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Infinite Sums (Series)

We extend now the notion of a finite sum Y} . a, toan
infinite sum
nlq an

For a given a sequence {a,},-y_{o), i-€ the sequence

ai,as,as,....an,..

we consider a following (infinite) sequence

’
Si=ay, ..., Sp= 22:1 ag, Sn+1 = 2221 Ay eeennn
and define the infinite sum as follows



Infinite Sum Definition

Definition 1

If the limit of the sequence {Sp=X}_; a}nen—{0}
exists we call it an infinite sum of the sequence

{an}nen—qoy
We write it as

: H n
o0 n—oo

The sequence {Sp},cn—q0; s called its sequence of
partial sums



Infinite Sum Definition
Definition 2
If the limit lim,_.. S, exists and is finite, i.e.

n—oo

then we say that the infinite sum 7", a, converges to
S and we write

Y® . a,=IlimxX? ,a =8
n=1¢n= B k=1 k

otherwise the infinite sum diverges



Observation

Observation 1
In a case when all elements of the sequence

{an}nen—{o}

are equal O starting from a certain k > 1
the infinite sum >, a, becomes a finite sum

The infinite sum is a generalization of the finite one, and
this is why we keep the similar notation



Example 1

Example 1

The infinite sum of a geometric sequence a, = x* for
x >0, i.e. the sum

Y>>, x" converges ifandonlyif |x|<1

It is true because

¥ xk=8,= X;fz(“ = X(tjn) and
ox(1—=x" . )
g G =m0 = e
Moreover X
Z?IO:-]Xk =

1—x



More Examples
Example 2
The series ¥;°, 1 divergesto co as
Sn — 2221 1 =n

and

lim S,= lim n=oc
n—oo n—oo



More Examples

Example 3

The infinite sum >7°, (—1)" diverges
Proof

We use the Perturbation Method

n
Sn+an+1 == ao +Zkzoak+1
to eveluate

14 (-1)" 1
Sn=io (=5 = 37

and we prove that

—_
—~

: —1)" .
nl|_>moo(§+ 5 ) does not exist




More Examples

Example 4
The infinite sum Z?f:om convergesto 1; i.e.

. 1
Ok N(k+2)

Proof: first we evaluate S,=X]_; 77z as follows

’
Sn=2] 07— = Lok 2 =X k=2 5k
"R (k1) (k+2) T TR0 =0
. 1 n+1 1
= Tkeilo T a2l

and '
im Sp= lm —+1=1

n—o0 n—oo N+ 2



Definition
Definition 3
For any infinite sum (series)
XpZqan
a sum (series)

_ o0
I'n= Zm:n+1 am

is called its n-th remainder



Fact 1

Fact 1
If the infinite sum X%°,a, converges,
then so does its n-th remainder r,=%7 ., am

Proof:

Assume that ¥7°,a, converges

Let's denote S,=X] ,an andwe have that
S=IliMpsoeec Sh=2%%_1am

Observethat r,=S —X) _,an=5-5,

By definition, r, converges iff lim, .. r, exists and
is finite.

We evaluate

Mo M=S—liMpec SH=S-5S=0

what ends the proof



General Properties of Infinite Sums



Theorem 1

Theorem 1

If the infinite sum
Y2 ia@n converges, then lim a,=0

n—oo

Proof: observe that a,=S,— S,_1 and hence
lim a,= lim S, — Im S,_1=0
n—oo n—oo n—oo

as ||mni>oo Sn — Ilmng)oc Sn,‘|



Theorem 1

Remark 1

The reverse statement to the Theorem 1, namely a
statement

If lima,=0 then X,°,a, converges

n— o0

is not always true as there are infinite sums with the term
converging to zero that are not convergent
Observe that Theorem 1 can be re-written as follows

Theorem 1

If lim a,#0 then X;°,a, diverges
n—oo



Example 5

Example 5
The infinite harmonic sum H=5x> 1
DIVERGES to oo, evenifits -th term converges to 0, i.e.

co 1 __ ' . 1 _
Y05 =00 and Ilmnﬁxn—o

The infinite harmonic sum provides an example of an
infinite diverging sum ¥7°.a,, suchthat lim,..a,=0



Properties

Definition 4

Infinite sum
Yhi1an

is bounded if its sequence of partial sums

Sn= Zﬂ:1 Ay

is bounded; i.e.
there is a number Mc R suchthat S, <M, forall ne N

Fact 2
Every convergent infinite sum is bounded



Properties

Theorem 2
If the infinite sums

> “¢an, x,_4bp converge

then the following properties hold.

