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Infinite Sums (Series)

We extend now the notion of a finite sum Σn
k=1 ak to an

infinite sum
Σ∞n=1 an

For a given a sequence {an}n∈N−{0}, i.e the sequence

a1,a2,a3, ....an, ..

we consider a following (infinite) sequence
S1 = a1, ...., Sn = Σn

k=1 ak , Sn+1 = Σn+1
k=1 ak , .......

and define the infinite sum as follows



Infinite Sum Definition

Definition 1
If the limit of the sequence {Sn = Σn

k=1 ak}n∈N−{0}
exists we call it an infinite sum of the sequence
{an}n∈N−{0}

We write it as

Σ∞n=1 an = lim
n→∞

Sn = lim
n→∞

Σn
k=1 ak

The sequence {Sn}n∈N−{0} is called its sequence of
partial sums



Infinite Sum Definition

Definition 2
If the limit limn→∞Sn exists and is finite, i.e.

lim
n→∞

Sn = S

then we say that the infinite sum Σ∞n=1 an converges to
S and we write

Σ∞n=1 an = lim
n→∞

Σn
k=1 ak = S

otherwise the infinite sum diverges



Observation

Observation 1
In a case when all elements of the sequence

{an}n∈N−{0}

are equal 0 starting from a certain k ≥ 1
the infinite sum Σ∞n=1 an becomes a finite sum

The infinite sum is a generalization of the finite one, and
this is why we keep the similar notation



Example 1

Example 1
The infinite sum of a geometric sequence an = xk for
x ≥ 0, i.e. the sum
Σ∞n=1 xn converges if and only if | x |< 1

It is true because
Σn

k=1 xk = Sn = x−xn+1

1−x = x(1−xn)
1−x and

lim
n→∞

x(1−xn)

1−x
= lim

n→∞

x
1−x

(1−xn) =
x

1−x
iff | x |< 1

Moreover
Σ∞n=1xk =

x
1−x



More Examples

Example 2
The series Σ∞n=1 1 diverges to ∞ as

Sn = Σn
k=11 = n

and
lim

n→∞
Sn = lim

n→∞
n =∞



More Examples

Example 3
The infinite sum Σ∞n=0 (−1)n diverges
Proof
We use the Perturbation Method

Sn + an+1 = a0 +∑
n
k=0ak+1

to eveluate

Sn = Σn
k=0 (−1)k =

1 + (−1)n

2
=

1
2

+
(−1)n

2

and we prove that

lim
n→∞

(
1
2

+
(−1)n

2
) does not exist



More Examples

Example 4
The infinite sum Σ∞n=0

1
(k+1)(k+2) converges to 1; i.e.

Σ∞n=0
1

(k + 1)(k + 2)
= 1

Proof: first we evaluate Sn = Σn
k=0

1
(k+1)(k+2) as follows

Sn = Σn
k=0

1
(k + 1)(k + 2)

= Σn
k=0k−2 = Σn+1

k=0k−2
δk

=− 1
k + 1

∣∣n+1
0 =− 1

n + 2
+ 1

and
lim

n→∞
Sn = lim

n→∞
− 1

n + 2
+ 1 = 1



Definition

Definition 3
For any infinite sum (series)

Σ∞n=1an

a sum (series)
rn = Σ∞m=n+1 am

is called its n-th remainder



Fact 1

Fact 1
If the infinite sum Σ∞n=1an converges,
then so does its n-th remainder rn = Σ∞m=n+1 am

Proof:
Assume that Σ∞n=1an converges
Let’s denote Sn = Σn

m=1am and we have that
S = limn→∞Sn = Σ∞m=1am

Observe that rn = S −Σn
m=1am = S−Sn

By definition, rn converges iff limn→∞ rn exists and
is finite.
We evaluate
limn→∞ rn = S− limn→∞Sn = S−S = 0
what ends the proof



General Properties of Infinite Sums



Theorem 1

Theorem 1
If the infinite sum

Σ∞n=1an converges, then lim
n→∞

an = 0

Proof: observe that an = Sn−Sn−1 and hence

lim
n→∞

an = lim
n→∞

Sn − lim
n→∞

Sn−1 = 0

as limn→∞ Sn = limn→∞ Sn−1



Theorem 1

Remark 1
The reverse statement to the Theorem 1, namely a
statement

If lim
n→∞

an = 0 then Σ∞n=1an converges

is not always true as there are infinite sums with the term
converging to zero that are not convergent
Observe that Theorem 1 can be re-written as follows
Theorem 1

