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Abstract
We propose a new technique for fusing multiple cues to

robustly segment an object from its background in video se-
quences that suffer from abrupt changes of both illumina-
tion and position of the target. Robustness is achieved by
the integration of appearance and geometric object features
and by their description using particle filters. Previous ap-
proaches assume independence of the object cues or apply
the particle filter formulation to only one of the features,
and assume a smooth change in the rest, which can prove
is very limiting, especially when the state of some features
needs to be updated using other cues or when their dynam-
ics follow non-linear and unpredictable paths. Our tech-
nique offers a general framework to model the probabilis-
tic relationship between features. The proposed method is
analytically justified and applied to develop a robust track-
ing system that adapts online and simultaneously the col-
orspace where the image points are represented, the color
distributions, and the contour of the object. Results with
synthetic data and real video sequences demonstrate the ro-
bustness and versatility of our method.

1. Introduction

The integration of several visual features has been com-
monly used to improve the performance of techniques
for figure-ground segmentation and tracking in video se-
quences [1, 2, 4, 5, 11, 8, 15, 17, 16, 18]. However, most
of these methods suffer from the lack of a robust dynamic
model that can adapt the state of the features and cope with
abrupt and unexpected changes of the target’s position or
appearance. Particle filters have been demonstrated to be
sufficiently robust to track complex dynamics. In computer
vision tasks, particle filters have been restricted to adapt ge-
ometric object cues, such as position or shape [6, 13, 14].
In [12] particle filters were used effectively to parameterize
and predict object color distributions.

In this work, we introduce a probabilistic framework that
integrates several object cues, allowing to robustly segment

the object from the rest of the image, in dynamically chang-
ing sequences as demonstrated in the results section. In or-
der to predict these kind of complex dynamics, each one
of the features is represented by a different particle filter,
and we consider a conditional dependence between cues. A
similar approach is presented in [9], where several particle
filter algorithms are integrated for tracking tasks. However,
[9] assumes that the methods are conditionally independent,
i.e, each algorithm estimates the state of a target feature
based on some measurements which are conditionally inde-
pendent of the measurements used by the other algorithms.
That is, if particle filter PF1 is based on measurements z1

to estimate the state vector x1 (representing one object fea-
ture) and particle filter PF2 uses measurements z2 to esti-
mate x2 (representing another object feature), for each com-
plete state vector of the object X = {x1,x2} it is assumed
that p(z1, z2|X) = p(z1|x1)p(z2|x2).

Nevertheless, this assumption is very restrictive and
many times is not satisfied. For instance, a usual method
to weigh the samples of a contour particle filter, is based
on the ratio of the number of pixels inside the contour with
object color versus the number of pixels outside the con-
tour with background color. This means that the contour
feature is not independent of the color feature. In this sit-
uation if z1 represents the observations of color features
and z2 the corresponding for the contour, the latter will be
a function of both x1 and z1, i.e., z2 = z2(x1, z1), and
the previous equation should be rewritten as p(z1, z2|X) =
p(z1|x1)p(z2|z1,x1,x2). This formulation allows to si-
multaneously adapt both features, performing more robustly
than the ‘independent’ case.

In a closely related work presented in [10], the common
association of the best samples for each feature is not guar-
anteed, in contrast to our method. Furthermore, our formu-
lation is more general, in the sense that any individual mod-
ule represented by a particle filter, could be substituted by
another algorithm providing a probability density function
(pdf), for instance any algorithm using Kalman filtering.
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The main contributions of our work are the following:

1. We propose a probabilistic framework to fuse several
conditionally dependent cues. In particular, the state of
the features is represented by pdf’s, and approximated
using particle filters, although the method is general
for any algorithm that outputs a pdf. The proposed
framework is theoretically proven and validated in a
tracking example of synthetically generated data.

2. The method is applied to develop a robust tracking
system that simultaneously: (a) Adapts the colorspace
where image points are represented. (b) Updates the
distributions of the object and background colorpoints.
(c) Accommodates the contour of the object.

3. The representation of the color feature by particle fil-
ters and the online adaption of the colorspace are novel
contributions of our work and make our system capa-
ble to track objects in complex and highly cluttered
environments, altered by unexpected changes of color.

The rest of the paper is organized as follows: Section 2
introduces the mathematical framework. Section 3 demon-
strates the operation of the algorithm, in a simple example
for 1D cues . The features used in the real tracker, and their
dynamic models are described in Section 4. Section 5 de-
picts details about the complete tracking algorithm. Results
and conclusions are given in Sections 6 and 7.

