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CHAPTER 5
Binomial Coefficients



Basic Definitions

Definition
Forany nke N, k>0, k<n we define

m\  n(n—1)(n-2)...(n—k+1)
(k>_ k(k—1)...2-1

Observe that
k) k!

Combinatorial interpretation
(}) reads: “nchoose k”

(1) denotes a number of ways to choose k-element subset
from an n-element set




Combinatorial Interpretation

Combinatorial Interpretation

The number of ways to choose a k-element subset from
an n-element set is
n\  n(n—1)(n-2)..(n—k+1)

(k)_ k(k—1) ...21
Proof We carry the proof in two steps
Step 1: we find the number of k-element, 1-1 sequences
formed out of any n-element set
By definition, all sequences of length k formed from
n-element set are all possible functions

f: {1,2, ... .k} — {a1, ... ,an}

We know, by the Counting Functions Theorem that and
there are n* of them

We need to count 1-1 sequences only and to count them
we use a notion of a permutation




Proof of Combinatorial Interpretation

Definition
A permutation of aset A is any function f: A 1=hoplo 4
Fact

For any non empty set set A of n elements the number of
permutation of A is n!

Proof
By definition, we have so show that there are n! functions

f- A LU A We carry the proof by induction over
the number n > 0 of elements of the set A

Base Step Let |A| = 1. Hence A= {a} and obviously
there is only one function f: {a} Lot {a}
By definition, 1! = 1 and Base Step holds



Proof of Combinatorial Interpretation

Inductlve Step Let A={ay, ... ,ap} and n> 1
Assume that for any B C A, such that |B| = n— 1 there are
1-1 onto

(n—1)! functions that map f: B B
In order to count all functions

1— ‘Ionto
f: {31,,3,7} { 1y ooy n}

we divide them into n disjoint groups G1, G2, ... Gn as
follows

G1 consists of all functions f, such that
f(a1) = ai

By inductive assumption, G1 contains (n—1)! functions



Proof of Combinatorial Interpretation

G2 consists of all functions f, such that
fla) = a

By inductive assumption, G2 contains (n—1)! functions
In general, Gk consists of all functions f, such that

f(ak) = ax

fork=1,2,...n

By inductive assumption, each Gk contains (n—1)!
functions



Proof of Combinatorial Interpretation

We have divided the set of all functions into n disjoint
groups, each containing (n—1)! functions

Hence all together there are n! = n(n—1)! functions

1—1,onto
—

f:A A

This ends the proof of the Fact and we go back to the
proof of the Combinatorial Interpretation as follows



Proof of Combinatorial Interpretation

Back to Step 1
Let |A| = n be any n-element set

We count now all possible 1-1, k-element sequences out
of elements of A as follows.

The 1-1, k-element sequences are of the form

by, bo, ..., b, for b,’ibj and k>1

1. k=1
by - there are n choices, for any by € A
2. k=2

by, b, - there are n - 1 choices, for any b, € A—{by}



Proof of Combinatorial Interpretation

3. k=3

by, bo, bz - there are n - 2 choices, for any

b3 € A—{b1,b2}

Induction (really)

3. k=i

bibs....b; - there are (n—i+ 1) choices for any
b,‘ € A*{b1,b2,...,b,’_1}

All together we have n(n—1)...(n— k+1) possible 1-1
sequences
b17 b27"'7bk



Proof of Combinatorial Interpretation

Step 2
In Combinatorial Interpretation (]) represents how
many are there k-element subsets of the set A

We proved that there are n(n—1)...(n— k+1) possible 1-1,
k-element sequences

Now we have to establish a relationship between the 1-1
sequences by, b, ..., b, and corresponding subsets
{by, bo,...,bx}

Observation

Sets: {b1 , bo,... ,bk} = {bg, bo,... ,bk}

Sequences : by, bo,... . bk # bo, bo,..., by



Proof of Combinatorial Interpretation

Different sequences by, bo,..., b, can represent the
same set {by, bo,.... by}

Question: How many are there of all possible set
representations {by, bo,..., bk} of the 1-1 sequence
b1, bo, ..., bc?

Answer: as many as permutation of the set

{b1, bg,...,bk} ,i.e. k!

Hence

n\  number of sequences n(n—1)...(n—k+1)
k) k! B k!

This ends the proof



Generalization

We defined

n(n—1)(n—2).

(n—k+1)

n PR—
W)=
i.e. by the formula
nk
k!

()

fornkeN,k>0, k<n

k(k—1) ...

2-1

We also proved the Combinatorial Statement that ()
represents the number of ways to choose a k-element

subset from an n-element set.

We defined
0l'=1

and x%=1



Generalization

We generalize now the definition of (}/) as follows.