If lim
n→∞

an , 0 then Σ∞n=1an diverges



Example 5

Example 5
The infinite harmonic sum H = Σ∞n=1

1
n

DIVERGES to∞, even if its -th term converges to 0, i.e.
Σ∞n=1

1
n =∞ and limn→∞

1
n = 0

The infinite harmonic sum provides an example of an
infinite diverging sum Σ∞n=1an, such that limn→∞an = 0



Properties

Definition 4
Infinite sum

Σ∞n=1an

is bounded if its sequence of partial sums

Sn = Σn
k=1 ak

is bounded; i.e.
there is a number M ∈ R such that Sn < M, for all n ∈ N

Fact 2
Every convergent infinite sum is bounded



Properties

Theorem 2
If the infinite sums

Σ∞n=1an, Σ∞n=1bn converge

then the following properties hold.

Σ∞n=1(an + bn) = Σ∞n=1an + Σ∞n=1bn,

and

Σ∞n=1can = cΣ∞n=1an, c ∈ R



Alternating Infinite Sums



Definition

Definition 5
An infinite sum

Σ∞n=1(−1)n+1an, for an ≥ 0

is called alternating infinite sum (alternating series)

Example 6
Consider

Σ∞n=1(−1)n+1 = 1−1 + 1−1 + .

If we group the terms in pairs, we get

(1−1) + (1−1) + .... = 0

but if we start the pairing one step later, we get

1− (1−1)− (1−1)− ..... = 1−0−0−0− ... = 1



Alternating Series

The Example 6 shows that grouping terms in a case of
infinite sum can lead to inconsistencies (contrary to the
finite case)

Look also example on page 59 of our BOOK

We need to develop some strict criteria for manipulations
and convergence/divergence of alternating series



Alternating Series Theorem

Theorem 3
Given an alternating infinite sum

Σ∞n=1(−1)n+1an

such that
1. an ≥ 0, for all n
2. sequence {an} is decreasing. i.e.

a1 ≥ a2 ≥ a3 ≥ ....

3. limn→∞an = 0
Then the sum Σ∞n=1(−1)n+1an converges, i.e.

Σ∞n=1(−1)n+1an = S

Moreover the partial sums Sn = Σn
k=1(−1)k+1ak fulfill

the condition

S2n ≤ Σ∞n=1(−1)n+1an ≤ S2n+1

for all n ∈ N+



Alternating Series Theorem Proof

Proof
Evaluate

S2(n+1) = S2n+2 = Σ2n+2
k=1 (−1)k+1ak

= Σ2n
k=1(−1)k+1ak + (−1)2n+2a2n+1 + (−1)2n+3a2n+2

= S2n + (a2n+1−a2n+2)

By 2. we know that sequence {an} is decreasing
hence a2n+1−a2n+2 ≥ 0 and so

S2n+2 ≥ S2n

i.e we proved that the sequence of S2n is increasing



Alternating Series Theorem Proof

We are going to prove now that the sequence of S2n is
also bounded
Observe that

S2n = a1−a2 + a3−a4 + + (−1)2n+1a2n

= a1− (a2−a3)− (a4−a5) + ...−a2n

By 2. ak −ak+1 ≥ 0 for k = 2,3, . . . ,2(n−1) and by 1.
a2n ≥ 0, so −a2n ≤ 0 and we get that

S2n ≤ a1

what proves that S2n is bounded



Alternating Series Theorem Proof

We know that any bounded and increasing sequence is is
convergent, so we proved that S2n converges
Let denote limn→∞ S2n = g
To prove that

Σ∞n=1(−1)n+1an = lim
n→∞

Sn

converges we have to show now that also

lim
n→∞

S2n+1 = g

Observe that S2n+1 = S2n + a2n+1 and we get

lim
n→∞

S2n+1 = lim
n→∞

S2n + lim
n→∞

a2n+1 = g

as we assumed in 3. that limn→∞an = 0



Alternating Series Theorem Proof

We proved that the sequence S2n is creasing
We prove, in a similar way (exercise!) that the sequence
{S2n+1} is decreasing
Hence

S2n ≤ lim
n→∞

S2n = g = Σ∞n=1(−1)n+1an

and
S2n+1 ≥ lim

n→∞
S2n+1 = g = Σ∞n=1(−1)n+1an

what means that

S2n ≤ Σ∞n=1(−1)n+1an ≤ S2n+1

It ends the proof of the Theorem 3



Example

Example 7
Consider the ANHARMONIC series (infinite sum)

AH = Σ∞n=1 (−1)n+1 1
n

= 1− 1
2

+
1
3
− 1

4
..

