
Estimating Shadows with the Bright
Channel Cue

Alexandros Panagopoulos1, Chaohui Wang2,3, Dimitris Samaras1 and Nikos
Paragios2,3

1Image Analysis Lab, Computer Science Dept., Stony Brook University, NY, USA
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Abstract. In this paper, we introduce a simple but efficient cue for the
extraction of shadows from a single color image, the bright channel cue.
We discuss its limitations and offer two methods to refine the bright
channel: by computing confidence values for the cast shadows, based on
a shadow-dependent feature, such as hue; and by combining the bright
channel with illumination invariant representations of the original image
in a flexible way using an MRF model. We present qualitative and quan-
titative results for shadow detection, as well as results in illumination
estimation from shadows. Our results show that our method achieves
satisfying results despite the simplicity of the approach.

1 Introduction

Shadows are an important visual cue in natural images. In many applications
they pose an additional challenge, complicating tasks such as object recognition.
On the other hand, they provide information about the size and shape of the
objects, their relative positions, as well as about the light sources in the scene.
It is however difficult to take advantage of the information provided by shad-
ows in natural images, since it is hard to differentiate between shadows, albedo
variations and other effects.

The detection of cast shadows in the general case is not straightforward.
Shadow detection, in the absence of illumination estimation or knowledge of 3D
geometry is a well studied problem. [1] uses invariant color features to segment
cast shadows in still or moving images. [2] suggests a method to detect and
remove shadows based on the properties of shadow boundaries in the image. In
[3, 4], a set of illumination invariant features is proposed to detect and remove
shadows from a single image. This method is suited to images with relatively
sharp shadows and makes some assumptions about the lights and the camera.
Camera calibration is necessary; if this is not possible, an entropy minimization
method is proposed to recover the most probable illumination invariant image.
In [5], a method for high-quality shadow detection and removal is discussed. The
method, however, needs some very limited user input. Recently, [6] proposed a
method to detect shadows in the case of monochromatic images, based on a
series of features that capture statistical properties of the shadows.
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Fig. 1. Bright channel: a. original image (from [3]); b. bright channel; c. hue histogram;
d. confidence map; e. refined bright channel; f. confidence computation: for a border
pixel i of segment s, we compare the two patches oriented along the image gradient

In this paper, we discuss the estimation of cast shadows in a scene from a
single color image.

We first propose a simple but effective image cue for the extraction of shad-
ows, the bright channel, inspired from the dark channel prior [7]. Such a cue
exploits the assumption that the value of each color channel of a pixel is limited
by the incoming radiance, but there are pixels in an arbitrary image patch with
values close to the upper limit for at least one color channel.

Then we describe a method to compute confidence values for the cast shad-
ows in an image, in order to alleviate some inherent limitations of the bright
channel prior. We process the bright channel in multiple scales and combine the
results. We also present an alternative approach for refining the bright channel
values, utilizing a Markov Random Field (MRF) model. The MRF model com-
bines the initial bright channel values with a number of illumination-invariant
representations to generate a labeling of shadow pixels in the image.

We evaluate our method on the dataset described in [6] and measure the
accuracy of pixel classification. We also provide results for qualitative evaluation
on other images, and demonstrate an example use of our results to perform
illumination estimation with a very simple voting procedure.

This paper is organized as follows: Sec. 2 introduces the bright channel cue;
Sec. 3 presents a way to compute confidences for cast shadows and refine the
bright channel; Sec. 4 describes an MRF model to combine the bright channel
with illumination-invariant cues for shadow estimation, followed by experimental
results in Sec. 5. Sec. 6 concludes the paper.

2 Bright channel cue concept

To define the bright channel cue, we consider the following observations:

– The value of each of the color channels of the image has an upper limit which
depends on the incoming radiance. This means that, if little light arrives at
the 3D point corresponding to a given pixel, then all color channels will have
low values.