2. Mathematical framework

In the general case, let us describe the object being
tracked by a set of F features, x1, . . . ,xF , that are sequen-
tially conditionally dependent, i.e., feature i depends on fea-
ture i−1. These features have an associated set of measure-
ments z1, . . . , zF . The conditional a posteriori probability
p1 = p(x1|z1), . . . , pF = p(xF |zF ) is estimated using a
corresponding particle filter PF1, . . . ,PFF . For the whole
set of variables we assume that the dependence is only in
one direction:

{zk = zk(zi,xi),xk = xk(xi, zi)} ⇐⇒ i < k (1)

Considering this dependence relationship we can add
extra terms to the a posteriori probability computed for
each particle filter. In particular, the expression for the
a posteriori probability computed by PF i will be pi =
p(xi|x1, . . . ,xi−1, z1, . . . , zi). Keeping this in mind, next
we will prove that the whole a posteriori probability can be
computed sequentially, as follows:

P = p(X|Z) = p(x1, . . . ,xF |z1, . . . , zF )
= p(x1|z1)p(x2|x1, z1, z2) · · · p(xF |x1, . . . ,xF−1, z1, . . . zF )
= p1p2 · · · pF

(2)
Proof. We will prove this by induction, and use of the

Bayes’ rule [3] and the assumptions from Eq. 1:

• Proof for 2 features:

p(x1,x2|z1, z2) = p(x1,x2,z1,z2)
p(z1,z2)

= p(x2|x1,z1,z2)p(x1,z1,z2)
p(z1,z2)

= p(x2|x1, z1, z2)p(x1|z1, z2) = p(x1|z1)p(x2|x1, z1, z2)

• For F − 1 features we assume that

p(x1, . . . ,xF−1|z1, . . . , zF−1) = p(x1|z1)p(x2|x1, z1, z2)
· · · p(xF−1|x1, . . . ,xF−2, z1, . . . zF−1)

(3)
• Proof for F features:

p(x1, . . . , xF |z1, . . . , zF ) =
p(x1,...,xF ,z1,...,zF )

p(z1,...,zF )

=
p(xF |x1,...,xF−1,z1,...,zF )p(x1,...,xF−1|z1,...,zF )p(z1,...,zF )

p(z1,...,zF )
= p(xF |x1, . . . , xF−1, z1, . . . , zF )p(x1, . . . , xF−1|z1, . . . , zF−1)

Eq. 3 = p(x1|z1)p(x2|x1, z1, z2) . . . p(xF |x1, . . . , xF−1, z1, . . . zF ) �

Eq. 2 tells us that the whole a posteriori probability den-
sity function can be computed sequentially, starting with
PF1 to generate p(x1|z1) which is then used to estimate
p(x2|x1, z1, z2) with PF2, and so on.

Until now we have only considered the fusion of several
particle filters from the static point of view. But in the iter-
ative performance of the method, PF i receives as input at
iteration t, the output pdf of its state vector xi at the itera-
tion t−1. We write the time expanded version of the pdf for
PF i as p

(t)
i = p(x(t)

i |x(t)
1 , . . . ,x(t)

i−1, z
(t)
1 , . . . , z(t)

i , p
(t−1)
i ).

We expand the expression of the complete pdf from Eq. 2:

P (t) = p(X(t)|Z(t)) = p(x
(t)
1 , . . . , x

(t)
F |z(t)

1 , . . . , z
(t)
F )

= p(x
(t)
1 |z(t)

1 , p
(t−1)
1 ) · · · p(x

(t)
F |x(t)

1 , . . . , x
(t)
F−1, z

(t)
1 , . . . z

(t)
F , p

(t−1)
F )

= p
(t)
1 p

(t)
2 · · · p(t)

F
(4)

We now describe in detail the update procedure of the i−th
particle filter, PF i. At time t, the filter receives p

(t−1)
i , the

pdf of the state vector xi at time t−1. This distribution is ap-
proximated by a set of samples s(t−1)

ij , j = 1, . . . , Ni, with

associated weights π
(t−1)
ij . Given the set {s(t−1)

ij , π
(t−1)
ij }

the value of p
(t)
i is estimated using the standard particle fil-

ter procedure:

1. The set {s(t−1)
ij , π

(t−1)
ij }, j = 1, . . . , Ni is resampled

(sampling with replacement) according to the weights
π

(t−1)
ij . We obtain the new set {s′(t−1)

ij , π
(t−1)
ij }.

