
CSE 230
Intermediate Programming 

in C and C++
Classes and Data Abstraction 

Fall 2017
Stony Brook University

Instructor: Shebuti Rayana
http://www3.cs.stonybrook.edu/~cse230/
Ref. Book: C How to Program, 8th edition by Deitel and Deitel



Constant Objects
■ The principle of “least privilege” can be applied to 

objects that are not modifiable.
■ The keyword const may be used to indicate that an 

object will not be modified after it is initialized.  
■ Example: 

const Time noon(12, 0, 0);   
■ C++ disallow any member function calls for const

objects unless the functions themselves are declared 
const. This includes the get functions as well.

■ A function is specified both in its prototype and in its 
definition by inserting const after the parameter list. 

■ Example:        
int Time::getHour() const {return hour;}  

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 2



Constant Objects (cont.)
■ An interesting problem arises for constructors 

and destructors, each of which often needs to 
modify objects.

■ A constructor must be allowed to modify an 
object so that the object can be initialized 
properly. 

– A constructor is a non-constant member function that 
can be used to initialize a constant object.

■ A destructor must be able to perform its 
termination housekeeping chores before an 
object is destroyed.

■ The const declaration is not allowed for 
constructors and destructors.

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 3



const Data Member
■ A member constructor is used to initialize a private const data 

member.  
■ The format is as follows: 
className::constructorName (parameter list)

:  privateDataName( value ) 

{ other statements }

■ For example: 
Increment::Increment(int c, int i)

: increment( i )

{ count = c;}

■ All data members (including non-const) can be initialized using 
member constructor. For multiple initializations, include them in a 
comma-separated list after the colon. 

■ For example: 
Increment::Increment(int c, int i) : increment(i), 

count(c) { }
Shebuti Rayana (CS, Stony Brook University) (c) Pearson 4



Composition of Objects 
■ A class can have objects of other classes as 

members.  
■ Whenever an object is created, its constructor 

is called, so we need to specify how arguments 
are passed to member-objects constructors. 

■ Member objects are constructed in the order 
in which they are declared (not in the order 
they are listed in the constructor’s initializer 
list).

■ Objects are constructed from the inside out 
and destructed in the reverse order. 

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 5



Friend Function
■ A friend function of a class is defined outside that class’s 

scope, yet has the right to access private members of the 
class.

■ A function or an entire class may be declared to be a 
friend of another class. 

■ Using friend functions can enhance performance and it is 
often appropriate when a member function can not be 
used for certain operations.

■ To declare a friend function, precede the function 
prototype with the keyword friend.

■ To declare classTwo as a friend of classOne, place a 
declaration of the following form in the definition of 
classOne:  

friend class classTwo;  
■ Friendship is granted (not taken) and is neither symmetric 

nor transitive.  
Shebuti Rayana (CS, Stony Brook University) (c) Pearson 6



Using this
■ Every object has access to its own address 

through a pointer called this.   
■ An object’s this pointer is not part of the object 

(has no effect in the sizeof. Rather, this is 
passed into the object (by the compiler) as an 
implicit first argument on every non-static
member function.

■ The this pointer is implicitly used to reference 
both the data members and member functions 
of an object. It can also be used explicitly.

■ The type of the this pointer depends on type of 
object. 

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 7



Dynamic Memory Allocation
■ In C:

TypeName *typeNamePtr;
typeNamePtr = malloc(sizeof(TypeName));

■ In C++ use new typeName to create a new space:
double *somePtr = new double(3.14);
int *arrayPtr = new int[10];
char *str = new char[20];

■ Use delete typeName to destroy an allocated space:  
delete somePtr; 
delete [ ] arrayPtr; // [ ] for arrays

■ new and delete automatically call the class constructor 
and destructor respectively.  

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 8



Static Class Members
■ Each object of a class has its own copy of all the 

data members of the class. 
■ A static class variable is shared by all objects of a 

class and it represents “class-wide” information (i.e. 
a property of the class, not of a specific object).  

■ A static data member must be initialized once at file 
scope.

■ Although static data members may seem like global 
variables, but they have class scope.

■ A static member function has no this pointer and 
referring to it is a syntax error. 

■ The member function may be declared static if it 
does not access non-static class data members and 
member functions.  

Shebuti Rayana (CS, Stony Brook University) (c) Pearson 9