n=t(@n+bn) =XpZ1an + T2 bn,

and

Y ,cap=cxy’qan, C€R



Alternating Infinite Sums



Definition
Definition 5
An infinite sum
> (-1)™a,, for a,>0

is called alternating infinite sum (alternating series)

Example 6
Consider
Pl O D L I R A

n=1
If we group the terms in pairs, we get

(1-1)+(1-1)+...=0

but if we start the pairing one step later, we get
1—(1=1)—(1=1)—...=1-0—-0—-0—..=1



Alternating Series

The Example 6 shows that grouping terms in a case of
infinite sum can lead to inconsistencies (contrary to the
finite case)

Look also example on page 59 of our BOOK

We need to develop some strict criteria for manipulations
and convergence/divergence of alternating series



Alternating Series Theorem

Theorem 3
Given an alternating infinite sum

et (=1 )n+1 an

such that

1. a, >0, foralln

2. sequence {a,} is decreasing. i.e.
ay>a>ay> ..

3. limp—o0@n =0

Then thesum x>, (—1)""'a, converges, i.e.

£y (-1)" =S

Moreover the partial sums S, =37_,(—1)"a, fuffil
the condition

Son < T4 (—1)"a, < Sopyq

forall ne N*



Alternating Series Theorem Proof

Proof
Evaluate
So(ni1) = Senve = TaME(—1) gy
=20 (1) ag + (—1)2" P agnr + (—1)°"Pazn2

= Son+ (82n+1 — @2n42)
By 2. we know that sequence {a,} is decreasing
hence as,.1—asn2>0 andso

Sony2 > Sop

i.e we proved that the sequence of Sy, is increasing



Alternating Series Theorem Proof

We are going to prove now that the sequence of S, is
also bounded

Observe that
Sop=ay—a+a—as+ + (—1 )2n+1 aon

=a1—(a—az)—(as—as)+...—aop

By 2. ax—ax.1>0 for k=2,3,...,2(n—1) andby 1.
asn, > 0,80 —ax, <0 and we get that

Son < a4

what proves that S,,, is bounded



Alternating Series Theorem Proof

We know that any bounded and increasing sequence is is
convergent, so we proved that S,, converges
Letdenote |lim, .o Son=9

To prove that

¥ (-1)"'a,= lim S,

n—oo

converges we have to show now that also

lim S =
n—oo 2n+1 g

Observe that S;,.1=Sp,+a2n+1 and we get
lim S = lim S lim a =
n—oo 2n+1 n—oo 2n + n—oo 2n+1 g

as we assumed in 3. that lim,,.a,=0



Alternating Series Theorem Proof

We proved that the sequence S, is creasing

We prove, in a similar way (exercise!) that the sequence
{S2n+1} is decreasing

Hence
Son < lim Spn =g ="T724(~1 )" a,

and
Sonit = lim Sppit =g =5324(-1)""a,
n—oo

what means that
Son < X2 (—1 )n+1 an < Sont1

It ends the proof of the Theorem 3



Example

Example 7
Consider the ANHARMONIC series (infinite sum)

1 1 1 1

_ 500 o n+17: s

AH =532, ()™ =1— o
Observethat a,=1>0, 1>l ie a,>a,., forall

n, and limpa,=0
So the assumptions of the Theorem 3 are fulfilled for AH
and hence AH converges

In fact, it is proved (by analytical methods, not ours) that

AH = 2311(—1)”“% —In2



Example

A series (infinite sum)

1 1
oo (_qyn__ ' 41
T i R

N
9

(Sl
N =

converges by Theorem 3
Proof is similar to the one in the Example 7
It also is proved (by analytical methods, not ours) that

1 T
© (_qy__ - _ =
n=o(~1) 2n+1 4
and hence we have that

4
2n+1

T =3520(=1)"



Generalization of Theorem 3

Theorem 4 ABEL Theorem

IF asequence {a,} fulfils the assumptions of the

Theorem 3 i.e.

1. a, >0, foralln

2. sequence {a,} is decreasing, i.e.
ag>a>as> ...

3. limp,socan=0

and an infinite sum (converging or diverging)

4. ¥°,b, isbounded,

THEN the infinite sum
2211 anbn
always converges.

Observe that Theorem 3 is a special case of Theorem 4
when b, = (—1)"1



Convergence of Infinite Sums
with Positive Terms



Infinite Sums with Positive Terms

We consider now infinite sums with all its terms being
positive real numbers, i.e.

