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Abstract— Robotics applications based on computer vision
algorithms are highly constrained to indoor environments where
conditions may be controlled. The development of robust visual
algorithms is necessary for improving the capabilities of many
autonomous systems in outdoor and dynamic environments. In
particular, this paper proposes a tracking algorithm robust to
several artifacts which may be found in real world applications,
such as lighting changes, cluttered backgrounds and unexpected
target movements. In order to deal with these difficulties the pro-
posed tracking methodology integrates several Bayesian filters.
Each filter estimates the state of a particular object feature which
is conditionally dependent on another feature estimated by a
distinct filter. This dependence provides improved representations
of the target, allowing to segment it out from the background of
the image. We describe the updating procedure of the Bayesian
filters by a ‘hypotheses generation and correction’ scheme. The
main difference with respect to previous approaches is that
the dependence between filters is considered during the feature
observation, i.e, into the ‘hypotheses correction’ stage, instead of
considering it when generating the hypotheses. This proves to be
much more effective in terms of accuracy and reliability. 1

I. INTRODUCTION

The development of robust tracking techniques is of
enormous importance for improving the capabilities of many
autonomous systems in outdoor and dynamic environments.
It has been observed that the simultaneous use of redundant
and complementary cues for describing a target, improves
noticeably the performance of the tracking algorithms [2],
[4], [5], [8], [12], [15]–[17]. Nevertheless, most of these
approaches, are not robust enough and suffer from various
limitations: they use to be tailored to specific applications in
controlled environments; do not represent a general integration
methodology which might be extrapolated to new experimental
conditions; and do not take advantage of the relationship
existent between different object cues. In visual tracking, we
may consider this cue dependence when representing the up-
date procedure of Bayesian filters in a hypotesis/es generation
(prediction) and a hypotesis/es correction (observation) stages.
During the correction of a predicted feature state, information
about the state of another feature might be used. For instance,
a usual method to correct the samples of a contour particle

1This work was supported by CICYT project DPI2004-05414 from the
Spanish Ministry of Science and Technology, and by the grants from U.S
Department of Justice (2004-DD-BX-1224), Department of Energy (MO-068)
and National Science Foundation (ACI-0313184).

filter, is based on the ratio of the number of pixels inside
the contour with object color versus the number of pixels
outside the contour with background color, i.e, the contour
cue depends on the color cue.

In order to overcome the limitations of previous approaches,
we introduce and analyze a probabilistic framework which
allows to integrate several object cues estimated by Bayesian
filters (such as Kalman or particle filters). The main properties
and contributions of the proposed method may be summarized
as follows: 1.- It is general, in the sense that it does not
restrict the total number of features to integrate. 2.- The
complexity of the system does not increase noticeably when
integrating additional features. 3.- Allows to represent and take
advantage of cue dependence. All these properties enable the
robust segmentation and tracking of objects in non-stationary
environments, with abrupt changes of illumination, cluttered
backgrounds and non-linear target dynamics.

The rest of the paper is organized as follows: Section II,
reviews related work. In Section III, the mathematical frame-
work is introduced. In Section IV, a comprehensible example
for one dimensional cues will be explained, which will be used
as a benchmark to compare the performance of our method
to that of other approaches. Results in real environments and
conclusions are given in Sections V and VI, respectively.

II. RELATED WORK

In fact, this is not the first work to consider multiple
cue integration for tracking tasks, from a Bayesian point of
view. The simplest cue integration approach, is to consider
an extended state vector including the parameterization of all
the cues. For instance, Isard and Blake [6] use a single state
vector to integrate appearance and shape in a particle filter
framework. However, as it was observed by Khan et al. in [7],
to proceed by simply augmenting the state space is problematic
since it causes an exponential expansion of the region of
possible state vector configurations, and the tracking becomes
extremely complex. [7] suggests using a Rao-Blackwellized
particle filter, where some ‘appearance-related’ coefficients are
integrated out of the extended state vector. This procedure
reduces considerably the size of the search space, and, as
a consequence, reduces the cost of tracking. Unfortunately,
the generalization of this formulation to include additional
features is not feasible. Generalization may be achieved by
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associating a different filter to each feature. Along these lines,
Rasmussen and Hager [14], introduced the Joint Probability
Data Association Filter (JPDAF) for tracking several targets
(note that multiple target tracking can be compared to multiple
cue and single target tracking). Nevertheless, this formulation
does not permit to represent the dependence among several
state vectors. A similar approach is presented by Leichter
et al. [9], where Kalman and particle filters are integrated
for tracking tasks, although again, assuming independence
between filters, which limits the performance of the system.

