
A Computational Model of Eye Movements
during Object Class Detection

Wei Zhang† Hyejin Yang‡∗ Dimitris Samaras† Gregory J. Zelinsky†‡

Dept. of Computer Science† Dept. of Psychology‡
State University of New York at Stony Brook

Stony Brook, NY 11794
{wzhang,samaras }@cs.sunysb.edu † hjyang@ic.sunysb.edu ∗

Gregory.Zelinsky@stonybrook.edu ‡

Abstract

We present a computational model of human eye movements in an ob-
ject class detection task. The model combines state-of-the-art computer
vision object class detection methods (SIFT features trained using Ad-
aBoost) with a biologically plausible model of human eye movement to
produce a sequence of simulated fixations, culminating with the acqui-
sition of a target. We validated the model by comparing its behavior to
the behavior of human observers performing the identical object class
detection task (looking for a teddy bear among visually complex non-
target objects). We found considerable agreement between the model
and human data in multiple eye movement measures, including number
of fixations, cumulative probability of fixating the target, and scanpath
distance.

1. Introduction

Object detection is one of our most common visual operations. Whether we are driving [1],
making a cup of tea [2], or looking for a tool on a workbench [3], hundreds of times each
day our visual system is being asked to detect, localize, or acquire through movements of
gaze objects and patterns in the world.

In the human behavioral literature, this topic has been extensively studied in the context of
visual search. In a typical search task, observers are asked to indicate, usually by button
press, whether a specific target is present or absent in a visual display (see [4] for a review).
A primary manipulation in these studies is the number of non-target objects also appearing
in the scene. A bedrock finding in this literature is that, for targets that cannot be defined
by a single visual feature, target detection times increase linearly with the number of non-
targets, a form of clutter or ”set size” effect. Moreover, the slope of the function relating
detection speed to set size is steeper (by roughly a factor of two) when the target is absent
from the scene compared to when it is present. Search theorists have interpreted these find-
ings as evidence for visual attention moving serially from one object to the next, with the
human detection operation typically limited to those objects fixated by this ”spotlight” of
attention [5].

Object class detection has also been extensively studied in the computer vision community,



with faces and cars being the two most well researched object classes [6, 7, 8, 9]. The
related but simpler task of object class recognition (target recognition without localization)
has also been the focus of exciting recent work [10, 11, 12]. Both tasks use supervised
learning methods to extract visual features. Scenes are typically realistic and highly clut-
tered, with object appearance varying greatly due to illumination, view, and scale changes.
The task addressed in this paper falls between the class detection and recognition problems.
Like object class detection, we will be detecting and localizing class-defined targets; unlike
object class detection the test images will be composed of at most 20 objects appearing on
a simple background.

Both the behavioral and computer vision literatures have strengths and weaknesses when it
comes to understanding human object class detection. The behavioral literature has accu-
mulated a great deal of knowledge regarding the conditions affecting object detection [4],
but this psychology-based literature has been dominated by the use of simple visual pat-
terns and models that cannot be easily generalized to fully realistic scenes (see [13, 14] for
notable exceptions). Moreover, this literature has focused almost entirely on object-specific
detection, cases in which the observer knows precisely how the target will appear in the test
display (see [15] for a discussion of target non-specific search using featurally complex ob-
jects). Conversely, the computer vision literature is rich with models and methods allowing
for the featural representation of object classes and the detection of these classes in visually
cluttered real-world scenes, but none of these methods have been validated as models of
human object class detection by comparison to actual behavioral data.

The current study draws upon the strengths of both of these literatures to produce the first
joint behavioral-computational study of human object class detection. First, we use an
eyetracker to quantify human behavior in terms of the number of fixations made during
an object class detection task. Then we introduce a computational model that not only
performs the detection task at a level comparable to that of the human observers, but also
generates a sequence of simulated eye movements similar in pattern to those made by
humans performing the identical detection task.

2. Experimental methods

An effort was made to keep the human and model experiments methodologically similar.
Both experiments used training, validation (practice trials in the human experiment), and
testing phases, and identical images were presented to the model and human subjects in
all three of these phases. The target class consisted of 378 teddy bears scanned from [16].
Nontargets consisted of 2,975 objects selected from the Hemera Photo Objects Collection.
Samples of the bear and nontarget objects are shown in Figure 1. All objects were normal-
ized to have a bounding box area of 8,000 pixels, but were highly variable in appearance.

