cse547, math547 DISCRETE MATHEMATICS

Professor Anita Wasilewska

LECTURE 10

```
4ロ>4吕〉4三>4 \巨\> 三
```


CHAPTER 2 SUMS

Part 1: Introduction - Lecture 5
Part 2: Sums and Recurrences (1) - Lecture 5
Part 2: Sums and Recurrences (2) - Lecture 6
Part 3: Multiple Sums (1) - Lecture 7
Part 3: Multiple Sums (2) - Lecture 8
Part 3: Multiple Sums (3) General Methods - Lecture 8a
Part 4: Finite and Infinite Calculus (1) - Lecture 9a
Part 4: Finite and Infinite Calculus (2) - Lecture 9b
Part 5: Infinite Sums- Infinite Series - Lecture 10

CHAPTER 2 SUMS

Part 5: Infinite Sums- Infinite Series - Lecture 10

Infinite Sums (Series)

We extend now the notion of a finite sum $\sum_{k=1}^{n} a_{k}$ to an infinite sum

$$
\sum_{n=1}^{\infty} a_{n}
$$

For a given a sequence $\left\{a_{n}\right\}_{n \in N-\{0\}}$, i.e the sequence

$$
a_{1}, a_{2}, a_{3}, \ldots a_{n}, .
$$

we consider a following (infinite) sequence

$$
S_{1}=a_{1}, \ldots, \quad S_{n}=\sum_{k=1}^{n} a_{k}, \quad S_{n+1}=\sum_{k=1}^{n+1} a_{k},
$$

and define the infinite sum as follows

Infinite Sum Definition

Definition 1

If the limit of the sequence $\left\{S_{n}=\sum_{k=1}^{n} a_{k}\right\}_{n \in N-\{0\}}$ exists we call it an infinite sum of the sequence $\left\{a_{n}\right\}_{n \in N-\{0\}}$
We write it as

$$
\Sigma_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

The sequence $\left\{S_{n}\right\}_{n \in N-\{0\}}$ is called its sequence of partial sums

Infinite Sum Definition

Definition 2

If the limit $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite, i.e.

$$
\lim _{n \rightarrow \infty} S_{n}=S
$$

then we say that the infinite sum $\sum_{n=1}^{\infty} a_{n}$ converges to S and we write

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=S
$$

otherwise the infinite sum diverges

Observation

Observation 1

In a case when all elements of the sequence

$$
\left\{a_{n}\right\}_{n \in N-\{0\}}
$$

are equal 0 starting from a certain $k \geq 1$
the infinite sum $\sum_{n=1}^{\infty} a_{n}$ becomes a finite sum

The infinite sum is a generalization of the finite one, and this is why we keep the similar notation

Example 1

Example 1

The infinite sum of a geometric sequence $a_{n}=x^{k}$ for $x \geq 0$, i.e. the sum
$\sum_{n=1}^{\infty} x^{n}$ converges if and only if $|x|<1$

It is true because
$\sum_{k=1}^{n} x^{k}=S_{n}=\frac{x-x^{n+1}}{1-x}=\frac{x\left(1-x^{n}\right)}{1-x} \quad$ and

$$
\lim _{n \rightarrow \infty} \frac{x\left(1-x^{n}\right)}{1-x}=\lim _{n \rightarrow \infty} \frac{x}{1-x}\left(1-x^{n}\right)=\frac{x}{1-x} \quad \text { iff }|x|<1
$$

Moreover

$$
\Sigma_{n=1}^{\infty} x^{k}=\frac{x}{1-x}
$$

More Examples

Example 2

The series $\sum_{n=1}^{\infty} 1$ diverges to ∞ as

$$
S_{n}=\sum_{k=1}^{n} 1=n
$$

and

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} n=\infty
$$

More Examples

Example 3

The infinite sum $\quad \sum_{n=0}^{\infty}(-1)^{n}$ diverges

Proof

We use the Perturbation Method

$$
S_{n}+a_{n+1}=a_{0}+\sum_{k=0}^{n} a_{k+1}
$$

to eveluate

$$
S_{n}=\sum_{k=0}^{n}(-1)^{k}=\frac{1+(-1)^{n}}{2}=\frac{1}{2}+\frac{(-1)^{n}}{2}
$$

and we prove that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{(-1)^{n}}{2}\right) \quad \text { does not exist }
$$