S: i an
n=1

for
a,>0, a, €R

Observe thatifall a, >0, thenthe sequence {S,} of
partial sums S,=1X] .a. isincreasing, i.e.
5<85<..<5,

and hence the nILm S, exists and is finite oris oo



Infinite Sums with Positive Terms

We have just proved the following theorem
Theorem 5
The infinite sum

S=X)qan for ap>0, a,€R

always converges, or diverges to oo



Comparing the Series with Positive Terms

Theorem 6 Comparing the series

Let X ,a, be aninfinite sumand {b,} be asequence
such that
0<b,<a, for all n

If theinfinite sum X>° . a, converges
then >>° . b, also converges and

YnZibn < XTplqan

Application of the Theorem 6: we can prove the
convergence of a series ¥,°,b, by bounding the
sequence b, by a certain sequence a, such that
0 <b,<a, andwe know that >)° ;a, converges



Proof of Theorem 6

Proof
Let us denote

Sn — 22:1 ak, Tn — 22:1 bk

As 0<b,<a, wegetthat T,< S5,
But we know that the series S, converges, hence

Sng ||m Sn:Zno.;1an:S

n—oo

So we get that

n—oo



Proof of Theorem 6

The inequality
Tw<S
means that the sequence {T,} is abounded sequence

(by S) with positive terms, hence the sequence
Th=1X]_, by converges, i.e.

lim Tp=T=53 b,

n—oo

We hence proved that the series  >7° . b, converges
But we have also proved that T, < S,, hence

lim T,< lim S,
n—oo n—oo
which means that
Y2ibn < T qan

what ends the proof



Example

Example 9
Use Theorem 6 to prove that the series,

- 1

"= (n41)2

converges

We prove by analytical methods that it converges to
9 e
2 , 1.e.

Here we prove only that it does converge



Example 9 Solution

First observe that the series below converges to 1, i.e.

n 1n(n+1):1
Consider
1 1 1
S = 12tza Ty (n+12
- (—f) Hmg)+ - )
o “‘n n+1
= “m
so we get
= lim Sp= lim (1—L) 1

n—oo n—oo n+1



Example 9 Solution

Now we observe (easy to prove) that

i1 1
22=1.2 3

I B
""" (n+1)2 ~ n(n+1)’

i.e. we proved that all assumptions of Theorem 6 hold,

hence >7° G 11)2 converges and moreover
n=1 2 < 2pg
(n+1) n(n+1)
and

oy
=t(ny1)2 =



D’Alambert’s Criterium

Theorem 7 D’Alambert’s Criterium

X a
f a,>0 and lim 271 ~ 4
n—oo  ap

o
then theseries ) a, converges
n=1



Proof of D’Alambert’s Criterium

Proof
Let h be any number such that

. a
lim L—H
n—oo ap

<h<1

It means that there is k such that for any n > k we have,
Gl < h,  ie.  apyy<aph

Hence,
2
ax1 < akh, aki2=ax1h<aghs,
4
agiz <akh®, a4 <akh®,  ags <akh’,,...



Proof of D’Alambert’s Criterium

We have that all terms a, of X7°,a, are smaller than

the terms of a converging (as 0 < h< 1) geometric series

Z‘,,xzoakh” =ax+akh-+ akh2 +...

By Theorem 6, the series
YpZqan

also converges



Cauchy’s Criterium

Theorem 8 Cauchy’s Criterium

f a,>0 and

Van <1

lim

n—oo
o0

then the series Zan converges

n=1

Proof: We carry the proof in a similar way as the proof of
D’Alambert Criterium



Proof of Cauchy’s Criterium

Let h be any number such that
lim a,<h<1
n—oo

It means that there is k, such that for any n> k we have
Van<h ie. a,<h”
(oo}
This indicates that all terms a, of Z a, are smaller
n=k
then the terms of a converging (as 0 < h < 1) geometric
series

Zro,c:khn:hk+hk+‘| _~_hk+2_~_”.
By Theorem 6 the series
Ynlqan

must converge



Divergence Criteria

Theorem 9  Divergence Criteria

. a
F a,>0 and lim 2
n—oo an

>1 or limpoe Van > 1

o0
then the series Z an diverges
n=1



Proof of Divergence Criteria

Proof:

Assume that, lim, ., 22 > 1

Then for sufficiently large n  we have that

an+1

>1 andhence a,.1> ap
n

This means that a, is strictly increasing sequence of
positive numbers, so lim a, #0
n—oo