Observe that an = 1
n ≥ 0, 1

n ≥
1

n+1 i.e. an ≥ an+1, for all
n, and limn→∞an = 0
So the assumptions of the Theorem 3 are fulfilled for AH
and hence AH converges
In fact, it is proved (by analytical methods, not ours) that

AH = Σ∞n=1(−1)n+1 1
n

= ln2



Example

A series (infinite sum)

Σ∞n=0(−1)n 1
2n + 1

= 1− 1
3

+
1
5
− 1

7
+

1
9

converges by Theorem 3
Proof is similar to the one in the Example 7
It also is proved (by analytical methods, not ours) that

Σ∞n=0(−1)n 1
2n + 1

=
π

4

and hence we have that

π = Σ∞n=0(−1)n 4
2n + 1



Generalization of Theorem 3

Theorem 4 ABEL Theorem
IF a sequence {an} fulfils the assumptions of the
Theorem 3 i.e.
1. an ≥ 0, for all n
2. sequence {an} is decreasing, i.e.

a1 ≥ a2 ≥ a3 ≥ ....

3. limn→∞an = 0
and an infinite sum (converging or diverging)
4. Σ∞n=1bn is bounded,

THEN the infinite sum

Σ∞n=1anbn

always converges.

Observe that Theorem 3 is a special case of Theorem 4
when bn = (−1)n+1



Convergence of Infinite Sums
with Positive Terms



Infinite Sums with Positive Terms

We consider now infinite sums with all its terms being
positive real numbers, i.e.

S =
∞

∑
n=1

an

for
an ≥ 0, an ∈ R

Observe that if all an ≥ 0, then the sequence {Sn} of
partial sums Sn = Σn

k=1ak is increasing, i.e.

S1 ≤ S2 ≤ ....≤ Sn

and hence the lim
n→∞

Sn exists and is finite or is ∞



Infinite Sums with Positive Terms

We have just proved the following theorem
Theorem 5
The infinite sum

S = Σ∞n=1an, for an ≥ 0, an ∈ R

always converges, or diverges to ∞



Comparing the Series with Positive Terms

Theorem 6 Comparing the series
Let Σ∞n=1an be an infinite sum and {bn} be a sequence
such that

0≤ bn ≤ an for all n

If the infinite sum Σ∞n=1an converges
then Σ∞n=1bn also converges and

Σ∞n=1bn ≤ Σ∞n=1an

Application of the Theorem 6: we can prove the
convergence of a series Σ∞n=1bn by bounding the
sequence bn by a certain sequence an such that
0≤ bn ≤ an and we know that Σ∞n=1an converges



Proof of Theorem 6

Proof
Let us denote

Sn = Σn
k=1ak , Tn = Σn

k=1bk

As 0≤ bn ≤ an we get that Tn ≤ Sn

But we know that the series Sn converges, hence

Sn ≤ lim
n→∞

Sn = Σ∞n=1an = S

So we get that

Tn ≤ Sn ≤ ≤ lim
n→∞

Sn = Σ∞n=1an = S



Proof of Theorem 6

The inequality
Tn ≤ S

means that the sequence {Tn} is a bounded sequence
(by S) with positive terms, hence the sequence
Tn = Σn

k=1bk converges, i.e.

lim
n→∞

Tn = T = Σ∞n=1bn

We hence proved that the series Σ∞n=1bn converges
But we have also proved that Tn ≤ Sn, hence

lim
n→∞

Tn ≤ lim
n→∞

Sn

which means that

Σ∞n=1bn ≤ Σ∞n=1an

what ends the proof



Example

Example 9
Use Theorem 6 to prove that the series,

Σ∞n=1
1

(n + 1)2

converges
We prove by analytical methods that it converges to
π2

6 −1, i.e.

Σ∞n=1
1

(n + 1)2 =
π2

6
−1

Here we prove only that it does converge



Example 9 Solution

First observe that the series below converges to 1, i.e.