The partitioned sampling technique introduced by Mac-
Cormick et al. [10], [11], and the related approach of Wu
and Huang [18], are probably the works which are closer to
the methodology presented in this paper. Partitioned sampling
is specifically designed for particle filters, and allows to
reduce the curse of dimensionality problem affecting these
kind of Bayesian filters. The method applies the ‘hypotheses
generation’ and ‘hypotheses correction’ stages, separately for
different parts of the state vector. The key difference with
respect to our method is that partitioned sampling considers
the cue dependence during the hypotheses generation stage,
whereas we consider it during the hypotheses correction. We
will show how proceeding this way, tracking accuracy and
reliability are significantly improved.

III. MULTIPLE CUE INTEGRATION

Next, we will describe the mathematical background of
the proposed framework. We will start by defining the cue
integration process, and subsequently, we will explain how
the cue dependence is considered into the observation model.

A. Integration process

In the general case, let us describe the object being tracked
by a set of F features, whose configuration is specified by the
state vectors x1, . . . ,xF , that are sequentially conditionally
dependent, i.e., feature i depends on feature i − 1. These
features have an associated set of measurements z1, . . . , zF ,
where measurement zi allows to update the state vector xi.
The conditional a posteriori Probability Density Function
(PDF) p1 = p(x1|z1), . . . , pF = p(xF |zF ) is estimated using
a corresponding Bayesian filter BF1, . . . ,BFF . For the whole
set of variables we assume that the dependence is only in one
direction, i.e, {zk = zk(zi,xi),xk = xk(xi, zi)} ⇐⇒ i < k.

Considering this dependence relationship we can add extra
terms to the PDF of each Bayesian filter. In particular, the PDF
computed by BF i will be pi = p(xi|x1, . . . ,xi−1, z1, . . . , zi).
Introducing the notation for the cue-augmented state vector
X1:k = {x1, . . . ,xk}, and cue-augmented measurement vec-
tor Z1:k = {z1, . . . , zk}, it can be easily shown that the whole
a posteriori PDF may be sequentially computed, as follows:

P = p(X1:F |Z1:F )
= p(x1|Z1)p(x2|X1,Z1:2) · · · p(xF |X1:F−1,Z1:F )
= p1p2 · · · pF (1)

Eq. 1 tells that the whole PDF can be computed sequentially,
starting with BF1 to generate p(x1|Z1) which is then used to

estimate p(x2|X1,Z1:2) with BF2, and so on. Note that the
inclusion of an extra feature xG (with a measurement vector
zG) independent from the rest, is straightforward. We just need
to multiply Eq. 1 by the posterior p(xG|ZG).

In the iterative performance of the method, BF i receives as
input at iteration t, the output PDF of its state vector xi at the
iteration t−1. Therefore, we need to write the time expanded
version of the PDF for BF i as

pt
i = p(xt

i|Xt
1:i−1,Z

t
1:i, p

t−1
i ) (2)

The complete PDF (Eq. 1) may be then expanded as:

P t = p(xt
1, . . . ,x

t
F |zt

1, . . . , z
t
F ) = p(Xt

1:F |Zt
1:F )

= p(xt
1|Zt

1, p
t−1
1 ) · · · p(xt

F |Xt
1:F−1,Z

t
1:F , pt−1

F )
= pt

1p
t
2 · · · pt

F (3)

B. Bayesian filtering

We now briefly describe how the k − th Bayesian filter
BFk, computes the posterior p(xt

k|Zt0:t
k ), where Zt0:t

k =
{zt0

k , . . . , zt
k}. Without loss of generality, here we assume that

the measurements are obtained just considering observations
of feature xk.