Figure 1: Representative teddy bears (left) and nontarget objects (right).

The training set consisted of 180 bears and 500 nontargets, all randomly selected. In the
case of the human experiment, each of these objects was shown centered on a white back-
ground and displayed for 1 second. The testing set consisted of 180 new bears and nontar-



gets. No objects were repeated between training and testing, and no objects were repeated
within either of the training or testing phases. Test images depicted 6, 13, or 20 color ob-
jects randomly positioned on a white background. A single bear was present in half (90) of
these displays. Human subjects were instructed to indicate, by pressing a button, whether
a teddy bear appeared among the displayed objects. Target presence and set size were
randomly interleaved over trials. Each test trial in the human experiment began with the
subject fixating gaze at the center of the display, and eye position was monitored through-
out each trial using an eyetracker. Eight students from Stony Brook University participated
in the experiment.
3. Model of eye movements during object class detection

Figure 2: The flow of processing through our model.

Building on a framework described in [17, 14, 18], our model can be broadly divided into
three stages (Figure 2): (1) creating a target map based on a retinally-transformed version
of the input image, (2) recognizing the target using thresholds placed on the target map, and
(3) the operations required in the generation of eye movements. The following sub-sections
describe each of the Figure 2 steps in greater detail.

3.1. Retina transform
With each change in gaze position (set initially to the center of the image), our model
transforms the input image so as to reflect the acuity limitations imposed by the human
retina. We used the method described in [19, 20], which was shown to provide a close
approximation to human acuity limitations, to implement this dynamic retina transform.

3.2. Create target map
Each point on the target map ranges in value between 0 and 1 and indicates the likelihood
that a target is located at that point. To create the target map, we first compute interest
points on the retinally-transformed image (see section 3.2.2), then compare the features
surrounding these points to features of the target object class extracted during training.
Two types of discriminative features were used in this study: color features and texture
features.

3.2.1. Color features
Color has long been used as a feature for instance object recognition [21]. In our study we
explore the potential use of color as a discriminative feature for an object class. Specifically,
we used a normalized color histogram of pixel hues in HSV space. Because backgrounds in
our images were white and therefore uninformative, we set thresholds on the saturation and
brightness channels to remove these points. The hue channel was evenly divided into 11
bins and each pixel’s hue value was assigned to one of these bins using binary interpolation.



Values within each bin were weighted by1− d, whered is the normalized unit distance to
the center of the bin. The final color histogram was normalized to be a unit vector.

Given a test image,It, and its color feature,Ht, we compute the distances betweenHt

and the color features of the training set{Hi, i = 1, ..., N}. The test image is labeled
as: l(It) = l(Iarg min1≤i≤N χ2(Ht,Hi)), and the distance metric used was:χ2(Ht,Hi) =
∑K

k=1
[Ht(k)−Hi(k)]2

Ht(k)+Hi(k) , whereK is the number of bins.

3.2.2. Texture features
Local texture features were extracted on the gray level images during both training and
testing. To do this, we first used a Difference-of-Gaussion (DoG) operator to detect interest
points in the image, then used a Scale Invariant Feature Transform (SIFT) descriptor to rep-
resent features at each of the interest point locations. SIFT features consist of a histogram
representation of the gradient orientation and magnitude information within a small image
patch surrounding a point [22].

AdaBoost is a feature selection method which produces a very accurate prediction rule by
combining relatively inaccurate rules-of-thumb [23]. Following the method described in
[11, 12], we used AdaBoost during training to select a small set of SIFT features from
among all the SIFT features computed for each sample in the training set. Specifically,
each training image was represented by a set of SIFT features{Fi,j , j = 1, ...ni}, where
ni is the number of SIFT features in sampleIi. To select features from this set, AdaBoost
first initialized the weights of the training sampleswi to 1