2. Based on a probabilistic dynamic model, particles
s′(t−1)

ij are propagated, providing the new set {s(t)
ij },

j = 1, . . . , Ni.
3. Finally, using some external measure on the feature

z(t)
i (updated with the values of the set of features

{z(t)
k }, k < i and its corresponding state vectors

{x(t)
k }) , samples s(t)

ij are weighted in order to ob-

tain the output of iteration t, that is {s(t)
ij , π

(t)
ij }, j =

1, . . . , Ni, approximating p
(t)
i .

To make all the mathematical foundations more clear, in the
next Section we will apply this method for a simulated case,
with only two one-dimensional particle filters.
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Figure 1. A posteriori pdfs that take part in one iteration
of the method: p

(t−1)
1 , p(t−1)

2 and P (t−1) are the input pdf’s

and p
(t)
1 , p

(t)
2 and P (t) are the output pdf’s of the iteration.

Crosses and circles represent the data values at time t − 1
and t, respectively. The gray level of crosses and circles in-
dicates if the data corresponds to the real value (black), to
the estimation done by the filter (dark gray) or the to obser-
vation (light gray).

3. Dependent object features in 1D

Let us assume that we want to track a single point that
changes its position and color. Both features lie in a one-
dimensional space, that is, the point is moving on the hori-
zontal axis, between the [−1, 1] coordinates, and the color is
also represented by a single value in the [0, 1] interval. The
movement of the point is simulated with a random dynamic
model (centered in µpos and scaled by αpos). Furthermore,
we simulate an observation model, adding gaussian noise to
the simulated position :

pos(t) = (pos(t−1) − µpos)αpos + N (µnoise,pos, σnoise,pos)
obs pos(t) = pos(t) + N (µnoise,obs pos, σnoise,obs pos)

Similar equations generate the models for color change and
for observation.

We will use PF1 to track the color, with x1 and z1 rep-
resenting the color state vector and its measurement, and
PF2, x2 and z2 the corresponding particle filter, state vec-
tor and measurement assigned to the position. At the start-
ing point of iteration t, PF1 receives at its input p

(t−1)
1 ,

the pdf of the color at time t − 1, approximated with N1

weighted samples {s(t−1)
1j , π

(t−1)
1j } , j = 1, . . . , N1. This

set is resampled and propagated according to a random dy-
namic model of Gaussian random noise: s(t)

1j = s′(t−1)
1j +

N (0, σdyn,col), where s′(t−1)
1j are the resampled particles.

Each one of these propagated samples is weighted taking
into account its proximity to the observed value of the color:

π
(t)
1j ∼ e−(‖s(t)

1j −obs col(t)‖).

The set {s(t)
1j , π

(t)
1j } , j = 1, . . . , N1, is the output of the

PF1 and represents an approximation to the a posteriori
probability distribution p

(t)
1 . This pdf, jointly with p

(t−1)
2

Figure 2. Errors obtained when estimating the state of the
point (color and position), considering that both features are
independent or dependent. Observe that the error is reduced
when considering cue dependence.

feeds into PF2, the particle filter responsible for estimat-
ing the position of the point. As in the previous particle
filter, p

(t−1)
2 is approximated by a set of N2 samples and

weights {s(t−1)
2j , π

(t−1)
2j }, j = 1, . . . , N2, that are resampled

and propagated using a random Gaussian dynamic model:
s(t)
2j = s′(t−1)

2j + N (0, σdyn,pos).

In real trackers, it is common to evaluate several target
positions based on some appearance measure of the object,
in our case, color. So we will proceed in a similar way for
the weighting stage. To each sample s(t)

2j , representing a

position of the point in space, we associate a sample s(t)
1k ,

representing a color state in the color-space, based on the
weight π

(t)
1k . This means, that those color samples having

higher weights (high probability) will be used more times
than those having low probability. Finally, the weight as-
signed to each sample s(t)

2j is computed with the function

π
(t)
2j ∼ e−(‖s(t)

1k −obs col(t)‖+‖s(t)
2j −obs pos(t)‖).

The set {s(t)
2j , π

(t)
2j }, j = 1, . . . , N2, represents the

approximation to p
(t)
2 , and we can compute the com-

plete a posteriori probability of the system at time t by
P (t)(x1,x2|z1, z2) = p

(t)
1 p

(t)
2 .