Σ∞n=1
1

n(n + 1)
= 1

Consider

Sn =
1

1 ·2
+

1
2 ·3

....+
1

n(n + 1)

= (1− 1
2

) + (
1
2
− 1

3
) + ...(

1
n
− 1

n + 1
)

= 1− 1
n + 1

so we get
∞

∑
n=1

1
n(n + 1)

= lim
n→∞

Sn = lim
n→∞

(1− 1
n + 1

) = 1



Example 9 Solution

Now we observe (easy to prove) that

1
22 ≤

1
1 ·2

,
1
32 ≤

1
1 ·3

, .....
1

(n + 1)2 ≤
1

n(n + 1)
,

i.e. we proved that all assumptions of Theorem 6 hold,
hence Σ∞n=1

1
(n+1)2 converges and moreover

Σ∞n=1
1

(n + 1)2 ≤ Σ∞n=1
1

n(n + 1)

and
Σ∞n=1

1
(n + 1)2 ≤ 1



D’Alambert’s Criterium

Theorem 7 D’Alambert’s Criterium

If an ≥ 0 and lim
n→∞

an+1

an
< 1

then the series
∞

∑
n=1

an converges



Proof of D’Alambert’s Criterium

Proof
Let h be any number such that

lim
n→∞

an+1

an
< h < 1

It means that there is k such that for any n ≥ k we have,
an+1
an

< h, i.e. an+1 < anh

Hence,
ak+1 < akh, ak+2 = ak+1h < akh2,
ak+3 < akh3, ak+4 < akh4, ak+5 < akh5, , . . .



Proof of D’Alambert’s Criterium

We have that all terms an of Σ∞n=kan are smaller than
the terms of a converging (as 0 < h < 1) geometric series

Σ∞n=0akhn = ak + akh + akh2 + . . .

By Theorem 6, the series

Σ∞n=1an

also converges



Cauchy’s Criterium

Theorem 8 Cauchy’s Criterium

If an ≥ 0 and lim
n→∞

n√an < 1

then the series
∞

∑
n=1

an converges

Proof: We carry the proof in a similar way as the proof of
D’Alambert Criterium



Proof of Cauchy’s Criterium

Let h be any number such that

lim
n→∞

n√an < h < 1

It means that there is k, such that for any n ≥ k we have
n
√

an < h i.e. an < hn

This indicates that all terms an of
∞

∑
n=k

an are smaller

then the terms of a converging (as 0 < h < 1) geometric
series

Σ∞n=khn = hk + hk+1 + hk+2 + . . .

By Theorem 6 the series

Σ∞n=1an

must converge



Divergence Criteria

Theorem 9 Divergence Criteria

If an ≥ 0 and lim
n→∞

an+1

an
> 1 or limn→∞

n
√

an > 1

then the series
∞

∑
n=1

an diverges



Proof of Divergence Criteria

Proof:
Assume that, limn→∞

an+1
an

> 1
Then for sufficiently large n we have that

an+1

an
> 1 and hence an+1 > an

This means that an is strictly increasing sequence of
positive numbers, so lim

n→∞
an , 0

By Theorem 1 the series
∞

∑
n=1

an diverges

Theorem 1 says: if
∞

∑
n=1

an converges, then lim
n→∞

an = 0



Proof of Divergence Criteria

Similarly, if lim
n→∞

n√an > 1

then for sufficiently large n, we have that

n√an > 1 and hence an > 1

So it must be that lim
n→∞

an , 0

By Theorem 1 the series
∞

∑
n=1

an diverges

Theorem 1 says: if
∞

∑
n=1

an converges, then lim
n→∞

an = 0



Convergence/Divergence

Table: Convergence/Divergence for
∞

∑
n=1

an

Cauchy Criterium D’Alembert’s Criterium Convergence/Divergence

lim
n→∞

n√an < 1 lim
n→∞

an+1

an
< 1 Converges

lim
n→∞

n√an > 1 lim
n→∞

an+1

an
> 1 Diverges



Convergence/Divergence

Remark

It can happen that for a certain infinite sum
∞

∑
n=1

an

lim
n→∞

an+1

an
= 1 = lim

n→∞
n√an

In this case our Divergence Criteria do not decide
whether the infinite sum converges or diverges

We say in this case that that the infinite sum does not react
on the criteria
There are other, stronger criteria for convergence and
divergence