The formulation of the tracking problem in terms of a Bayes
filter, consists in recursively update the posterior p(xt

k|Zt0:t
k ):

p(xt
k|Zt0:t

k ) ∝ p(zt
k|xt

k)

∫
x

t−1
k

p(xt
k|xt−1

k )p(xt−1
k |Zt0:t−1

k )dxt−1
k

(4)
where p(zt

k|xt
k) is the observation (or measurement) model,

and p(xt
k|xt−1

k ) represents the dynamic model.
Although BFk may take different forms (Kalman filter, ex-

tended Kalman filter, particle filter, Rao-Blackwellised particle
filter, ...), in all of the cases Eq. 4 is updated through an ‘hy-
potheses generation - hypotheses correction’ scheme. Initially,
based on the dynamic model p(xt

k|xt−1
k ) and the a posterior

distribution at the previous time step p(xt−1
k |Zt0:t−1

k ), the state
of the target is predicted according to:

p(xt
k|Zt0:t−1

k ) =

∫
x

t−1
k

p(xt
k|xt−1

k )p(xt−1
k |Zt0:t−1

k )dxt−1
k (5)

This likelihood is subsequently corrected by the observation
model p(zt

k|xt
k):

p(xt
k|Zt0:t

k ) = αtp(zt
k|xt

k)p(xt
k|Zt0:t−1

k ) (6)

where αt = 1/p(Zt0:t
k ) is a normalizing constant.

Next, we overview two different implementations of Bayes
filters, namely the Kalman filter and particle filters, which
are representative examples for the continuous and discrete
methodologies to approximate the posterior densities, and
which will be the filters used in our experiments.

1) Kalman filter: In the particular case that the observation
density is assumed to be Gaussian, and the dynamics are
assumed to be linear with additive Gaussian noise, equations 5
and 6 result in the Kalman filter [1]. The expressions for the
densities of the dynamic model and observation model are:

p(xt
k|xt−1

k ) = N (Ht
kx

t−1
k ;Σt

k,h)

p(zt
k|xt

k) = N (Mt
kx

t
k;Σt

k,m) (7)
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where Ht
k and Mt

k matrices denote the deterministic com-
ponents of the models, and Σt

k,h, Σt
k,m are the covariance

matrices of the white and normally distributed noise assumed
for the models. These expressions are plugged into the Bayes
filter equations 5 and 6, which then can be analytically
solved. The hypotheses generation stage provides a Gaussian
likelihood, p(xt

k|Zt0:t−1
k ) = N (xt

k,−;Σt
k,−), where:

xt
k,− = Htxt−1

k Σt
k,− = Σt

k,h + Ht
kΣ

t−1(Ht
k)T (8)

Similarly, the hypotheses correction stage generates a Gaussian
posterior density p(xt

k|Zt0:t
k ) = N (xt

k,Σt
k), where:

xt
k = xt

k,−+Kt[zt
k−Mt

kx
t
k,−] Σt

k = [I−KtMt
k]Σt

k,− (9)

and the matrix Kt is the Kalman gain.
2) Particle filter: In noisy scenes with cluttered back-

grounds, observations usually have non-Gaussian multi-modal
distributions, and models estimated using the Kalman fil-
ter are no longer valid. Particle filtering [3] offers an ap-
proximate solution for these cases, and approximates the
posterior p(xt−1

k |Zt0:t−1
k ) by a set of weighted samples

{st−1
kj , πt−1

kj }nk
j=1, where πt−1

kj is the weight associated to
particle st−1

kj . The Bayes filter equation 4 is represented by:

p(xt
k|Zt0:t

k ) ∝ p(zt
k|xt

k)
nk∑
j=1

πt−1
kj p(xt

k|st−1
kj ) (10)

which is recursively approximated using, again, a ‘hypotheses
generation - hypotheses correction’ strategy. Note that now, the
dynamic model is represented by the distribution p(xt

k|st−1
kj ).

During the hypotheses generation stage, a set of nk

samples st
kj is drawn from the distribution {st

kj}nk
j=1 ∼∑nk

j=1 πt−1
kj p(xt

k|st−1
kj ).

For implementation purposes, this stage is usually split into
two subprocesses: initially the set {st−1

kj , πt−1
kj }nk

j=1, is resam-
pled (sampling with replacement) according to the weights
πt−1

kj . We obtain the new set {s̃t−1
kj , πt−1

kj }nk
j=1 which is subse-

quently propagated based on the probabilistic dynamic model
to the set {st

kj}nk
j=1.