More Examples

Example 4

The infinite sum $\quad \sum_{n=0}^{\infty} \frac{1}{(k+1)(k+2)}$ converges to 1 ; i.e.

$$
\Sigma_{n=0}^{\infty} \frac{1}{(k+1)(k+2)}=1
$$

Proof: first we evaluate $S_{n}=\sum_{k=0}^{n} \frac{1}{(k+1)(k+2)}$ as follows

$$
\begin{gathered}
S_{n}=\sum_{k=0}^{n} \frac{1}{(k+1)(k+2)}=\sum_{k=0}^{n} k \frac{-2}{}=\sum_{k=0}^{n+1} k-2 \delta k \\
=-\left.\frac{1}{k+1}\right|_{0} ^{n+1}=-\frac{1}{n+2}+1
\end{gathered}
$$

and

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}-\frac{1}{n+2}+1=1
$$

Definition

Definition 3

For any infinite sum (series)

$$
\sum_{n=1}^{\infty} a_{n}
$$

a sum (series)

$$
r_{n}=\Sigma_{m=n+1}^{\infty} a_{m}
$$

is called its n-th remainder

Fact 1

Fact 1

If the infinite sum $\sum_{n=1}^{\infty} a_{n}$ converges, then so does its n-th remainder $r_{n}=\sum_{m=n+1}^{\infty} a_{m}$

Proof:

Assume that $\sum_{n=1}^{\infty} a_{n}$ converges
Let's denote $S_{n}=\sum_{m=1}^{n} a_{m}$ and we have that
$S=\lim _{n \rightarrow \infty} S_{n}=\Sigma_{m=1}^{\infty} a_{m}$
Observe that $r_{n}=S-\sum_{m=1}^{n} a_{m}=S-S_{n}$
By definition, r_{n} converges iff $\lim _{n \rightarrow \infty} r_{n}$ exists and is finite.
We evaluate
$\lim _{n \rightarrow \infty} r_{n}=S-\lim _{n \rightarrow \infty} S_{n}=S-S=0$
what ends the proof

General Properties of Infinite Sums

Theorem 1

Theorem 1

If the infinite sum

$$
\sum_{n=1}^{\infty} a_{n} \text { converges, then } \lim _{n \rightarrow \infty} a_{n}=0
$$

Proof: observe that $a_{n}=S_{n}-S_{n-1}$ and hence

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} S_{n}-\lim _{n \rightarrow \infty} S_{n-1}=0
$$

as $\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} S_{n-1}$

Theorem 1

Remark 1

The reverse statement to the Theorem 1, namely a statement

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=0 \text { then } \sum_{n=1}^{\infty} a_{n} \text { converges }
$$

is not always true as there are infinite sums with the term converging to zero that are not convergent
Observe that Theorem 1 can be re-written as follows
Theorem 1

$$
\text { If } \lim _{n \rightarrow \infty} a_{n} \neq 0 \text { then } \sum_{n=1}^{\infty} a_{n} \text { diverges }
$$

Example 5

Example 5

The infinite harmonic sum $H=\sum_{n=1}^{\infty} \frac{1}{n}$
DIVERGES to ∞, even if its -th term converges to 0 , i.e. $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$

The infinite harmonic sum provides an example of an infinite diverging sum $\sum_{n=1}^{\infty} a_{n}$, such that $\lim _{n \rightarrow \infty} a_{n}=0$

Properties

Definition 4

Infinite sum

$$
\sum_{n=1}^{\infty} a_{n}
$$

is bounded if its sequence of partial sums

$$
S_{n}=\sum_{k=1}^{n} a_{k}
$$

is bounded; i.e.
there is a number $M \in R$ such that $S_{n}<M$, for all $n \in N$

Fact 2
Every convergent infinite sum is bounded

Properties

Theorem 2

If the infinite sums

$$
\sum_{n=1}^{\infty} a_{n}, \quad \sum_{n=1}^{\infty} b_{n} \quad \text { converge }
$$

then the following properties hold.