Consider a function f: R — R given by a formula (for
fixed k € Z)

f(x)=xE=x(x—=1)...(x—k+1)

and x% =1
or, more precisely, a function

f: RxZ — R

given by formula

X k>0
“&m:{: k<0



Definition

Definition
Forany x € R, k€ Z we define

k) 1o k<0

BOOK uses notation r € R and defines

<r>_ 2 k>0
k) |0 k<0



Examples

K

<X> ~ % for k>0, xR
k!

xXE=x(x—1)..(x—k+1)

We evaluate
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Examples

We evaluate
(ﬁ)_ V2 (V2)(V2-1)(V2-2)
3 ) 3 1.-2-3

V2R = (V2)(V2-1)(v2-2)

NO Combinatorial Interpretation HERE



Generalization

k) 1o k<0

forany xe R, keZ

(7
(

)zO, for n<0

We defined

1, for ne N

)

S

3

n

<Z>_O, for k>n, k>0



Symmetry Poperty
Symmetry Property
SP Y ™) forany nkeN. 0<k<n
k) \n—k y.n » VSR

Proof We evaluate, by definition,

n\ _nn-1)..(n—k+1) n!
a k! ~ ki(n—k)!

k

n! n
~ (= (n—k)(n—k) ~ (nk>
Combinatorial Interpretation
(1) - - k chosen element from out of n
(,",) --n-kunchosen element out of n



Symmetric Property

We proved that (}))
Case k<0

We have (}) =0 and
(nfk) = (2) =0 as s>n
Case k>n

We have (/)=0 and

(,J)=()=0 as s<0

(,"y) for kkne N and 0 <k<n



Symmetric Property Generalization

We have proved the
Symmetry Property Generalization

® (1) (a4

holdsforallne N, ke Z

We will show now that it can’t be generalized to nc Z



Symmetric Property Generalization

For example, take n=—1 and any Kk > 0

We evaluate
—1\ & (=)(=2)..(—1—k+1) kI-1k
(k): kI~ ki = =

where xK = x(x—1)...(x —k+1)
Now we evaluate

—1
— >
<1k> 0 forall k>0

This proves that

—1 —1
(k>¢<1k) forall k>0



Absorption Identities

Absorption Identity

X X (x—1
== . Z—
A1 (k) k<k1> for xe R, ke 0

Proof We first proof that

as follows
x(x— 1) = x(x—1)(x=2)...(x=1) = (k—1)+1)

=x(x—1)...(x—k+1)=x~



Absorption Identities
We evaluate now
X 7x757x(x—1)k;17§ x—1
k) ki k(k—1)  k\k—1

This ends the proof.
We multiply both sides of the identity A1 by k and get

X X —1
A2 k(k>:x<k_1> for xe R, keZ



Absorption Identities

We are going to prove now the following

A3 (x-k)<’;)x(’(;1> for xcR, keZ

Proof We carry the proof in two stages

Stage 1: we prove A3 for x € N, k € Z using the
Symmetry Property SP

(D - (nfk>

that only holds for x ¢ N

Stage 2: we use a Polynomial Argument (to be defined)
to extend Stage 1 casetox e N, ke Z



Absorption Identities

Stage 1: we assume that x € N and evaluate

wh) = bl )

:x< X1 )useAZfork::x—k
X—Kk—1

(o) = ()

This proves

(x—k)<);>—x<X;1> for xeN, keZ



Polynomial Argument

Stage 2: Polynomial Argument
Observe the the equality

X x—1
(x—k)<k>_x< K )for xXeR, keZ

is an equality of the following two polynomials of the
degree (k+1) over R with integer coordinates

L(x) = (X_k)C(() = a X+ L+ ag

PU)::X<X;1> = b X 4+ L+ b

as

X\ xE x(x—=1)..(x—k+1)
Q)m k!

is a polynomial of the degree k



Polynomial Argument

Polynomial Theorem 1

Let w(x)= anx" + ... +ap be a polynomial of the
degree nwith g, € Z,i=0,...,n and n#0.

Then the equation w(x) =0 has at most n solutions; i.e.
HxeR: w(x)=0} < n

Polynomial Theorem 2

Let w(x)= anx" + ... +ap be a polynomial with of the
degree nwith a; € Z, i=0,...,n and n# 0, such that

HxeR: w(x)=0} > n

Then
w(x)=0 forall xc R



Polynomial Argument

Back to Absorption Identity

A3 (x—k)(i):x(xk1>for XcR, keZ

We write it as
L(x) = P(x), or L(x)—P(x)=0, forall xc R,

where L(x), P(x) are two polynomials of the degree
(k+1) over R, with integer coordinates

L(x) = (X—k)<)l§> = a X'+t a

P(x) = X(X;1> = b1 X 4y



Polynomial Argument

Observe that we have just proved A3 for all x € N, i.e. we
proved that

HxeR: L(x)—P(x)=0}|=|N|=Xy > k forallkeZ
By Polynomial Theorem 2,
L(x)—P(x)=0, forallxcR

and hence we have proved the Absorption Identity

A3 (x—k)<)l§>:x<xz1>for XER, keZ



Absorption Identities

We are going to prove now yet another Absorption Identity

X X —1 Xx—1
A4 <k>:< K >+<k1> for xeR, keZ

We present here two proofs
Proof 1 We carry the proof in two stages
Stage 1: we prove Adfor xe N, ke Z

Stage 2: we use a Polynomial Argument to extend Stage
1casetoxe N, keZ

Proof 2 We use Absorption Identities A2 and A3- left as
an exercise



Polynomial Argument

We prove the case x € N by a straightforward evaluation.
We use the Polynomial Argument as follows
Let

L(x)= <i> - polynomial of the degree k

P(x) = <X; 1) + G: 1) - polynomial of the degree k
We proved that

L(x)—P(x)=0, forall xeN



Polynomial Argument

Hence
{xeR: L(x)—P(x)=0}=|N|=Xy > k forallkeZ
By Polynomial Theorem 2,

L(x)—P(x)=0, forall xc R

and hence we have proved the

X X—1 X—1
A4 <k):< K >+<k—1> for xeR, keZ