Finally, based on the observation function p(zt
k|xt

k), the set
of samples {st

kj}nk
j=1 is weighted: πt

kj = p(zt
k|xt

k = st
kj).

The set {st
kj , π

t
kj}nk

j=1 approximates the posterior distribu-
tion p(xt

k|Zt0:t
k ) at time t.

C. Introducing cue dependence into the observation model

In this subsection we will explain how cue dependence is
considered within the proposed probabilistic framework.

The dependence between cues comes from the fact that
in real tracking algorithms, it is common to evaluate the
hypotheses generated about a specific feature, let us say x2,
according to the state of another feature, let us say x1. The
usually adopted solution consist in assuming the former feature
x1 to be represented by a deterministic state vector, which
at the most has been updated using some naive dynamic
model. Nevertheless, we wish to consider x1 as a stochastic
variable represented by a PDF p(x1|z1), and use this PDF
when evaluating the hypotheses of feature x2. Thus p(x1|z1)

Algorithm: Observe Dependent Feature ( )

Input: p(xt
1|Zt0:t

1 ) and p(xt
2|Zt0:t−1

2 )

Output: zt
2 (observation of feature xt

2)

Desc: Observe and correct the hypothesis/es p(xt
2|Zt0:t−1

2 ) of
feature xt

2 given the posterior p(xt
1|Zt0:t

1 ) of feature xt
1

1) Initialize xt
1 posterior:

if BF1 ≡ KF1 ⇒ p(xt
1|Zt0:t

1 ) = N (xt
1,Σ

t
1)

then

{{st
1j , π

t
1j}n1

j=1 =discretize(N (xt
1,Σ

t
1), n1)

p(xt
1|Zt0:t

1 ) = {st
1j , π

t
1j}n1

j=1

if BF1 ≡ PF1 ⇒ p(xt
1|Zt0:t

1 ) = {st
1j , π

t
1j}n1

j=1

then do nothing()

2) Resample p(xt
1|Zt0:t

1 ):

{s∗1j , π
∗
1j}n2

j=1 =resampling({st
1j , π

t
1j}n1

j=1, n2)

3) Observe xt
2 feature based on xt

1 best hypothesis/es:

if BF2 ≡ KF2

then

{
x∗

1 =
∑n2

j=1 s∗1jπ
∗
1j

zt
2 = z2(x

∗
1)

if BF2 ≡ PF2

then ∀j = 1, . . . , n2 do zt
2j = z2(s

∗
1j)

Fig. 1. Algorithm for observing a feature x2 which is dependent on a
feature x1. (BF : Bayesian Filter; KF : Kalman Filter; PF : Particle Filter)

Function: discretize ( )

Input: N (μx, σx) and n

Output: {sj , πj}n
j=1

Desc: Produce n uniformly distributed samples {sj , πj}n
j=1

of the Gaussian function N (μx, σx). The sampling region is
centered on μx and has lenght 3σx.

L = 3σx; Δx = L
n−1

∀j = 1 . . . n do

{
sj = μ − L

2
+ jΔx

πj = N (μx, σx)|x=sj

Function: resampling ( )

Input: {sj , πj}n1
j=1 and n2

Output: {s∗k, π∗
k}n2

k=1

Desc: The set {sj , πj}n1
j=1, is resampled (sampling with

replacement) according to the weights πj , in order to define a
new set {s∗k, π∗

k}n2
k=1 .

∀j = 1 . . . n1 do ci =
∑n1

j=1 πj

∀k = 1 . . . n2 do

{
s∗k = sε(k) ε(k): min j such that cj ≥ k

n2
π̃k = πε(k)

∀k = 1 . . . n2 do π∗
k = π̃k∑n2

j=1 π̃j

Fig. 2. Functions discretize( ) and weighted resample( ),
which has been adapted from [6] .
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Fig. 3. Introducing the cue dependence into the observation model, in a
case dealing with two features, one estimated by a Kalman filter and the other
estimated by a particle filter. The posterior of cue x1, computed by KF1,
is represented by a set of weighted samples {st

1j , πt
1j}n1

j=1. These particles
are resampled n2 times (according to their weights), in order to obtain the
set {s∗1j , π∗

1j}n2
j=1. Finally, each sample {st

2j}n2
j=1, of cue x2, is weighted

according to the configuration of the corresponding sample s∗1j .

is introduced into the observation model of the feature x2,
during the ‘hypotheses correction’ stage of the filter.