– In most images, if we examine an arbitrary image patch, the albedo for at
least some of the pixels in the patch will probably have a high value in at
least one of the color channels.
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From the above observations we expect that, given an image patch, the maximum
value of the r, g, b color channels should be roughly proportional to the incoming
radiance. Therefore, we define the bright channel, Ibright for image I in a way
similar to the definition of the dark channel [7]:

Ibright(i) = maxc∈{r,g,b}
(
maxj∈Ω(i)(I

c(j))
)

(1)

where Ic(j) is the value of color channel c for pixel j and Ω(i) is a rectangular
patch centered at pixel i. We form the bright channel image of I by computing
Ibright(i) for every pixel i.

2.1 Interpretation

Let us assume that a scene is illuminated by a finite discrete set L of distant light
sources. Each light source j (j ∈ L) is described by its direction dj and intensity
αj . We assume that the surfaces in the scene exhibit Lambertian reflectance. Let
G be the 3D geometry of the scene and p be a 3D point imaged at pixel i. We
can express the intensity I(i) of pixel i as the sum of the contributions of the
light sources that are not occluded at point p:

I(i) = ρ(p)η(p), (2)

η(p) =
∑
j∈L

αj [1− cp(dj)] max{−dj · n(p), 0}, (3)

where ρ(p) is the reflectance (albedo) at p, n(p) is the normal vector at p and
cp(dj) is the occlusion factor for direction dj at p:

cp(dj) =

{
1, if ray from a light to p along dj intersects G
0, otherwise

(4)

Here we are interested in the illumination component η(p). One should note,
though, that it cannot be calculated directly since the reflectance ρ(p) above
is unknown. The definition of the bright channel, Ibright(i) produces a natural
lower bound for η(p):

I(i) ≤ Ibright(i) ≤ η(p). (5)

Eq. 5, combined with our observations above, means that the bright channel
Ibright(i) can provide an adequate approximation to the illumination component
η(p).

An example of the bright channel of an image is shown in Fig. 1.

2.2 Post-processing

Assuming that at least one pixel in a patch Ω(i) is fully illuminated, one would
observe high values in at least one color channel. However, due to low reflectance
or exposure, only in few cases this maximum value is actually the full intensity
(1.0). As a result, the values of Ibright appear slightly darker than our expectation
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for η. Thus it is natural to assume that, for any image I, at least β % of the pixels
are fully illuminated, and their correct values in the bright channel should be
1.0. This assumption can be easily encoded through sorting the values Ibright(i)

of pixels in descending order, and choosing the value lying at β %, Iβbright, as the
white point. Then, we can adjust the bright channel values as:

İbright(i) = min

{
Ibright(i)

Iβbright
, 1.0

}
(6)

The second concern of the bright channel is that the dark regions in the
bright channel image appear shrunk by κ/2 pixels, where κ×κ is the size of the
rectangular patches Ω(i). This can be explained if the max operation in Eq. 1
is seen as a dilation operation. We correct this by expanding the dark regions in
the bright channel image by κ/2 pixels, using an erosion morphological operator
[8]. An example of the adjusted bright channel is shown in Fig. 1.b.

3 Robust bright channel estimation

The value of the bright channel cue heavily depends on the scale of the corre-
sponding patch and does not always provide a good approximation of η(p) at
scene point p. For example, a surface with a material of dark color, which is
larger in the image than the patch size used to compute the bright channel cue,
will appear dark in the bright channel, even if it is fully illuminated. On the other
hand, shadows that are smaller than half the patch size will not appear in the
bright channel. We present a method to remedy these problems by computing
the bright channel cue in multiple scales, and by computing a confidence value
for each dark area in the bright channel image.

3.1 Computing confidence values

Since surfaces with dark colors can appear as dark areas in the bright channel,
even if they are fully illuminated, we seek a way to compute a confidence that
each dark area is indeed dark because of illumination effects. In this paper we
are particularly interested in cast shadows.

We first obtain a segmentation Υ of the bright channel image, and we seek
to compute a confidence value for each segment. This computation is based on
the following intuition: Let Ω1 and Ω2 be two m × n patches in the original
image, lying on the two sides of a border caused by illumination conditions
(Fig. 1.f). If we compute the values of some feature fI , which characterizes
cast shadows, for both patches and compare them, we expect to find that the
difference ∆f = fI(Ω1)− fI(Ω2) is consistent for all such pairs of patches taken
across shadow borders in the scene. On the other hand, the difference ∆f will
be inconsistent across borders that can be attributed to texture or other factors.