In Fig. 1 we show all the a posteriori pdf’s in the ‘color-
position’ space, that are generated in one iteration. Fig. 2
compares the error obtained when estimating the state of
the point assuming that its features are either dependent
or independent. To represent the independence of the fea-
tures, color samples s(t)

1j distributed uniformly over the

color space, are assigned to the position samples s(t)
2k in-

dependently of their weight π
(t)
1j , that is, we have no a pri-

ori knowledge about the state of the color variable when
computing the weight of the position samples. From Fig. 2
we conclude that although cue integration (both in the inde-
pendent and dependent case) corrects the observation, it is
better to assume feature dependence.
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(a) (b) (c) (d) (e)

Figure 3. Color model. (a) Representation of all image points in the RGB colorspace. In the upper left corner of the figure the
original image is shown. (b) Manual classification of image points in foreground (O) and background (B). (c) Projection of O and
B on the Fisher plane. (d) MoG components of O (central leaf) and B in the Fisher colorspace. (e) p

(
O|cFisher

)
. Brighter points

are more likely pixels.

4. Features used for robust tracking

In order to design a system able to work in real, dynamic
environments we define a set of cues including both appear-
ance (normal to the Fisher plane [12] and the color distribu-
tion of the object) and geometric attributes (contour) of the
object. Next we describe these features:

4.1. Normal to the Fisher plane

In [12] the concept of Fisher colorspace was intro-
duced, and it was suggested that for tracking purposes the
best colorspace is the one that maximizes the distance be-
tween the object and background colorpoints. Let the sets
CRGB
O = {cRGB

O,i }, i = 1, . . . , NO and CRGB
B = {cRGB

B,j },
j = 1, . . . , NB be the colorpoints of the object and back-
ground respectively, represented in the 3D RGB colorspace.
We define as the optimal colorspace as the one resulting
from the projection of the RGB colorpoints on the plane
Φ = [φ1, φ2] ∈ M3×2 (Fisher plane), computed by apply-
ing the nonparametric Linear Discriminant Analysis tech-
nique [3] over the sets CRGB

O and CRGB
B . An RGB color-

point cRGB is transformed to the 2D Fisher colorspace by
cFisher = ΦT cRGB (see Fig. 3).

The Fisher plane is adapted online, through the particle
filter formulation presented above, with the following state
vector and dynamic model:
• State vector: The Fisher plane is parameterized by its
normal vector, x1 = φ1 × φ2.
• Dynamic model: A sample s′(t−1)

1,j of the state vec-
tor x1 is propagated using the random dynamic model,
s(t)
1,j = H1s′

(t−1)
1,j + p1, where H1 ∼ A3×3(0, σH1) and

p1 ∼ T3×1(µp1 , σp1), and where:

Am×m(µA, σA) =




1 + a11 · · · a1m

...
. . .

...
am1 · · · 1 + amm




Tm×1(µt, σt) = [t1, . . . , tm]T

(5)

Variables aij and ti are approximated by normal random
values, aij ∼ N

(
µAij

, σAij

)
, ti ∼ N (µti

, σti
).

4.2. Color distribution of target and background

In order to represent the color distribution of the fore-
ground and background in the Fisher colorspace, we
use a Mixture of Gaussians (MoG) model. With this
model, the conditional probability for a pixel cFisher

belonging to a multi-colored object O is expressed as
a sum of Mo Gaussian components: p

(
cFisher|O

)
=∑Mo

j=1p
(
cFisher|j

)
P (j). Similarly, the background color

will be represented by a mixture of Mb gaussians. Given
the foreground (O) and background (B) classes, the a pos-
teriori probability that a pixel cFisher belongs to object O
is computed using the Bayes rule (Fig. 3d,e):

p
(
O|cFisher

)
=

p
(
cFisher|O

)
P (O)

p (cFisher|O) P (O) + p (cFisher|B) P (B)
(6)

where P (O), P (B) represent the a priori probabilities of
O and B, respectively. The state vector and dynamic model
for the color distribution feature are:
• State vector: The configurations of the MoG for O and B
are parameterized by the vector Gε = [pε, µε, λε, θε] where
ε = {O,B}, pε contains the priors for each Gaussian com-
ponent, µε the centroids, λε the eigenvalues of the principal
directions and θε the angles between the principal directions
and the horizontal. x2 = {GO,GB} will be the state vector
representing the color model.
• Dynamic model: For each one of the components of
a state vector sample s′(t−1)

2,j = {s′(t−1)
2O,j , s′(t−1)

2B,j } we ap-

ply the dynamic model: s′(t)2ε,j = H2s′
(t−1)
2ε,j + p2, where

H2 ∼ A6Nε×6Nε
(0, σH2), p2 ∼ T6Nε×1(µp2 , σp2), and

Nε is the number of gaussian components of the color dis-
tribution of ε. Matrix A and vector T are defined in Eq. 5.