The algorithm for introducing the state of feature x1 (esti-
mated by BF1) into the observation model of feature x2 (esti-
mated by BF2) is shown in Fig. 1. The key point of the inte-
gration methodology is that feature x2 is observed considering
the best estimates of feature x1. The function resampling
samples among the whole set of weighted particles approxi-
mating the posterior p(xt

1|Zt0:t
1 ) � {st

1j , π
t
1j}n1

j=1. The sam-
pling is performed based on the particle weights, in such a
way that the resulting subset might contain repeated copies of
the more likely particles, while other elements with relatively
low weights may not be considered at all. In case that BF1

provided a continuous PDF (such as Kalman Filter, EKF
...), the algorithm would require of an initial discretization
stage, accomplished by function discretize. These last
two functions are described in Fig. 2 2.

Fig. 3 shows an example of how the cue dependence is
handled in a case where we integrate a Kalman filter (KF1)
and a particle filter (PF2). For this example, cue x2, estimated
by PF2, depends on cue x1, estimated by KF1. During
the observation phase of the PF2, the multiple hypotheses
{s2j}n2

j=1, generated in the prediction stage of the filter, are
weighted based on the posterior of cue x1, previously done
by KF1. For this purpose, the PDF approximating p(xt

1|Zt0:t
1 )

is discretized into n1 weighted particles, {st
1j , π

t
1j}n1

j=1. Sub-
sequently, this set is resampled n2 times using a sampling
with replacement. A set {s∗1j , π

∗
1j}n2

j=1, is obtained. Finally,
each sample st

2j of the state vector x2 is weighted using the
configuration of cue x1 represented by the sample s∗1j .

Observe in Fig. 3 that the samples {st
1j} that have higher

weights, have more chance to be selected several times when
evaluating the hypotheses {st

2j}; thus allowing to group to-
gether the more likely samples of feature x1 with the more
likely samples of feature x2. Also it is important to note that

2For ease of explanation, in the discretize( ) function we just consider
the sampling of a one-dimensional Gaussian distribution. The extension to
higher dimensionalities is straightforward.

not all the features need to be approximated by the same
number of samples. In the example just described, x1 is
estimated by n1 = 5 samples, whereas x2 is estimated by n2 =
10 samples. This is an important advantage of the proposed
framework, especially when dealing with particle filters, since
it permits to adapt the number of samples to estimate each
feature, in function of its particular requirements.

To make all the mathematical foundations more clear, next
we will apply the method for a simulated case, with only two
one-dimensional particle filters.

IV. DEPENDENT OBJECT FEATURES IN 1D

Let us assume that we want to track a point that changes
its position and color. Both features lie on a 1D space, that is,
the point is moving on the horizontal axis, between the [−1, 1]
coordinates, and the color is also represented by a single value
in the [0, 1] interval. The movement of the point is simulated
with a random dynamic model (centered in μpos and scaled by
αpos). Furthermore, we simulate an observation model, adding
Gaussian noise to the simulated position :

post = (post−1 − μpos)αpos + N (μnoise,pos, σnoise,pos)
obs post = post + N (μnoise,obs pos, σnoise,obs pos) (11)

Similar equations generate the models for color change (colt)
and the corresponding observation (obs colt).

The state of each one of the features will be estimated
through particle filters. We will use PF1 to track the color,
with x1 and z1 representing the color state vector and its
measurement, and PF2, x2 and z2 the corresponding particle
filter, state vector and measurements assigned to the position.
Thus, we make the following analogies:

PF1 : x1 = col z1 = obs col
PF2 : x2 = pos z2 = obs pos

At the starting point of iteration t, PF1 receives at its input
pt−1
1 , the PDF of the color at time t−1, approximated with n1

weighted samples {st−1
1j , πt−1

1j }n1
j=1. This set is resampled and

propagated according to a random dynamic model of Gaussian
noise, that is, st

1j = s̃t−1
1j + N (0, σdyn,col), where s̃t−1

1j are the
resampled particles.