The use of a simple feature like hue is enough to effectively compute a set of
confidence values for each segment of the segmentation Υ of the bright channel.
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Let ∆fhueI (Ω1, Ω2) be the difference in hue between neighboring patches Ω1

and Ω2, where Ω1 lies inside a cast shadow while Ω2 lies outside. We expect
∆fhueI (Ω1, Ω2) to be consistent for all pairs of patches Ω1 and Ω2 on the border
of that shadow.

If patches Ω1 and Ω2 are chosen to lie on the two sides of the border of a
shadow, then all ∆fhueI (Ω1, Ω2) along this border will lie close to a value µk
that depends on the hue of the light sources that are involved in the formation
of this shadow border. If we model the deviations from this value µk due to
changes in albedo, image noise, etc., with a normal distribution N (0, σk), the
hue differences ∆fhueI (Ω1, Ω2) will follow a normal distribution:

∆fhueI (Ω1, Ω2) ∼ N (µk, σk) (7)

The distribution of all ∆fhueI (Ω1, Ω2) across all segment borders in segmenta-
tion Υ is modeled by a mixture of normal distributions. The parameters of this
mixture model are, for each component k, the mean µk, the variance σk and the
mixing factor πk. We use an Expectation-Maximization algorithm to compute
these parameters, while the number of distributions in the mixture is selected
by minimizing a quasi-Akaike Information Criterion (QAIC). The confidence for
segment s ∈ Υ is then defined as:

p(s) =
1

|Bs|
max
k

∑
i∈Bs

Pk
(
∆fhueI (Ω1(i), Ω2(i))

)
, (8)

where Bs is the set of all border pixels of segment s, k identifies the mixture
components, and, for patches Ω1(i) and Ω2(i) on the two sides of border pixel
i, Pk

(
∆fhueI (Ω1(i), Ω2(i))

)
is the probability density corresponding to Gaussian

component k (weighed by the mixture factor πk).
We take advantage of one more cue to improve the estimation of p(s): we

expect that, for every neighboring pair Ω1, Ω2, with Ω1 lying inside the shadow
and Ω2 outside, the value of each of the three color channels will be decreasing
to the direction of Ω1:

1

|Ω1|
∑
i∈Ω1

Ic(i)− 1

|Ω2|
∑
i∈Ω2

Ic(i) < 0,∀c ∈ {r, g, b} (9)

If the percentage of patch pairs that violate this assumption for segment s is
bigger than θdec, we set p(s) to 0.

3.2 Multi-scale computation

We mentioned earlier the trade-off associated with the patch size κ used to
compute the bright channel cue. One can overcome this limitation through com-
putating the bright channel in multiple scales and combining the results. The
term “scale” refers here to the patch size κ× κ.

For each scale j of a total Ns scales, a confidence value is computed for each
pixel. We combine the confidences from all scales in a final confidence map, by
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setting the final confidence of each pixel i to

ps(i) =

Ns∏
j=0

p(j)s (i)

 1
Ns

, (10)

where p
(j)
s (i) is the confidence of segment s at scale j, and s is the segment to

which pixel i belongs at scale j. Notice that the segmentation is different at each
scale, since it is performed on the bright channel values, which depends on κ.
We set the bright channel value of any pixel i with confidence ps(i) < ξ to 1.0.
For the rest of the pixels, the final bright channel value is the value computed
with the smallest patch size κj .

Fig. 1 shows that the use of confidence values significantly improves the re-
sults of the bright channel. While the unfiltered bright channel included every
dark surface in the image, the result after computing the confidence values in-
cludes mainly values related to shadows. These measurements will be used for a
global formulation that involves optimal cast shadows detection and illumination
estimation in the next section.

4 An MRF Model for Shadow Detection

In this section we present an alternative method to refine the bright channel val-
ues, by combining them with well-known illumination-invariant representations
of the input image. Graphical models can efficiently fuse different cues within
a unified probabilistic framework. Here we describe an MRF model which fuses
a number of different shadow cues to achieve higher quality shadow estimation.
In this model, the per-pixel shadow values are associated on one hand with the
recovered bright channel values, and on the other with a number of illumination
invariant representations of the original image.