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n},
$$

and

$$
\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}, \quad c \in R
$$

Alternating Infinite Sums

Definition

Definition 5

An infinite sum

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}, \text { for } a_{n} \geq 0
$$

is called alternating infinite sum (alternating series)
Example 6
Consider

$$
\sum_{n=1}^{\infty}(-1)^{n+1}=1-1+1-1+.
$$

If we group the terms in pairs, we get

$$
(1-1)+(1-1)+\ldots=0
$$

but if we start the pairing one step later, we get

$$
1-(1-1)-(1-1)-\ldots . .=1-0-0-0-\ldots=1
$$

Alternating Series

The Example 6 shows that grouping terms in a case of infinite sum can lead to inconsistencies (contrary to the finite case)

Look also example on page 59 of our BOOK

We need to develop some strict criteria for manipulations and convergence/divergence of alternating series

Alternating Series Theorem

Theorem 3

Given an alternating infinite sum

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

such that

1. $a_{n} \geq 0$, for all n
2. sequence $\left\{a_{n}\right\}$ is decreasing. i.e.

$$
a_{1} \geq a_{2} \geq a_{3} \geq \ldots
$$

3. $\quad \lim _{n \rightarrow \infty} a_{n}=0$

Then the sum $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges, i.e.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=S
$$

Moreover the partial sums $S_{n}=\sum_{k=1}^{n}(-1)^{k+1} a_{k} \quad$ fulfill the condition

$$
S_{2 n} \leq \sum_{n=1}^{\infty}(-1)^{n+1} a_{n} \leq S_{2 n+1}
$$

for all $n \in N^{+}$

Alternating Series Theorem Proof

Proof

Evaluate

$$
\begin{gathered}
S_{2(n+1)}=S_{2 n+2}=\sum_{k=1}^{2 n+2}(-1)^{k+1} a_{k} \\
=\sum_{k=1}^{2 n}(-1)^{k+1} a_{k}+(-1)^{2 n+2} a_{2 n+1}+(-1)^{2 n+3} a_{2 n+2} \\
=S_{2 n}+\left(a_{2 n+1}-a_{2 n+2}\right)
\end{gathered}
$$

By 2. we know that sequence $\left\{a_{n}\right\}$ is decreasing hence $a_{2 n+1}-a_{2 n+2} \geq 0$ and so

$$
S_{2 n+2} \geq S_{2 n}
$$

i.e we proved that the sequence of $S_{2 n}$ is increasing

Alternating Series Theorem Proof

We are going to prove now that the sequence of $S_{2 n}$ is also bounded

Observe that

$$
\begin{gathered}
S_{2 n}=a_{1}-a_{2}+a_{3}-a_{4}++(-1)^{2 n+1} a_{2 n} \\
=a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)+\ldots-a_{2 n}
\end{gathered}
$$

By 2. $a_{k}-a_{k+1} \geq 0$ for $k=2,3, \ldots, 2(n-1)$ and by 1. $a_{2 n} \geq 0$, so $-a_{2 n} \leq 0$ and we get that

$$
S_{2 n} \leq a_{1}
$$

what proves that $S_{2 n}$ is bounded

Alternating Series Theorem Proof

We know that any bounded and increasing sequence is is convergent, so we proved that $S_{2 n}$ converges
Let denote $\quad \lim _{n \rightarrow \infty} S_{2 n}=g$
To prove that

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=\lim _{n \rightarrow \infty} S_{n}
$$

converges we have to show now that also

$$
\lim _{n \rightarrow \infty} S_{2 n+1}=g
$$

Observe that $S_{2 n+1}=S_{2 n}+a_{2 n+1}$ and we get

$$
\lim _{n \rightarrow \infty} S_{2 n+1}=\lim _{n \rightarrow \infty} S_{2 n}+\lim _{n \rightarrow \infty} a_{2 n+1}=g
$$

as we assumed in 3. that $\lim _{n \rightarrow \infty} a_{n}=0$

Alternating Series Theorem Proof

We proved that the sequence $S_{2 n}$ is creasing
We prove, in a similar way (exercise!) that the sequence $\left\{S_{2 n+1}\right\}$ is decreasing
Hence

$$
S_{2 n} \leq \lim _{n \rightarrow \infty} S_{2 n}=g=\Sigma_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