4.3. Contour of the object

Since color segmentation usually gives a rough estima-
tion of the object location, we use the contour of the object,
to obtain a more precise tracking. The state vector and dy-
namic model used to represent the contour are:
• State vector: The contour will be represented by Nc
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Figure 4. Flow diagram of 1 iteration of the complete algorithm. Different color lines and arrows show the paths of each feature.
Observe how the output of each particle filter, feeds into a subsequent particle filter.

points in the image, r = [(u1, v1), . . . , (uNc
, vNc

)]T . We
assign these values to the state vector, x3 = r.
• Dynamic model: A contour sample s′(t−1)

3,j is propa-

gated according to the random affine deformation, s(t)
3,j =

H3s′
(t−1)
3,j + p3, where H3 ∼ A2×2(0, σH3) and p3 ∼

T2×1(µp3 , σp3).

A note about the parameters of the dynamic models. In
all the dynamic models defined above there are certain pa-
rameters ({σHi

, σpi
, µpi

}, i = {1, 2, 3}) that control the
random performance of the model. Their value will deter-
mine the level of dispersion of the samples in the state vec-
tor space, and have been learned off-line from a training
hand-segmented sequence using a least squares technique.

5. The complete tracking algorithm

This Section integrates the tools described previously
and analyzes in detail the complete method for tracking
rigid and non-rigid objects in cluttered environments, un-
der changing illumination. Let us describe the algorithm
step by step (for a better understanding of the method, the
reader is encouraged to follow the flow diagram in Fig. 4):

5.1. Input at iteration t

At time t, for each i-feature, i = {1, 2, 3}, a set of Ni

samples s(t−1)
ij , j = 1, . . . , Ni, is available from the pre-

vious iteration. The structure of these samples is the same
as the corresponding state vector xi. Each sample has an
associated weight π

(t−1)
ij . The whole set approximates the a

posteriori pdf of the system, P (t−1) = p(X(t−1)|Z(t−1)) as
defined in Eq. 4, where X = {x1,x2,x3} contains the state
vectors parameterizing the features, and Z = {z1, z2, z3}
refers to the observations measured to evaluate each one of
the cues. Also available is the set of image points R(t−1)

that discretize the contour of the object, and the input RGB
image at time t, IRGB,(t).

5.2. Updating the Fisher plane pdf

As described in Section 3, at the starting point of iter-
ation t, PF1, the particle filter associated to x1, receives
p
(t−1)
1 , the pdf of the state vector x1 at time t − 1, ap-

proximated by N1 weighted samples {s(t−1)
1j , π

(t−1)
1j }, j =

1, . . . , N1. These particles are resampled and propagated
to the set {s(t)

1j } according to the dynamic model defined in
Section 4.1 (see Fig. 5). Each sample represents a differ-
ent Fisher plane, Φj , j = 1, . . . , N1. In order to assign a
weight to each propagated sample, we define a region W
in the image IRGB,(t), where we expect the object will be.
This region does not need to be estimated with precision, it
can be just a bounding box around R(t−1) with a tolerance
big enough to cope with unexpected object movements.

Once we have defined W , the basic idea is to weight each
Fisher plane Φj depending on how well it discriminates the
points inside W from the points outside W . To this end we
select randomly two sets of RGB colorpoints, CRGB

W and
CRGB

W
, inside and outside W , respectively. These sets and

the image IRGB,(t) are projected on the Nj Fisher planes,

generating the Nj triplets {CFisher
W,j , CFisher

W,j
, I

Fisher,(t)
j }.

For each triplet we use the EM algorithm to fit a MoG to
the sets CFisher

W,j and CFisher
W,j

.
Based on these MoGs we compute the a posteriori prob-

ability map p(W |IFisher,(t)
j ) for all the (u, v) pixels of im-

age I
Fisher,(t)
j , using the Bayes rule (Eq. 6). According to

this probability map, we assign the following weight to each
sample:

π
(t)
1j ∼

∑
(u,v)∈W

p
(
W |IFisher,(t)

j

)

NW
−

∑
(u,v)/∈W

p
(
W |IFisher,(t)

j

)

NW

where NW and NW are the number of image pixels in and
out of W , respectively.