2Np
, 1

2Nn
, whereNp andNn are

the number of positive and negative samples, respectively. For each round of AdaBoost,
we then selected one feature as a weak classifier and updated the weights of the training
samples. Details regarding the algorithm used for each round of boosting can be found in
[12]. Eventually,T features were chosen having the best ability to discriminate the target
object class from the nontargets. Each of these selected features forms a weak classifier,
hk, consisting of three components: a feature vector, (fk), a distance threshold, (θk), and
an output label, (uk). Only the features from the positive training samples are used as weak
classifiers. For each feature vector,F , we compute the distance between it and the training
sample,i, defined asdi = min1≤j≤ni D(Fi,j , F0), then apply the classification rule:

h(f, θ) = { 1, d < θ
0, d ≥ θ

. (1)

After the desired number of weak classifiers has been found, the final strong classifier can
be defined as:

H =
T∑

t=1

αtht (2)

whereαt = log(1/βt). Hereβt =
√

1−εt

εt
and the classification errorεt =

∑ |uk − lk|.
3.2.3. Validation
A validation set, consisting of the practice trials viewed by the human observers, was used
to set parameters in the model. Because our model used two types of features, each having
different classifiers with different outputs, some weight for combining these classifiers was
needed. The validation set was used to set this weighting.

The output of the color classifier, normalized to unit length, was based on the distance
χ2

min = min1≤i≤N and defined as:

Ccolor = { 0, l(It) = 0
f(χ2

min), l(It) = 1 (3)

wheref(χ2
min) is a function monotonically decreasing with respect toχ2

min. The strong
local texture classifier,Ctexture (Equation 2), also had normalized unit output.



The weights of the two classifiers were determined based on their classification errors on
the validation set:

Wcolor = εt

εc+εt
,

Wtexture = εc

εc+εt

. (4)

The final combined output was used to generate the values in the target map and, ultimately,
to guide the model’s simulated eye movements.

3.3. Recognition
We define the highest-valued point on the target map as thehotspot. Recognition is ac-
complished by comparing the hotspot to two thresholds, also set through validation. If the
hotspot value exceeds the high target-present threshold, then the object will be recognized
as an instance of the target class. If the hotspot value falls below the target-absent threshold,
then the object will be classified as not belonging to the target class. Through validation,
the target-present threshold was set to yield a low false positive rate and the target-absent
threshold was set to yield a high true positive rate. Moreover, target-present judgments
were permitted only if the hotspot was fixated by the simulated fovea. This constraint was
introduced so as to avoid extremely high false positive rates stemming from the creation of
false targets in the blurred periphery of the retina-transformed image.

3.4. Eye movement
If neither the target-present nor the target-absent thresholds are satisfied, processing passes
to the eye movement stage of our model. If the simulated fovea is not on the hotspot, the
model will make an eye movement to move gaze steadily toward the hotspot location. Fix-
ation in our model is defined as the centroid of activity on the target map, a computation
consistent with a neuronal population code. Eye movements are made by thresholding this
map over time, pruning off values that offer the least evidence for the target. Eventually,
this thresholding operation will cause the centroid of the target map to pass an eye move-
ment threshold, resulting in a gaze shift to the new centroid location. See [18] for details
regarding the eye movement generation process. If the simulated fovea does acquire the
hotspot and the target-present threshold is still not met, the model will assume that a non-
target was fixated and this object will be ”zapped”. Zapping consists of applying a negative
Gaussian filter to the hotspot location, thereby preventing attention and gaze from return-
ing to this object (see [24] for a previous computational implementation of a conceptually
related operation).

4. Experimental results

Model and human behavior were compared on a variety of measures, including error rates,
number of fixations, cumulative probability of fixating the target, and scanpath ratio (a
measure of how directly gaze moved to the target). For each measure, the model and
human data were in reasonable agreement.

Table 1: Error rates for model and human subjects.

Total trials Misses False positives
Frequency Rate Frequency Rate

Human 1440 46 3.2% 14 1.0%
Model 180 7 3.9% 4 2.2%

Table 1 shows the error rates for the human subjects and the model, grouped by misses and
false positives. Note that the data from all eight of the human subjects are shown, resulting
in the greater number of total trials. There are two key patterns. First, despite the very
high level of accuracy exhibited by the human subjects in this task, our model was able to



Table 2: Average number of fixations by model and human.