Examples

Example 10

The Harmonic series H =
∞

∑
n=1

1
n

does not react on

D’Alambert’s Criterium (Theorem 7)
Proof: Consider

lim
n→∞

an+1

an
= lim

n→∞

1
n+1

1
n

= lim
n→∞

1
(1 + 1

n )
= 1

Since lim
n→∞

an+1

an
= 1 we say , that the Harmonic series

H =
∞

∑
n=1

1
n

does not react on D’Alambert’s criterium



Examples

Example 11

The series
∞

∑
n=1

1
(n + 1)2 does not react on

D’Alambert’s Criterium (Theorem 7)
Proof:
Consider, lim

n→∞

an+1

an

lim
n→∞

an+1

an
= lim

n→∞

(n + 1)2

(n + 2)2

= lim
n→∞

n2 + 2n + 1
n2 + 4n + 1

= lim
n→∞

1 + 2
n + 1

n2

1 + 4
n + 4

n2

= 1

Since, lim
n→∞

an+1

an
= 1 we say , that the series

∞

∑
n=1

1
(n + 1)2

does not react on D’Alambert’s criterium



Other Criteria

Remark
Both series

Σ∞n=1
1
n

and Σ∞n=1
1

(n + 1)2

do not react on D’Alambert’s Criterium
but first series is divergent and the second is
convergent
There are more criteria for convergence
Most known are Kumer’s criterium and Raabe criterium



Infinite Sums (Series)
EXAMPLES



Example 1

Example 1

∞

∑
n=1

cn

n!
converges for c > 0

HINT : Use D′Alembert

Proof:

an+1

an
=

cn+1

cn
n!

(n + 1)!

=
c

n + 1



Example 1

lim
n→∞

an+1

an
= lim

n→∞

c
n + 1

= 0 < 1

By D’Alembert’s Criterium

∞

∑
n=1

cn

n!
converges



Example 2

Example 2

∞

∑
n=1

n!

nn converges

Proof:

an =
n!

nn

an+1 =
n!(n + 1)

(n + 1)n+1

an + 1
an

=
n! n(n+1)

(n + 1)n+1 .
nn

n!

= (n + 1) .
nn

(n + 1)n+1



Example 2

(n + 1)n+1 = (n + 1)n (n + 1)

an + 1
an

=
(n + 1) nn

(n + 1)n (n + 1)

= (
n

n + 1
)
n

=
1

(1 +
1
n

)n



Example 2

lim
n→∞

an+1

an
= lim

n→∞

1

(1 +
1
n

)n

=
1
e

< 1

By D’Alembert’s Criterium the series,

∞

∑
n=1

n!

nn converges



Exercise 1

Exercise 1
Prove that

lim
n→∞

cn

n!
= 0 for c > 0

Solution:
We have proved in Example 1

∞

∑
n=1

cn

n!
converges for c > 0



Exercise 1

Theorem 1 says:

IF
∞

∑
n=1

an converges THEN lim
n→∞

an = 0

Hence by Example 1 and Theorem 1 we have proved
that

lim
n→∞

cn

n!
= 0 for c > 0

Observe that we have also proved that n! grows faster
than cn



Exercise 2

Exercise 2

Prove that

lim
n→∞

n!

nn = 0 Hint : COMPLICATE IT!

Proof
By Example 2 we know that

∞

∑
n=1

n!

nn converges



Exercise 2

Theorem 1 says:

IF
∞

∑
n=1

an converges THEN lim
n→∞

an = 0

Hence,

lim
n→∞

n!

nn = 0



Example 3

Example 3 Harmonic Series

H =
∞

∑
n=1

1
n

does not react on D’Alembert Criterium
Proof

an+1

an
=

1
n + 1

n
1

=
n

n + 1
=

1

1 +
1
n

lim
n→∞

an+1

an
= 1



Example 4

Example 4

lim
n→∞

cn

n!
= 0, lim

n→∞

n!

nn = 0

Proof: From Example 1 and D’Alembert’s Criteriumwe
know that

∞

∑
n=1

cn

n!
converges



Example 4

By Example 2 and D’Alembert’s Criterium we have that

∞

∑
n=1

n!

nn converges

By Theorem 1

lim
n→∞

cn

n!
= 0, lim

n→∞

n!

nn = 0



Example 5

Example 5

We know that the Harmonic Series
∞

∑
n=1

1
n

diverges

Use this information and Cauchy Criterium to prove that,

lim
n→∞

n√n = 1



Example 5

Proof Sequence

an =
n√n is for large n decreasing and

an > 1

Hence

lim
n→∞

an exists and

lim
n→∞

n√n ≥ 1



Example 5

Assume

lim
n→∞

n√n > 1 we get

lim
n→∞

n

√
1
n

< 1

Cauchy Criterium says:

IF lim
n→∞

n√an < 1 THEN

∞

∑
n=1

an converges for an ≥ 0, an ∈ R



Example 5

Hence by Cauchy Criterium

∞

∑
n=1

1
n

converges

This is a contradiction, as we know that the Harmonic
Series diverges
Hence

lim
n→∞

n√n = 1



Example 6

Example 6
We are going to show that the series

∞

∑
n=1

|x(x−1)....(x−n + 1)|
n!