The set {s(t)
1j , π

(t)
1j }, j = 1, . . . , N1 approximates the es-

timate of the a posteriori probability function p
(t)
1 for the

normal to the Fisher plane.
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Figure 5. Generation of multiple hypotheses for each fea-
ture. Top left: Fisher plane. Bottom left: Contour of the
object. Right: Color distributions (and the corresponding a
posteriori pdfs maps).

5.3. Updating the foreground and background color
distributions pdf’s

PF2, the particle filter associated to the state vector
x2, receives at its input p

(t−1)
2 ∼ {s(t−1)

2j , π
(t−1)
2j }, j =

1, . . . , N2, approximating the pdf of the color distributions
in the previous iteration, and p

(t)
1 ∼ {s(t)

1k , π
(t)
1k }, k =

1, . . . , N1, an approximation to the pdf of the Fisher planes
at time t. Particles {s(t−1)

2j } are resampled and propagated
(using the dynamic model associated with x2) to the set
{s(t)

2j }. A sample s(t)
2j represents a MoG configuration for

the foreground and background. The keypoint is that now in
order to assign the weight to these samples we use the infor-
mation provided from the output p

(t)
1 of PF1. We associate

a sample s(t)
1k to each sample s(t)

2j , according to the weight

π
(t)
1k , in such a way that those samples s(t)

1k of Fisher planes
having higher probabilities will be assigned more times to
the samples s(t)

2j of MoGs. The rest of the weighting pro-
cess is similar to the one described in Sect. 5.2: for a given
sample s(t)

2j we project image IRGB,(t) to the Fisher plane

Φj of the associated sample s(t)
1k . The new image will be

I
Fisher,(t)
j = ΦT

j IRGB,(t). Using the MoGs of the object

and background parameterized by the sample s(t)
2j , the a pos-

teriori probability map p(O|IFisher,(t)
j ) is computed (see

Fig. 5) for all the pixels of I
Fisher,(t)
j , and the weight π

(t)
2j

is assigned by:

π
(t)
2j ∼

∑
(u,v)∈W

p
(
O|IFisher,(t)

j

)

NW
−

∑
(u,v)/∈W

p
(
O|IFisher,(t)

j

)

NW

where W , NW and NW were defined above.

The set {s(t)
2j , π

(t)
2j }, j = 1, . . . , N2 approximates the es-

timate of the a posteriori probability function p
(t)
2 for the

fore/background color distributions.

(a) (b) (c) (d) (e)

Figure 6. Simplification of the snake fitting procedure us-
ing color information. (a) Foreground a posteriori pdf map
obtained using the color module. (b) Edge features image.
(c) Refined edge image using (a). (d) Contour r

(t)
avg used as

initialization for a snake fitting. (e) Snake fitting results.

5.4. Updating the contour pdf

The last particle filter, PF3, receives at its input
p
(t−1)
3 ∼ {s(t−1)

3j , π
(t−1)
3j }, j = 1, . . . , N3, that approxi-

mates the pdf of the contours in the previous iteration, and
p
(t)
2 ∼ {s(t)

2k , π
(t)
2k }, k = 1, . . . , N2, an approximation to the

pdf of the color distributions of foreground and background
at time t. The set {s(t)

3j } (the resampled and propagated

particles, see Fig. 5) are weighted based on p
(t)
2 through a

similar process to the one described for PF2: first we as-
sociate a sample s(t)

2k to each sample s(t)
3j , according to the

weight π
(t)
2k . Then we use the a posteriori probability map

p(O|IFisher,(t)
j ) assigned to s(t)

2k in the previous step, and

the contour rj represented by s(t)
3j to compute the weight as

follows:

π
(t)
3j ∼

∑
(u,v)∈rj

p
(
O|IFisher,(t)

j

)

Nrj

−

∑
(u,v)/∈rj

p
(
O|IFisher,(t)

j

)

Nrj

where Nrj
and Nrj

are the number of image pixels inside
and outside the contour rj .

Finally, the set of samples and weights {s(t)
3j , π

(t)
3j }, j =

1, . . . , N3 approximate the estimate of the a posteriori prob-
ability function p

(t)
3 for the contours of the object.