and

$$
S_{2 n+1} \geq \lim _{n \rightarrow \infty} S_{2 n+1}=g=\Sigma_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

what means that

$$
S_{2 n} \leq \sum_{n=1}^{\infty}(-1)^{n+1} a_{n} \leq S_{2 n+1}
$$

It ends the proof of the Theorem 3

Example

Example 7

Consider the ANHARMONIC series (infinite sum)

$$
A H=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} . .
$$

Observe that $a_{n}=\frac{1}{n} \geq 0, \frac{1}{n} \geq \frac{1}{n+1}$ i.e. $a_{n} \geq a_{n+1}$, for all n , and $\lim _{n \rightarrow \infty} a_{n}=0$
So the assumptions of the Theorem 3 are fulfilled for AH and hence AH converges
In fact, it is proved (by analytical methods, not ours) that

$$
A H=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=\ln 2
$$

Example

A series (infinite sum)

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}
$$

converges by Theorem 3
Proof is similar to the one in the Example 7
It also is proved (by analytical methods, not ours) that

$$
\Sigma_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}=\frac{\pi}{4}
$$

and hence we have that

$$
\pi=\sum_{n=0}^{\infty}(-1)^{n} \frac{4}{2 n+1}
$$

Generalization of Theorem 3

Theorem 4 ABEL Theorem

IF a sequence $\left\{a_{n}\right\}$ fulfils the assumptions of the
Theorem 3 i.e.

1. $a_{n} \geq 0$, for all n
2. sequence $\left\{a_{n}\right\}$ is decreasing, i.e.

$$
a_{1} \geq a_{2} \geq a_{3} \geq \ldots
$$

3. $\quad \lim _{n \rightarrow \infty} a_{n}=0$
and an infinite sum (converging or diverging)
4. $\sum_{n=1}^{\infty} b_{n}$ is bounded,

THEN the infinite sum

$$
\sum_{n=1}^{\infty} a_{n} b_{n}
$$

always converges.
Observe that Theorem 3 is a special case of Theorem 4 when $b_{n}=(-1)^{n+1}$

Convergence of Infinite Sums with Positive Terms

Infinite Sums with Positive Terms

We consider now infinite sums with all its terms being positive real numbers, i.e.

$$
S=\sum_{n=1}^{\infty} a_{n}
$$

for

$$
a_{n} \geq 0, \quad a_{n} \in R
$$

Observe that if all $a_{n} \geq 0$, then the sequence $\left\{S_{n}\right\}$ of partial sums $S_{n}=\sum_{k=1}^{n} a_{k}$ is increasing, i.e.

$$
S_{1} \leq S_{2} \leq \ldots \leq S_{n}
$$

and hence the $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite or is ∞

Infinite Sums with Positive Terms

We have just proved the following theorem Theorem 5
The infinite sum

$$
S=\sum_{n=1}^{\infty} a_{n}, \quad \text { for } \quad a_{n} \geq 0, \quad a_{n} \in R
$$

always converges, or diverges to ∞

Comparing the Series with Positive Terms

Theorem 6 Comparing the series
Let $\sum_{n=1}^{\infty} a_{n}$ be an infinite sum and $\left\{b_{n}\right\}$ be a sequence such that

$$
0 \leq b_{n} \leq a_{n} \quad \text { for all } \mathrm{n}
$$

If the infinite sum $\sum_{n=1}^{\infty} a_{n}$ converges
then $\sum_{n=1}^{\infty} b_{n}$ also converges and

$$
\sum_{n=1}^{\infty} b_{n} \leq \sum_{n=1}^{\infty} a_{n}
$$

Application of the Theorem 6: we can prove the convergence of a series $\sum_{n=1}^{\infty} b_{n}$ by bounding the sequence b_{n} by a certain sequence a_{n} such that $0 \leq b_{n} \leq a_{n}$ and we know that $\sum_{n=1}^{\infty} a_{n}$ converges