Each one of these propagated samples is weighted taking
into account its proximity to the observed value of the color:
πt

1j ∼ e−(‖st
1j−obs colt‖).

The set {st
1j , π

t
1j}n1

j=1, is the output of PF1 and represents
an approximation to pt

1. This PDF, jointly with pt−1
2 , feeds into

PF2, which is responsible for estimating the position of the
point. As in the previous particle filter, pt−1

2 is approximated
by a set of n2 weighted samples {st−1

2j , πt−1
2j }n2

j=1, which are
resampled and propagated by a random Gaussian dynamic
model, i.e, st

2j = s̃t−1
2j + N (0, σdyn,pos).

As we have previously pointed out, in real trackers, it is
common to evaluate several target positions based on some
appearance measure of the object, in our case, color. So
we will proceed in a similar way for the weighting stage.
Initially, the set {st

1j , π
t
1j}n1

j=1 is sampled with replacement n2

times, where the probability for each particle of being selected
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(a) Condensation (b) Partitioned Sampling (c) Proposed Method
Fig. 4. A posteriori PDF’s for different particle filter based algorithms. Comparison of the PDF’s obtained by 3 algorithms when tracking a point that
is randomly moving in the ‘color-position’ space. The results are for a particular iteration, and show how the filters approximate the true value (dark cross)
based on a set of weighted particles (gray level circles). The gray level is proportional to the probability of the sample (darker gray levels indicate more
likely samples). Since the true value is only ideally available, the correction of the hypotheses is done based on the observation (light cross), which we have
simulated to be the true value plus Gaussian noise. In the 3 experiments, we have used the same number of particles (n=1000) and the same dynamic models.
Note that the proposed approach is the method that concentrates a maximum number of samples around the true value, and therefore, it is the most reliable.

is determined by its weight πt
1j . This sampling procedure

generates a subset {s∗1j , π
∗
1j}n2

j=1, containing the best posterior
hypotheses of feature x1. Subsequently, each sample st

2j ,
representing a position of the point in space, is associated to
a corresponding color sample s∗1j , so that those color samples
having larger weights (high probability) will be used more
times than those having low probability. In order to simulate
the weighting of the position samples taking into account the
color configuration, the weight assigned to each sample st

2j is

computed by a function πt
2j ∼ e−(‖s∗1j−obs colt‖+‖st

2j−obs post‖),
which simultaneously considers position and color states.

The set {st
2j , π

t
2j}n2

j=1, represents the approximation to pt
2.

Finally, the complete a posteriori PDF of the system at time
t is:

P t = p(xt
1,x

t
2|zt

1, z
t
2) = pt

1p
t
2

A. Comparison with other approaches

The simple example just presented, will be considered as a
benchmark to compare the efficiency of the integration method
proposed here, to that of previous approaches, specifically,
with the conventional Condensation algorithm [6] assuming
independent cues and the partitioned sampling algorithm [10],
[11] assuming the dependence in the propagation stage.

The comparison will be performed in terms of the accuracy
in the tracking (distance between the estimated position and
color and the true values), and in terms of the survival
diagnostic [11]. The survival diagnostic D for a particle set
{si, πi}n

i=1, is defined as D =
(∑n

i=1 π2
i

)−1
. This random

variable may be interpreted as the number of particles which
would survive a resampling operation, and indicates whether
the tracking performance is reliable or not. A low value of
D means that the tracker may lose the target. For instance, if
π1=1 and π2=. . .=πn=0, then D=1. In these circumstances
only one particle might survive the resampling, and tracking
would probably fail. On the other hand, if all the particles
have the same weight, π1=. . .=πn=1/n results in that D=n.
This indicates that all the n particles would survive an ideal
resampling, and the tracking would not get lost. Made this
clarification, we proceed to study the performance of different
algorithms in the tracking problem proposed in this section.

Initially, the problem has been examined by the conven-
tional Condensation algorithm, assuming independent cues.
x1 and x2 are represented into the same state vector, and
the hypotheses generation and correction stages are applied
simultaneously to both features. Since the dynamic model of a
specific feature has no clue about the state of the other feature,
particle samples are spread on a wide area of the state space
and only a few particles will be located in the neighborhood of
the true state. Fig. 4a shows the a posteriori PDF obtained in
one iteration of the algorithm. The dots represent the different
samples (in the ‘color-position’ configuration space), and the
crosses are the true value (dark cross) and observed value
(light cross). The particles gray level is proportional to their
likelihood (darker levels are more likely samples). Note that
only a small set of particles have a large weight. Consequently,
the survival diagnostic for this approach will have low values.