5.5. Algorithm output generation

As we have demonstrated in Section 2, the complete a
posteriori probability function, can be computed as

P (t) = P (t)(x1,x2,x3|z1, z2, z3) = p
(t)
1 p

(t)
2 p

(t)
3

∼
{{

s
(t)
3k

(
s
(t)
2j (s(t)

1i )
)}

,
{

π
(t)
1i π

(t)
2j π

(t)
3k

}}
= {s(t)

l , π
(t)
l }

(7)
where l = 1, . . . , N3. Eq. 7 reflects the fact that samples
of state vector x3 are computed while taking into account
samples of the state vector x2, which have been computed
considering samples of x1. Observe that the final number
of samples to approximate the whole probability P (t) is de-
termined by N3. Considering the final weights, the average
contour is computed as r(t)

avg =
∑N3

l=1 s
(t)
3l π

(t)
l .
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Path followed by the color distribu-
tion of the tracked ellipse. Data is
represented in the RGB colorspace.
Note the non-linear change of the
color, which cannot be predicted
by a smooth dynamic model.

Figure 7. Tracking results of a synthetic sequence. Top:
Path followed by the color distribution of the ellipse. Bot-
tom: Some sequence frames; original frames (first row),
tracking results (second row), and a posteriori pdf map of
the color module (third row).

Since all the contour samples have been constructed with
an affine deformation model, we need to introduce an addi-
tional final stage to cope with non-linear deformations of
the object boundary. We use r(t)

avg to initialize a deformable
contour (R(t)) that is fitted to the contours of the object us-
ing the traditional snake formulation [7]. This adjustment
is highly simplified by using the target position estimated
by the color particle filter, as it is shown in Fig. 6, where
the a posteriori probability map of the best color hypothesis
allows to eliminate noisy edges from the original image.

6. Experimental results

In this Section we present the results of different ex-
periments on both synthetic and real video sequences, and
examine the robustness of our system to several changing
conditions of the environment, in situations where other al-
gorithms may fail. In the first experiment, we segment a
synthetically generated sequence of an ellipse that changes
randomly its position, color and shape in a cluttered back-
ground. In Fig. 7(top) we depict the path followed by the
color cue. Observe the non-linearity of the trajectory. In [6]
it is shown that paths of this kind can not be estimated by
filters based on smooth dynamic models, but instead we
need to use filters based on multihypotheses, such as parti-
cle filters. Results show that our method based on multiple-
multihypotheses algorithms allows to segment and track the
ellipse, even when the background has a similar color to the
target (observe the frame before last).

In the second experiment (Fig. 8) we show how our

Figure 8. Tracking results of a camouflaging octopus.
Top row: Original sequence. Middle row: Results using
the proposed method. A posteriori pdf map of the color
module.

method performs in a real video sequence of an octopus
changing its appearance while camouflaging. Observe that
the a posteriori pdf maps of the color module give a rough
estimation of the target position (especially when the octo-
pus appearance is quite similar to the background), which
is corrected by introducing the shape module.

In the last two experiments, we compare the performance
of our algorithm to a common tracking technique [6] that
uses multiple hypotheses to predict the contour of the ob-
ject and accommodates the color with a smooth dynamic
model written as Gt = (1 − a)Gt−2 + aGt−1, where G
is the parameterization of the color distribution and a is a
mixing factor. The first of these experiments corresponds
to the tracking of the non-rigid boundary of a bending book
in a video sequence, where the lighting conditions change
smoothly from natural lighting to yellow lighting. Fig. 9
shows some frames of the tracking results. Note that de-
spite the smooth change of illuminant, the smooth dynamic
model is unable to track the contour of the object. The rea-
son of the failure is that the smooth dynamic model cannot
cope with the effect of self-shadowing produced during the
movement of the book.

In the final experiment we have tested the algorithm with
a sequence of a moving leaf. Although this is a challeng-
ing sequence because it is highly cluttered, the illumination
changes abruptly and the target moves unpredictably, we
can perform the tracking with the proposed method. Fig. 10
shows some frames of the tracking results. Observe the
abrupt change of illumination between the first and second
frames, which leads to failure when we try to track using a
contour particle filter with smooth color prediction.