Proof of Theorem 6

Proof

Let us denote

$$
S_{n}=\sum_{k=1}^{n} a_{k}, \quad T_{n}=\sum_{k=1}^{n} b_{k}
$$

As $0 \leq b_{n} \leq a_{n}$ we get that $T_{n} \leq S_{n}$
But we know that the series S_{n} converges, hence

$$
S_{n} \leq \lim _{n \rightarrow \infty} S_{n}=\Sigma_{n=1}^{\infty} a_{n}=S
$$

So we get that

$$
T_{n} \leq S_{n} \leq \leq \lim _{n \rightarrow \infty} S_{n}=\Sigma_{n=1}^{\infty} a_{n}=S
$$

Proof of Theorem 6

The inequality

$$
T_{n} \leq S
$$

means that the sequence $\left\{T_{n}\right\}$ is a bounded sequence (by S) with positive terms, hence the sequence $T_{n}=\sum_{k=1}^{n} b_{k}$ converges, i.e.

$$
\lim _{n \rightarrow \infty} T_{n}=T=\sum_{n=1}^{\infty} b_{n}
$$

We hence proved that the series $\sum_{n=1}^{\infty} b_{n}$ converges But we have also proved that $T_{n} \leq S_{n}$, hence

$$
\lim _{n \rightarrow \infty} T_{n} \leq \lim _{n \rightarrow \infty} S_{n}
$$

which means that

$$
\sum_{n=1}^{\infty} b_{n} \leq \sum_{n=1}^{\infty} a_{n}
$$

what ends the proof

Example

Example 9

Use Theorem 6 to prove that the series,

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

converges

We prove by analytical methods that it converges to $\frac{\pi^{2}}{6}-1$, i.e.

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}=\frac{\pi^{2}}{6}-1
$$

Here we prove only that it does converge

Example 9 Solution

First observe that the series below converges to 1, i.e.

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

Consider

$$
\begin{aligned}
S_{n} & =\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3} \ldots+\frac{1}{n(n+1)} \\
& =\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1}
\end{aligned}
$$

so we get
$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1$

Example 9 Solution

Now we observe (easy to prove) that

$$
\frac{1}{2^{2}} \leq \frac{1}{1 \cdot 2}, \quad \frac{1}{3^{2}} \leq \frac{1}{1 \cdot 3}, \cdots \cdot \frac{1}{(n+1)^{2}} \leq \frac{1}{n(n+1)}
$$

i.e. we proved that all assumptions of Theorem 6 hold, hence $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$ converges and moreover

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}} \leq \sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

and

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}} \leq 1
$$

D'Alambert's Criterium

Theorem 7 D'Alambert's Criterium

If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1$
then the series $\sum_{n=1}^{\infty} a_{n}$ converges

Proof of D'Alambert's Criterium

Proof

Let h be any number such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<h<1
$$

It means that there is k such that for any $n \geq k$ we have,

$$
\frac{a_{n+1}}{a_{n}}<h, \quad \text { i.e. } \quad a_{n+1}<a_{n} h
$$

Hence,

$$
\begin{aligned}
& a_{k+1}<a_{k} h, \quad a_{k+2}=a_{k+1} h<a_{k} h^{2}, \\
& a_{k+3}<a_{k} h^{3}, \quad a_{k+4}<a_{k} h^{4}, \quad a_{k+5}<a_{k} h^{5},, \ldots
\end{aligned}
$$

Proof of D'Alambert's Criterium

We have that all terms a_{n} of $\sum_{n=k}^{\infty} a_{n}$ are smaller than the terms of a converging (as $0<h<1$) geometric series

$$
\sum_{n=0}^{\infty} a_{k} h^{n}=a_{k}+a_{k} h+a_{k} h^{2}+\ldots
$$

By Theorem 6, the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

also converges

Cauchy's Criterium

Theorem 8 Cauchy's Criterium

If $\quad a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$
then the series $\sum_{n=1}^{\infty} a_{n}$ converges
Proof: We carry the proof in a similar way as the proof of D'Alambert Criterium

Proof of Cauchy's Criterium

Let h be any number such that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<h<1
$$

It means that there is k, such that for any $n \geq k$ we have $\sqrt[n]{a_{n}}<h$ i.e. $a_{n}<h^{n}$
This indicates that all terms a_{n} of $\sum_{n=k}^{\infty} a_{n}$ are smaller then the terms of a converging (as $0<h<1$) geometric series

$$
\sum_{n=k}^{\infty} h^{n}=h^{k}+h^{k+1}+h^{k+2}+\ldots
$$

By Theorem 6 the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

Divergence Criteria

Theorem 9 Divergence Criteria

If $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$
then the series $\sum_{n=1}^{\infty} a_{n}$ diverges