Better results may be obtained using the partitioned sam-
pling. In this case, the dynamics and measurements are not ap-
plied simultaneously, but are partitioned into two components.
First, the dynamics are applied in the x1 direction, and sub-
sequently the particles are rearranged so that they concentrate
around the color observation (by a process called weighted
resampling [10]). This arrangement enhances the estimation
by concentrating more particles around the true state. Note in
Fig. 4b this effect on the posterior PDF. Although particles
are spread in the x2 direction, their variability along the x1

direction is highly reduced. As a result, the number of samples
having a large weight is considerably bigger than when using
the conventional Condensation. However, it is important to
note that in the partitioned sampling, particles are propagated
in the direction x2 according to the likelihood of the samples
of feature x1. Thus, best hypotheses of feature x1 have more
chances to be propagated in the direction x2. Although this
approach outperforms the conventional Condensation, it still
has a limitation, in that the best samples of feature x1 do
not need to be the best samples of feature x2. Therefore, the
common association of the best samples of feature x1 with
the best samples of feature x2, is not guaranteed.

This is improved in the integration algorithm proposed in
this paper. The key difference with respect to the previous
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approaches, is that we consider a different state vector for each
cue, and the hypotheses generation and correction stages are
also applied separately. In particular, the sample propagation
for cue xi, is performed according to the samples resampling
its own PDF in the previous time step p(xt−1

i |Zt−1
i ), and

not according to the samples that better approximate another
cue, avoiding the mentioned problem suffered by partitioned
sampling. Fig. 4c, shows that proceeding this way the sam-
ples are much more concentrated around the true value than
in previous approaches, providing larger survival diagnostic
rates. Furthermore, while partitioned sampling considers the
cue dependence during the hypotheses generation stage, we
consider it in the correction phase, where the posterior of a
specific cue is used to weigh the samples of another cue. This
allows to update all the cues in a same iteration.

Considering the representation used in [11] to describe
particle filter processes (explained by convolution and multi-
plication of PDF’s) in Fig. 5 we describe one time step of the
conventional Condensation algorithm, the partitioned sampling
and the proposed algorithm. These diagrams clearly reflect the
differences between all the methods:

(a) Conventional Condensation (x = [x1,x2])

(b) Partitioned Sampling (x = [x1,x2])

(c) Proposed Method

Fig. 5. Whole process diagrams of the Condensation, partitioned
sampling and the proposed algorithm. The symbols are adapted from [11]:
‘∼’ is the resampling operation, ‘∼ pt

1’ denotes a weighted resampling with
respect to the importance function pt

1, ‘∗’ indicates a convolution with the
dynamics and ‘×’ is the multiplication by the observation density.

The plots of Fig. 6 show the tracking results obtained for
all the algorithms. Fig. 6a compares the methods in terms of
the tracking error, where the error is computed as the distance
between the filter estimate and the true value. For instance,
given a posterior approximated by the set {sj , πj}n

j=1, and the
true state of the tracked point given by xtrue, the value of the
error is E(n) = ‖E(x)− xtrue‖, where E(x) is the expected
value approximated by the filter, i.e, E(x) =

∑n
j=1 sjπj , and

‖ · ‖ refers to the Euclidean norm. Observe that the error
produced using the method proposed in this paper is clearly
smaller than the produced by the other algorithms.

When analyzing the survival diagnostic for the same ex-
periments, we may reach similar conclusions. From Fig. 6b
it can be seen that the largest survival rates, and hence the
most reliable tracking results, are obtained when using the
integration technique presented here.