cn

converges for 0 < c < 1 and x ∈ R



Example 6

Proof we evaluate

an+1

an
=
|x(x−1)....(x−n)| 6 cnc

6 n!(n + 1)

6 n!

|x(x−1)....(x−n + 1)| 6 cn

=
|x−n|
n + 1

c =
|x
n
−1|

1 +
1
n

c

and
lim

n→∞

an+1

an
= c



Example 6

Hence, by D’Alambert Criterium the series

∞

∑
n=1

|x(x−1)....(x−n + 1)|
n!

cn

converges for 0 < c < 1 and x ∈ R



Example 7

Example 7
Prove that

lim
n→∞

|x(x−1)...(x−n + 1)|
n!

cn = 0 0 < |c|< 1

Solution By Example 6, the series
∞

∑
n=1

|x(x−1)....(x−n + 1)|
n!

cn

converges for 0 < c < 1 and x ∈ R
Theorem 1 says:

IF
∞

∑
n=1

an converges THEN lim
n→∞

an = 0

Hence proved



Absolute and Conditional Convergence



Absolute Convergence

Definition

∞

∑
n=1

an converge absolutely iff
∞

∑
n=1
|an| converges



Conditional Convergence

Definition
∞

∑
n=1

an converges conditionally

if and only if
∞

∑
n=1

an converges, but not absolutely

i.e. when

∞

∑
n=1

an converges and
∞

∑
n=1
|an| does not converge



Theorem

Theorem 10

IF
∞

∑
n=1

an converges absolutely , THEN it converges

Moreover

|
∞

∑
n=1

an| ≤
∞

∑
n=1
|an|



Examples

Example 8

Geometric series
∞

∑
n=0

aqn |q|< 1

converges absolutely because

∞

∑
n=1
|aqn|

converges



Examples

Example 9
The series

∞

∑
n=0

xn

n!

converges absolutely for all x
We proved in Example 1 that it converges for c > 0,
i.e c = |x |
We prove by other methods that

∞

∑
n=0

xn

n!
= ex



Examples

Example 10
The Enharmonic series

∞

∑
n=1

(−1)n+1 1
n

converges conditionally
True, because we proved that it converges and

|(−1)n+1 1
n
| =

1
n

= |an|

and so
∞

∑
n=1
|an|

diverges



Finite and Infinite Commutativity



Finite Commutativity

We know that finite summation is commutative, i.e.

We have that
n

∑
k=1

ak =
n

∑
k=1

aik

where
aik is any permutation of a1 . . . an



Infinite Commutativity

The Commutativity fails in the infinite case
For some infinite sums as we showed for example
evaluating the infinite sum

∑
k≥0

(−1)k =
∞

∑
k=0

(−1)k = 1−1 + 1−1 + 1........

in two ways (permutation)



Infinite Commutativity

By grouping (permutating) the sum factors in two
different ways:

1.
∞

∑
k=0

(−1)k = (1-1)+(1-1)+ . . . = 0

2.
∞

∑
k=1

(−1)k = 1-(1-1)-(1-1) . . . = 1

Question: When and for which infinite sums
commutativity holds and for which it fails



Infinite Commutativity

Let an be a sequence, amk is a sequence of
permutations of an

Definition

A permutation of a set A is any function

f : A 1-1−−→
onto

A , where A has any cardinality

In particular
f : N 1-1−−→

onto
N

is a permutation of natural numbers and we denote

f (n) = mn



Infinite Commutativity

Given an infinite series
∞

∑
n=1

an = a1 + a2 + a3 + . . .

The infinite series
∞

∑
k=1

amk = am1 + am2 + . . .

is called its permutation



Infinite Commutativity Theorem

Theorem 11
Every absolutely convergent infinite sum is
commutative, i.e.

∞

∑
n=1

an =
∞

∑
n=1

amn

for any permutation

m1, m2, . . . mn . . .

of natural numbers



Infinite Commutativity Theorem

Theorem 11 is NOT TRUE for any convergent sum

We can get from a convergent ANHARMONIC series

∞

∑
n=1

(−1)n+1 1
n

permutations that converges or diverges to ∞



Riemann Theorem

Theorem 12 Riemann Theorem

For any conditionally convergent infinite sum,
we can transform it by permutation of its factors
into a sum that diverges or
to a sum that converges to any limit ( finite or infinite).