Proof of Divergence Criteria

Proof:

Assume that, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1$
Then for sufficiently large n we have that

$$
\frac{a_{n+1}}{a_{n}}>1 \text { and hence } a_{n+1}>a_{n}
$$

This means that a_{n} is strictly increasing sequence of positive numbers, so $\lim _{n \rightarrow \infty} a_{n} \neq 0$
By Theorem 1 the series $\sum_{n=1}^{\infty} a_{n}$ diverges
Theorem 1 says: if $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$

Proof of Divergence Criteria

Similarly, if $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1$
then for sufficiently large n , we have that

$$
\sqrt[n]{a_{n}}>1 \text { and hence } a_{n}>1
$$

So it must be that $\lim _{n \rightarrow \infty} a_{n} \neq 0$
By Theorem 1 the series $\sum_{n=1}^{\infty} a_{n}$ diverges
Theorem 1 says: if $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$

Convergence/Divergence

Table: Convergence/Divergence for $\sum_{n=1}^{\infty} a_{n}$

Cauchy Criterium D'Alembert's Criterium Convergence/Divergen

$$
\begin{array}{lll}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1 & \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}<1 & \text { Converges } \\
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}>1 & \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}>1 & \text { Diverges }
\end{array}
$$

Convergence/Divergence

Remark
It can happen that for a certain infinite sum $\sum_{n=1}^{\infty} a_{n}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}
$$

In this case our Divergence Criteria do not decide whether the infinite sum converges or diverges

We say in this case that that the infinite sum does not react on the criteria

There are other, stronger criteria for convergence and divergence

Examples

Example 10

The Harmonic series $H=\sum_{n=1}^{\infty} \frac{1}{n}$ does not react on
D'Alambert's Criterium (Theorem 7)
Proof: Consider
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)}=1$
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$ we say, that the Harmonic series

$$
H=\sum_{n=1}^{\infty} \frac{1}{n}
$$

does not react on D'Alambert's criterium

Examples

Example 11

The series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$ does not react on
D'Alambert's Criterium (Theorem 7)

Proof:

Consider, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(n+2)^{2}} \\
=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+4 n+1}=\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}+\frac{1}{n^{2}}}{1+\frac{4}{n}+\frac{4}{n^{2}}}=1
\end{array}
$$

Since, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$ we say, that the series

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

does not react on D'Alambert's criterium

Other Criteria

Remark

Both series

$$
\sum_{n=1}^{\infty} \frac{1}{n} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}
$$

do not react on D'Alambert's Criterium
but first series is divergent and the second is convergent
There are more criteria for convergence
Most known are Kumer's criterium and Raabe criterium

Infinite Sums (Series) EXAMPLES

Example 1

Example 1

$\sum_{n=1}^{\infty} \frac{c^{n}}{n!}$ converges for $c>0$
HINT : Use D'Alembert
Proof:

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{c^{n+1}}{c^{n}} \frac{n!}{(n+1)!} \\
& =\frac{c}{n+1}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{c}{n+1} \\
& =0<1
\end{aligned}
$$

By D'Alembert's Criterium

$$
\sum_{n=1}^{\infty} \frac{c^{n}}{n!} \quad \text { converges }
$$

Example 2

Example 2

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \quad \text { converges }
$$

Proof:

$$
\begin{aligned}
a_{n} & =\frac{n!}{n^{n}} \\
a_{n+1} & =\frac{n!(n+1)}{(n+1)^{n+1}} \\
\frac{a_{n}+1}{a_{n}} & =\frac{n!n^{(n+1)}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!} \\
& =(n+1) \cdot \frac{n^{n}}{(n+1)^{n+1}}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
(n+1)^{n+1} & =(n+1)^{n}(n+1) \\
\frac{a_{n}+1}{a_{n}} & =\frac{(n+1) n^{n}}{(n+1)^{n}(n+1)} \\
& =\left(\frac{n}{n+1}\right)^{n} \\
& =\frac{1}{\left(1+\frac{1}{n}\right)^{n}}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}} \\
& =\frac{1}{e}<1
\end{aligned}
$$