Case Target-present Target-absent
p6 p13 p20 slope a6 a13 a20 slope

Human 3.38 3.74 4.88 0.11 4.89 7.23 9.39 0.32
Model 2.86 3.69 5.68 0.20 3.97 8.30 10.47 0.46

achieve comparable levels of accuracy. Second, and consistent with the behavioral search
literature, miss rates were larger than false positive rates for both the humans and model.

To the extent that our model offers an accurate account of human object detection behavior,
it should be able to predict the average number of fixations made by human subjects in the
detection task. As indicated in Table 2, this indeed is the case. Data are grouped by target-
present (p), target-absent (a), and the number of objects in the scene (6, 13, 20). In all
conditions, the model and human subjects made comparable numbers of fixations. Also
consistent with the behavioral literature, the average number of fixations made by human
subjects in our task increased with the number of objects in the scenes, and the rate of this
increase was greater in the target-absent data compared to the target-present data. Both of
these patterns are also present in the model data. The fact that our model is able to capture
an interaction between set size and target presence in terms of the number of fixations
needed for detection lends support for our method.

Figure 3: Cumulative probability of target fixation by model and human.

Figure 3 shows the number of fixation data in more detail. Plotted are the cumulative proba-
bilities of fixating the target as a function of the number of objects fixated during the search
task. When the scene contained only 6 or 13 objects, the model and the humans fixated
roughly the same number of nontargets before finally shifting gaze to the target. When the
scene was more cluttered (20 objects), the model fixated an average of 1 additional nontar-
get relative to the human subjects, a difference likely indicating a liberal bias in our human
subjects under these search conditions. Overall, these analyses suggest that our model was
not only making the same number of fixations as humans, but it was also fixating the same
number of nontargets during search as our human subjects.

Table 3: Comparison of model and human scanpath distance

#Objects 6 13 20
Human 1.62 2.20 2.80
Model 1.93 3.09 6.10
MODEL 1.93 2.80 3.43



Human gaze does not jump randomly from one item to another during search, but instead
moves in a more orderly way toward the target. The ultimate test of our model would
be to reproduce this orderly movement of gaze. As a first approximation, we quantify
this behavior in terms of a scanpath distance. Scanpath distance is defined as the ratio of
the total scanpath length (i.e., the summed distance traveled by the eye) and the distance
between the target and the center of the image (i.e., the minimum distance that the eye
would need to travel to fixate the target). As indicated in Table 3, the model and human data
are in close agreement in the 6 and 13-object scenes, but not in the 20-object scenes. Upon
closer inspection of the data, we found several cases in which the model made multiple
fixations between two nontarget objects, a very unnatural behavior arising from too small
of a setting for our Gaussian ”zap” window. When these6 trials were removed, the model
data (MODEL) and the human data were in closer agreement.

Figure 4: Representative scanpaths. Model data are shown in thick red lines, human data
are shown in thin green lines.

Figure 4 shows representative scanpaths from the model and one human subject for two
search scenes. Although the scanpaths do not align perfectly, there is a qualitative agree-
ment between the human and model in the path followed by gaze to the target.
5. Conclusion

Search tasks do not always come with specific targets. Very often, we need to search for
dogs, or chairs, or pens, without any clear idea of the visual features comprising these
objects. Despite the prevalence of these tasks, the problem of object class detection has at-
tracted surprisingly little research within the behavioral community [15], and has been ap-
plied to a relatively narrow range of objects within the computer vision literature [6, 7, 8, 9].
The current work adds to our understanding of this important topic in two key respects.
First, we provide a detailed eye movement analysis of human behavior in an object class
detection task. Second, we incorporate state-of-the-art computer vision object detection
methods into a biologically plausible model of eye movement control, then validate this
model by comparing its behavior to the behavior of our human observers. Computational
models capable of describing human eye movement behavior are extremely rare [25]; the
fact that the current model was able to do so for multiple eye movement measures lends
strength to our approach. Moreover, our model was able to detect targets nearly as well
as the human observers while maintaining a low false positive rate, a difficult standard to
achieve in a generic detection model. Such agreement between human and model sug-
gests that simple color and texture features may be used to guide human attention and eye
movement in an object class detection task.

Future computational work will explore the generality of our object class detection method
to tasks with visually complex backgrounds, and future human work will attempt to use



neuroimaging techniques to localize object class representations in the brain.
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