By Theorem 1 the series Z an diverges
n=1

Theorem 1 says: if Z an converges, then Iim a, =0
=1 n—oo



Proof of Divergence Criteria

Similarly, if nILmOO vVap >1
then for sufficiently large n, we have that
{/an, >1 and hence a,>1
So it must be that nILmOO an+0
By Theorem 1 the series i an, diverges
n=1

Theorem 1 says: if ) a, converges, then lim a, =0
=1 n—oo



Convergence/Divergence

Table: Convergence/Divergence for Z an
n=1

Cauchy Criterium  D’Alembert’s Criterium  Convergence/Divergen

an+1

lim an, <1 lim <1 Converges
n—o0 n—oo  ap

. . a .

lim a, > 1 lim 1 S 4 Diverges
n—oo n—oo  ap




Convergence/Divergence

Remark

0o
It can happen that for a certain infinite sum Z an
n=1

In this case our Divergence Criteria do not decide
whether the infinite sum converges or diverges

We say in this case that that the infinite sum does not react
on the criteria

There are other, stronger criteria for convergence and
divergence



Examples

Example 10

< 1

The Harmonic series H = Z - does not react on
n=1

D’Alambert’s Criterium (Theorem 7)

Proof: Consider

1
. = . 1

lim 7 = Jim ML= fm =

n—oo  ap n—o0 5 n—o0 (1 + ﬁ)

Since lim Z™ =1 we say, that the Harmonic series

does not react on D’Alambert’s criterium



Examples

Example 11

[e.e)

. 1
The series Z W does not react on

D’Alambert’s Criterium (Theorem 7)
Proof:

Consider, lim 27
n—oo ap
. a n+1)>?
lim S+l _ = |im u
n—oo dp n—oo (n—|— 2)2
n2+2n+1 . 1+ﬁ+?
m ——— m ———— =
n—>oon2_|_4n_|_1 n—00 1+%+%
. . a .
Since, lim Z™ =1 we say, that the series
n—oo  Aap
i 1
n=1 (n+1)2

does not react on D’Alambert’s criterium



Other Criteria

Remark
Both series

o 1 and > !
n:1n n:1(n+1)2

do not react on D’Alambert’s Criterium

but first series is divergent and the second is
convergent

There are more criteria for convergence
Most known are Kumer’s criterium and Raabe criterium



Infinite Sums (Series)
EXAMPLES



Example 1

Example 1

[e’e] Cn
Y = converges for
n=1 n!

an41
an

c>0
HINT : Use D'Alembert
Cn+1 nl
c" (n+1)!
c



Example 1

. a
lim 2+t m
n—oo  adp n—oo N+ 1

= 0 <1
By D’Alembert’s Criterium
[oe) Cn

Y = converges
n=1 n!



Example 2
Proof:
an
an+1
an—+1

n

[ aok:
S

Example 2

an

|
— converges
n!

nn

n'(n+1)
(n+1)n+1

n pt) o
(n+ )™t T onl

n

(nt1). — "

(n+1)n+1



Example 2

(n+ 1™ = (n+1)" (n+1)
an+1 . (n+1) n"
an  (n+1)" (n+1)
n n
- (n+1)




Example 2

. a .
lim 7 = lim
n—oo  ap n—o0
1
e
By D’Alembert’s Criterium the series,
= N
Y - converges

)
T
3



Exercise 1

Exercise 1
Prove that
n
im — = 0 for ¢ >0
n—oo Nl
Solution:

We have proved in Example 1

n
converges for ¢ >0

18
3|9

T
I



Exercise 1

Theorem 1 says:

00

IF Zan converges THEN lim a,=0

n—oo
n=1

Hence by Example 1 and Theorem 1 we have proved
that

im — = 0 for c>0

Observe that we have also proved that n! grows faster
than c”



Exercise 2
Exercise 2

Prove that

im — = 0 Hint: COMPLICATE IT!

Proof
By Example 2 we know that

n

!
—, converges

il aol?
3



Exercise 2
Theorem 1 says:
IF ) a, converges THEN nILmOO ap,=0

n=1

Hence,



Example 3

Example 3 Harmonic Series

n=1

S=

does not react on D’Alembert Criterium
Proof




Example 4

Example 4

Proof: From Example 1 and D’Alembert’s Criteriumwe
know that

[ee) Cn
)Y = converges
n=1 n!