By D'Alembert's Criterium the series,

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \quad \text { converges }
$$

Exercise 1

Exercise 1

Prove that

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0 \quad \text { for } c>0
$$

Solution:

We have proved in Example 1

$$
\sum_{n=1}^{\infty} \frac{c^{n}}{n!} \text { converges for } c>0
$$

Exercise 1

Theorem 1 says:

$$
\text { IF } \sum_{n=1}^{\infty} a_{n} \text { converges THEN } \lim _{n \rightarrow \infty} a_{n}=0
$$

Hence by Example 1 and Theorem 1 we have proved that

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0 \text { for } c>0
$$

Observe that we have also proved that n ! grows faster than c^{n}

Exercise 2

Exercise 2

Prove that

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0 \quad \text { Hint }: \text { COMPLICATE IT! }
$$

Proof

By Example 2 we know that

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \quad \text { converges }
$$

Exercise 2

Theorem 1 says:

$$
\text { IF } \sum_{n=1}^{\infty} a_{n} \text { converges THEN } \lim _{n \rightarrow \infty} a_{n}=0
$$

Hence,

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0
$$

Example 3

Example 3 Harmonic Series

$$
H=\sum_{n=1}^{\infty} \frac{1}{n}
$$

does not react on D'Alembert Criterium
Proof

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{1}{n+1} \frac{n}{1}=\frac{n}{n+1}=\frac{1}{1+\frac{1}{n}} \\
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1
\end{gathered}
$$

Example 4

Example 4

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0, \quad \lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0
$$

Proof: From Example 1 and D'Alembert's Criteriumwe know that

$$
\sum_{n=1}^{\infty} \frac{c^{n}}{n!} \quad \text { converges }
$$

Example 4

By Example 2 and D'Alembert's Criterium we have that

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \text { converges }
$$

By Theorem 1

$$
\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0, \quad \lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0
$$

Example 5

Example 5

We know that the Harmonic Series

$$
\sum_{n=1}^{\infty} \frac{1}{n} \quad \text { diverges }
$$

Use this information and Cauchy Criterium to prove that,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

Example 5

Proof Sequence

$$
\begin{aligned}
& a_{n}=\sqrt[n]{n} \text { is for large } n \text { decreasing and } \\
& a_{n}>1
\end{aligned}
$$

Hence
$\lim _{n \rightarrow \infty} a_{n}$ exists and

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n} \geq 1
$$

Example 5

Assume

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sqrt[n]{n}>1 \quad \text { we get } \\
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n}}<1
\end{gathered}
$$

Cauchy Criterium says:
IF $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1$ THEN
$\sum_{n=1}^{\infty} a_{n}$ converges for $a_{n} \geq 0, a_{n} \in R$

Example 5

Hence by Cauchy Criterium

$$
\sum_{n=1}^{\infty} \frac{1}{n} \text { converges }
$$

This is a contradiction, as we know that the Harmonic Series diverges
Hence

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

Example 6

Example 6
We are going to show that the series

$$
\sum_{n=1}^{\infty} \frac{|x(x-1) \ldots(x-n+1)|}{n!} c^{n}
$$

converges for $0<c<1$ and $x \in R$

Example 6

Proof we evaluate

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{|x(x-1) \ldots(x-n)| \not c^{n} c}{n!(n+1)} \frac{n!}{|x(x-1) \ldots(x-n+1)| c^{n}} \\
=\frac{|x-n|}{n+1} \quad c=\frac{\left|\frac{x}{n}-1\right|}{1+\frac{1}{n}} c
\end{gathered}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=c
$$

Example 6

Hence, by D'Alambert Criterium the series

$$
\sum_{n=1}^{\infty} \frac{|x(x-1) \ldots(x-n+1)|}{n!} c^{n}
$$

converges for $0<c<1$ and $x \in R$

Example 7

Example 7

Prove that

$$
\lim _{n \rightarrow \infty} \frac{|x(x-1) \ldots(x-n+1)|}{n!} c^{n}=0 \quad 0<|c|<1
$$