(a) (b)
Fig. 6. Tracking results obtained for the conventional Condensation,
partitioned sampling and the proposed method. Analysis of the three
algorithms when are applied to the tracking example explained in this section,
which was a 20 iterations sequence. The analysis is done in terms of the
error in the tracking (a) and in terms of the survival rate (b). In both cases
the experiments have been realized for different number of samples, and for
each specific number of samples, 25 repetitions of the simulation have been
done. The results we show, correspond to the mean of these 25 repetitions,
of 20 iterations each. Observe that the results agree with the a posteriori
PDF’s plotted in Fig 4, and the proposed method clearly outperforms both
the conventional Condensation and the partitioned sampling algorithms.

Just a final remark, concerning to the number of particles
necessary to achieve a desired level of performance. It is well
known that the curse of dimensionality is one of the main
problems affecting particle filters, that is, when the dimen-
sionality of the state space increases, the number of required
samples increases exponentially [7], [10], [18]. Intuitively, the
number of samples is proportional to the volume of the search
space. For instance, if a 1D space is sampled by n particles,
the same sampling density in a 2D space will require n2

particles, and so on. Nevertheless, in the proposed method, the
high dimensional state vectors are separated into various small
state vectors and the sampling is particularized for each low
dimensional configuration space. The final number of required
particles corresponds to the sum of the particles used in each
of these low dimensional spaces. For example, if a 2D state
vector can be separated into two 1D state vectors, the number
of samples may be reduced from n2 (required in the 2D
configuration space) to 2n (required in the two 1D spaces).
Furthermore, as we have previously pointed out, the number
of samples may be adapted for the particular requirements of
each component of the whole state vector.

V. RESULTS IN REAL ENVIRONMENTS

We have used the proposed approach to track several
targets in natural and unconstrained environments. For all the
experiments we will show in this section, four different object
cues have been used: x1 = object bounding box, estimated
by a Kalman filter KF1; x2 = object dependent colorspace,
estimated by a particle filter PF2; x3 = color distribution,
estimated by PF3; and finally x4=object contour, estimated
by PF4. The observation functions are designed in such a
way that a sequential conditional relation is satisfied, i.e,
observation function zi uses the state of feature xi−1. For a
detailed description of such features and their corresponding
observation functions, we refer the reader to [13].

Figures 7, 8 and 9 show several result frames of various
tracking experiments, in challenging environments with dif-
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frame#1 frame#48 frame#72 frame#83

Fig. 7. Experiment 1: Tracking an hippopotamus into the water.

frame#1 frame#8 frame#26 frame#51

Fig. 8. Experiment 2: Tracking a camouflaging octopus.

ferent artifacts, such as cluttered backgrounds, camouflaging
objects, gradual and abrupt illumination changes, and unex-
pected target movements. In all the experiments, the first row
depicts the original frames, the second row are the tracking
results, and the third row represents the a posteriori PDF
map of the color module. Fig. 7 shows the tracking of an
hippopotamus in the water. In spite of the appearance changes
of the target produced by water specularities, the proposed
algorithm succeeds in the tracking. More complicated is the
tracking of the camouflaging octopus of Fig. 8, since its
aspect changes gradually until confusing with the background.
Observe that although the a posteriori PDF map of the color
module provides just a rough estimate of the target position,
this is subsequently corrected by the contour feature. The com-
bination of both types of features (appearance and geometry)
provides robustness to the tracking. In the last experiment
we show the tracking of a moving leaf, in a sequence with
an abrupt illumination change (note this change between the
consecutive frames 95 and 96). Furthermore, the movement
of the leaf is unpredictable, continuously varying its direction
and acceleration. Under these circumstances, tracking can be
achieved because of the use of particle filters for characterizing
both the color and the contour of the leaf.

VI. CONCLUSIONS

In this paper we have proposed and analyzed a robust
methodology to integrate several Bayesian filters for tracking
tasks, where each filter is used to estimate the state of a differ-

frame#95 frame#96 frame#101 frame#105

Fig. 9. Experiment 3: Tracking a moving leaf.

ent object feature. This framework is particularly interesting
for performing tracking in outdoor scenarios, where abrupt
illumination changes, cluttered backgrounds and unexpected
target dynamics might occur. The key point of our technique is
the consideration of the cue dependence when observing each
particular feature in order to correct its hypothesized state, as
opposed to previous approaches, which used to consider the
cue dependence during the hypotheses generation stage. Our
method proves to be much more effective in terms of accuracy
and reliability, as we show through a set of synthetic and real
tracking experiments.
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