Example 4

By Example 2 and D’Alembert’s Criterium we have that

n

!
— converges

D18
3

3
I
A

By Theorem 1

. c" ) n!
im — = 0, im — =0
n—oo Nl ’ n—oo NN



Example 5
Example 5

We know that the Harmonic Series

1 .
- diverges

18

n=1

Use this information and Cauchy Criterium to prove that,

lim vn = 1

n—oo



Example 5

Proof Sequence

an=+vn is for large n decreasing and
anp > 1
Hence

lim a, exists and

n—oo

lim Vn > 1

n—o0



Example 5

Assume

lim vn > 1 we get

n—oo
. 1
lim (/7 <1
n—o0 n

Cauchy Criterium says:

IF lim {a, < 1 THEN
n—oo

o0
Z an, converges for a,>0, a,€R
n=1



Example 5

Hence by Cauchy Criterium

)
)
n=1

This is a contradiction, as we know that the Harmonic
Series diverges

Hence

converges

SI—=

im vn = 1

n—oo



Example 6

Example 6
We are going to show that the series

S x(x=1).(x—n+1)] o

Z n!

n=1

converges for O<c<1 and xR



Example 6

Proof we evaluate

ant _ |X(x—=1)....(x—n)| L'c Yul
an N(n+1) Ix(Xx—=1)....(x—n+1)| £"
X
x—n 15T
n+ 140
n
and
im 21 _ ¢

n—oo an



Example 6

Hence, by D’Alambert Criterium the series

S x(x=1).(x—n+1)] o

Z n!

n=1

converges for 0<c<1 and xR



Example 7

Example 7
Prove that

im ]x(x—‘l)...(x—n+1)\cn _ 0 0<c| <1
n—oo n!

Solution By Example 6, the series
S [ x(x—=1).(x—n+1)| o

Z n!

n=1

converges for 0<c<1 and xR
Theorem 1 says:

IF n;an converges THEN nI|_>mooa,,:0

Hence proved



Absolute and Conditional Convergence



Absolute Convergence
Definition

[e.e] oo
an converge absolutely iff lan| converges
n=1 n=1



Conditional Convergence

Definition

Y a, converges conditionally
n=1

if and only if

o
Z anp converges, but not absolutely
n=1

i.e. when

o o
Y an, converges and ) |a, does not converge
n=1 n=1



Theorem

Theorem 10

IF ) a, converges absolutely, THEN it converges
n=1

Moreover

o0 [e.e]
| Zan| < Z |an|
n=1 n=1



Examples
Example 8

Geometric series

o0

Y aq" gl <1
n=0

converges absolutely because
oo
) lag”
n=1

converges



Examples

Example 9
The series

i X"

~ n!
converges absolutely for all x
We proved in Example 1 that it converges for ¢ > 0,
i.e c=|x|
We prove by other methods that
X7n = e
n

D18

n=0



Examples

Example 10
The Enharmonic series

i (_1 )n+1 1

n=1 n

converges conditionally
True, because we proved thatit converges and

and so

diverges



Finite and Infinite Commutativity



Finite Commutativity

We know that finite summation is commutative, i.e.

We have that

n n
Z ax = Z dik
k=1 k=1

where
aj is any permutation of a; ... a,



Infinite Commutativity

The Commutativity fails in the infinite case

For some infinite sums as we showed for example
evaluating the infinite sum

o0

Y (0 = Y (-

k>0 k=0

1—14+1-1+1......

in two ways (permutation)



Infinite Commutativity

By grouping (permutating) the sum factors in two
different ways:

1. f(q)k = (1-1)+(1-1)+... = 0
k=0
2 (-

(1-1)-(1-1) ... = 1

Question: When and for which infinite sums
commutativity holds and for which it fails



Infinite Commutativity

Let a, be a sequence, a, is a sequence of
permutations of a,

Definition
A permutation of a set A is any function

f:A % A |, where A has any cardinality
onto

In particular

1-1
— N

onto

f:N

is a permutation of natural numbers and we denote

f(n)=mjy



Infinite Commutativity

Given an infinite series

o0

ap=ay+a—+as+ ...

n=1

The infinite series

o0

amk:am1+am2+

k=1

is called its permutation



Infinite Commutativity Theorem

Theorem 11

Every absolutely convergent infinite sum is
commutative, i.e.

D12
£
I
D18
QD
3

3>
Il
A
T
-

for any permutation
my, mo, ... Mnp...

of natural numbers



Infinite Commutativity Theorem

Theorem 11 is NOT TRUE for any convergent sum

We can get from a convergent ANHARMONIC series

i n+1 1

n=1

permutations that converges or diverges to oo



Riemann Theorem
Theorem 12 Riemann Theorem

For any conditionally convergent infinite sum,

we can transform it by permutation of its factors

into a sum that diverges or

to a sum that converges to any limit ( finite or infinite).