Solution By Example 6, the series

$$
\sum_{n=1}^{\infty} \frac{|x(x-1) \ldots(x-n+1)|}{n!} c^{n}
$$

converges for $0<c<1$ and $x \in R$
Theorem 1 says:
IF $\sum_{n=1}^{\infty} a_{n}$ converges THEN $\lim _{n \rightarrow \infty} a_{n}=0$

Hence proved

Absolute and Conditional Convergence

Absolute Convergence

Definition

$\sum_{n=1}^{\infty} a_{n}$ converge absolutely iff $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges

Conditional Convergence

Definition

$$
\sum_{n=1}^{\infty} a_{n} \text { converges conditionally }
$$

if and only if
$\sum_{n=1}^{\infty} a_{n}$ converges, but not absolutely
i.e. when
$\sum_{n=1}^{\infty} a_{n}$ converges and $\sum_{n=1}^{\infty}\left|a_{n}\right|$ does not converge

Theorem

Theorem 10

IF $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, THEN it converges
Moreover

$$
\left|\sum_{n=1}^{\infty} a_{n}\right| \leq \sum_{n=1}^{\infty}\left|a_{n}\right|
$$

Examples

Example 8

Geometric series

$$
\sum_{n=0}^{\infty} a q^{n} \quad|q|<1
$$

converges absolutely because

$$
\sum_{n=1}^{\infty}\left|a q^{n}\right|
$$

converges

Examples

Example 9

The series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

converges absolutely for all x
We proved in Example 1 that it converges for $c>0$,
i.e $\quad c=|x|$

We prove by other methods that

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}
$$

Examples

Example 10

The Enharmonic series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}
$$

converges conditionally
True, because we proved that it converges and

$$
\left|(-1)^{n+1} \frac{1}{n}\right|=\frac{1}{n}=\left|a_{n}\right|
$$

and so

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|
$$

diverges

Finite and Infinite Commutativity

Finite Commutativity

We know that finite summation is commutative, i.e.

We have that

$$
\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} a_{i k}
$$

where
$a_{i k}$ is any permutation of $a_{1} \ldots a_{n}$

Infinite Commutativity

The Commutativity fails in the infinite case
For some infinite sums as we showed for example evaluating the infinite sum

$$
\sum_{k \geq 0}(-1)^{k}=\sum_{k=0}^{\infty}(-1)^{k}=1-1+1-1+1 \ldots \ldots \ldots
$$

in two ways (permutation)

Infinite Commutativity

By grouping (permutating) the sum factors in two different ways:

1. $\sum_{k=0}^{\infty}(-1)^{k}=(1-1)+(1-1)+\ldots=0$
2. $\sum_{k=1}^{\infty}(-1)^{k}=1-(1-1)-(1-1) \ldots=1$

Question: When and for which infinite sums commutativity holds and for which it fails

Infinite Commutativity

Let a_{n} be a sequence, $a_{m_{k}}$ is a sequence of permutations of a_{n}

Definition

A permutation of a set A is any function

$$
f: A \underset{\text { onto }}{1-1} A, \text { where } A \text { has any cardinality }
$$

In particular

$$
f: N \xrightarrow[\text { onto }]{1-1} N
$$

is a permutation of natural numbers and we denote

$$
f(n)=m_{n}
$$

Infinite Commutativity

Given an infinite series

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots
$$

The infinite series

$$
\sum_{k=1}^{\infty} a_{m_{k}}=a_{m_{1}}+a_{m_{2}}+\ldots
$$

is called its permutation

Infinite Commutativity Theorem

Theorem 11

Every absolutely convergent infinite sum is commutative, i.e.

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{m_{n}}
$$

for any permutation

$$
m_{1}, m_{2}, \ldots m_{n} \ldots
$$

of natural numbers

Infinite Commutativity Theorem

Theorem 11 is NOT TRUE for any convergent sum

We can get from a convergent ANHARMONIC series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}
$$

permutations that converges or diverges to ∞

Riemann Theorem

Theorem 12 Riemann Theorem

For any conditionally convergent infinite sum, we can transform it by permutation of its factors into a sum that diverges or
to a sum that converges to any limit (finite or infinite).