7. Conclusions

In this paper we have presented a new technique to in-
tegrate different object features that are conditionally de-
pendent. This framework has allowed us to design a track-
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Figure 9. Tracking results of a bending book in a se-
quence with smooth change of illumination. Top row:
Results using only a contour particle filter and assuming
smooth change of color. The method fails. Middle row:
Results using the proposed method. Bottom row: A poste-
riori pdf map of the color module (PF2).

ing algorithm that accommodates simultaneously the col-
orspace where the image points are represented, the color
distributions of the object and background and the contour
of the object. We have demonstrated the effectiveness of the
method both analytically and experimentally, first tracking
sequences of synthetically generated data and then tracking
real sequences presenting high content of clutter, non-rigid
objects, non-expected target movements and abrupt changes
of illumination. Further integration of other features into
the framework, such as texture, contrast or depth, and other
algorithms apart from particle filters, is part of future work.

Acknowledgments

This work was partially supported by CICYT projects
DPI2004-05414 and DPI2003-05193-C02-01, by a fellow-
ship from the Spanish Ministry of Science and Technology,
and by the grants from U.S Department of Justice (2004-
DD-BX-1224), Department of Energy (MO-068) and Na-
tional Science Foundation (ACI-0313184).

References

[1] S.Birchfield, “Elliptical head tracking using intensity gradi-
ents and color histograms”, CVPR, pp.232-237, 1998.

[2] T.Darrel, G.Gordon, M.Harville, J.Woodfill, “Integrated
person tracking using stereo, color, and pattern detection”,
IJCV, Vol.37(2), pp.175-185, 2000.

[3] K.Fukunaga, “Introduction to statistical pattern recogni-
tion”, 2nd ed., Academic Press, 1990.

[4] G.Hager, P.Belhumeur, “Efficient region tracking with
parametric models of geometry and illumination”, PAMI,
Vol.20(10), pp.1125-1139, 1998.

[5] E.Hayman, J.O.Eklundh, “Probabilistic and voting ap-
proaches to cue integration for figure-ground segmentation”,
ECCV, 2002.

Figure 10. Tracking results of a leaf. Top row: Results
using only a contour particle filter and assuming smooth
change of color. The method fails. Middle row: Results
using the proposed method. Bottom row: A posteriori pdf
map of the color module (PF2). Observe how the tracked
leaf is clearly detected.

[6] M.Isard, A.Blake, “Condensation-conditional density prop-
agation for visual tracking”, IJCV, Vol.29(1), pp.5-28, 1998.

[7] M.Kass, A.Witkin, D.Terzopoulos,“Snakes: Active contour
models”, IJCV, Vol.1, pp.321-331, 1987.

[8] S.Khan, M.Shah, “Object based segmentation of video us-
ing color, motion, and spatial information”, CVPR, Vol.2,
pp.746-751, 2001.

[9] I.Leichter, M.Lindenbaum, E.Rivlin, “A probabilistic frame-
work for combining tracking algorithms”, CVPR, 2004.

[10] J.MackCormick, A.Blake, “Probabilistic exclusion and par-
titioned sampling for multiple object tracking”, IJCV,
Vol.39(1), pp.57-71, 2000.

[11] J.Malik, S.Belongie, J.Shi, T.Leung, “Textons, contours and
regions: Cue integration in image segmentation”, ICCV,
1999.

[12] F.Moreno-Noguer, A.Sanfeliu, D.Samaras, “Fusion of a
Multiple Hypotheses Color Model and Deformable Con-
tours for Figure Ground Segmentation in Dynamic Enviro-
ments”, ANM04 (in conjunction with CVPR’04), 2004.

[13] K.Nummiaro, E.Koller-Meier, L.Van Gool,“An adaptive
color-based particle filter”, IVC, Vol.2(1), pp.99-110, 2003.

[14] H.Sidenbladh, M.J.Black, D.J.Fleet, “Stochastic tracking of
3D human figures using 2D image motion”, ECCV, 2000.

[15] M.Spengler, B.Schiele, “Towards robust multi-cue integra-
tion for visual tracking”, Machine Vision and Applications,
Vol. 14(1), pp. 50-58, 2003

[16] P.Torr, R.Szelinski, P.Anandan, “An integrated bayesian ap-
proach to layer extraction from image sequences”, PAMI,
Vol.23(3), pp.297-303, 2001.

[17] K.Toyama, E.Horvitz, “Bayesian modality fusion: Proba-
bilistic integration of multiple vision cues for head track-
ing”, ACCV, 2000.

[18] J.Triesch, C.von der Malsburg, “Democratic integration:
self-organized integration of adaptive cues”, Neural Com-
putation, Vol.13(9), pp.2049-2074, 2001.

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 


