from 2% to 50%). The percentage distribution of the number
of bottlenecks (N) among all the windows is given in Table 4.

N Proportion (%)
0 63
1 5
2 3
3 5
4 4
5 13
6 3
10 1
12 3

Table 4: Distribution of bottlenecks in the dataset.

E GAMMA DESIGN
In this section, we describe some of the components of GAMMA.

E.1 Dilated Causal Convolution
The dilated causal convolution for a feature vectorM𝜂𝑥𝜏 is

O(𝜂, 𝑘, 𝑞) =
∑︁
𝜂

∑︁
𝜏+𝛿 ·𝑠=𝑞

M(𝜂, 𝜏) ×𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑠), (2)

whereM(𝜂, 𝜏) is the input tensor, O(𝜂, 𝑘, 𝑞) are the multi-channel
output embeddings, 𝑘 × 𝑞 represent the Convolution filters, 𝛿 is
the expansion factor, and𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘, 𝑠) is the filter size for 𝜂 output
channels. Self-attention is then applied on the input embedding
tensorM𝜂𝑥𝜏 , as:

𝐴𝑡𝑡𝑛(M) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑊𝑞M · (𝑊𝑘O)𝑇√

𝑑
𝑊𝑣M

)
, (3)

where𝑊𝑞 ,𝑊𝑘 and,𝑊𝑣 are trainable hyperparameters and 𝑑 is an
empirical scaling factor. This phase outputs multi-channel embed-
dings with latent representation O𝜂×𝑘×𝑞 .

E.2 Graph Attention
Dynamic edge weights, integral to the attention mechanism, are
formulated as per Equation (4), ensuring an understanding of mi-
croservice interactions.

𝜔𝑎,𝑏 =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝜈𝑇 [𝑊O𝜖𝑎 | |𝑊O𝜖𝑏 ]))∑

𝑘∈N𝑎 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝜈𝑇 [𝑊O𝜖𝑎 | |𝑊O𝜖𝑘 ]))
, (4)

where 𝜔𝑎,𝑏 is the computed weight of edge ®𝑒𝑎,𝑏 , N𝑎 is the set of
neighbor nodes for node 𝑎; O𝜖𝑎 is the intermediate node representa-
tion of node 𝑎;𝑊 ∈ R𝐸𝐺×𝐸 and 𝜈 ∈ R𝐸𝐺 are trainable parameters.
𝐸𝐺 is the shape of the output representation. The impact of all the
neighboring nodes 𝑏 on node 𝑎 is calculated as follows:

�̂�𝜖
𝑎 = 𝑅𝑒𝐿𝑈 (

∑︁
𝑏∈N𝑎

𝜔𝑎,𝑏𝑊O
𝜖
𝑏
) (5)

Global Attention Pooling [11] is then performed on the node repre-
sentations to generate dependency-aware embeddings O𝜁 .
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