4.1 Illumination Invariants

Separating shadows from texture is a difficult problem. In our case, we want to
reason about gradients in the original image and attribute them to either changes
in shadow or to texture variations. For this purpose, we use three illumination-
invariant image representations. Ideally, an illumination-invariant representation
of the original image will not contain any information related to shadows. Hav-
ing such a representation, we can compare gradients in the original image with
gradients in the illumination-invariant representation to attribute the gradient
to either shadows/shading or texture. Having identified shadow borders this way,
we can produce a set of labels identifying shadows in the original image.

Illumination-invariant image cues are not sufficient in the general case, how-
ever, and more complicated reasoning is necessary for more accurate shadow
detection. An example of this can be seen in Fig.2, which shows the illumina-
tion invariant features we use for an example image. Edges due to illumination,
although dimmer, are still noticeable, while some texture edges are not visible.
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Fig. 2. Illumination invariant images: a) original image, b) normalized rgb, c) c1c2c3,
d) the 1d illumination invariant image obtained using the approach in [4]. Notice that
in all three illumination invariant images, the shadow is much less visible than in the
original.

4.2 Illumination-invariant cues

Photometric color invariants are functions which describe each image point, while
disregarding shading and shadows. These functions are demonstrated to be in-
variant to a change in the imaging conditions, such as viewing direction, object’s
surface orientation and illumination conditions. Some examples of photometric
invariant color features are normalized RGB, hue, saturation, c1c2c3 and l1l2l3
[9]. A more complicated illumination invariant representation specifically tar-
geted to shadows is described in [4]. Other interesting invariants that could
be exploited are described in [10], [11], [12]. In this work, three illumination-
invariant representations are integrated into our model: normalized rgb, c1c2c3
and the representation proposed in [4] (displayed in Fig. 2). It is however very
easy to add or substitute more illumination invariant representations.

The c1c2c3 invariant color features are defined as:

ck(x, y) = arctan
ρk(x, y)

max{ρ(k+1)mod3(x, y), ρ(k+2)mod3(x, y)}
(11)

where ρk(x, y) is the k-th RGB color component for pixel (x, y).
We only use the 1d illumination invariant representation proposed in [4]. For

this representation, a vector of illuminant variation e is estimated. The illumina-
tion invariant features are defined as the projection of the log-chromaticity vector
x′ of the pixel color with respect to color channel p to a vector e⊥ orthogonal to
e:

I ′ = x′T e⊥ (12)

x′j =
ρk
ρp
, k ∈ 1, 2, 3, k 6= p, j = 1, 2 (13)

and ρk represents the k-th RGB component.
These illumination invariant features assume narrow-band camera sensors,

Planckian illuminants and a known sensor response, which requires calibration.
We circumvent the known sensor response requirement by using the entropy-
minimization procedure proposed in [3] to calculate the illuminant variation
direction e. Futhermore, it has been shown that the features extracted this way
are sufficiently illumination-invariant, even if the other two assumptions above
are not met ([4]).
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4.3 The MRF Model

In this section we describe an MRF model that models the relationship of a
brightness cue such as the bright channel with the illumination invariant cues,
in order to obtain a shadow label for each pixel. Intuitively, through this MRF
model we seek to obtain labelings that correspond to shadow edges where there
is a transition in the bright channel value, but no significant transition/edge
appears at the same site of an illumination-invariant representation of the image.

The proposed MRF has the topology of a 2D lattice and consists of one node
for each image pixel i ∈ P. The 4-neighborhood system [13] composes the edge
set E between pixels. The energy of our MRF model has the following form:

E(x) =
∑
i∈P

φi(xi) +
∑

(i,j)∈E

ψi,j(xi, xj), (14)

where φi(xi) is the singleton potential for pixel nodes and ψi,j(xi, xj) is the
pairwise potential defined on a pair of neighbor pixels. The singleton potential
has the following form:

φi(xi) =
(
xi − İbright(i)

)2
, (15)

where İbright(i) is the value of the bright channel for pixel i. The pairwise po-
tential has the form:

ψi,j(xi, xj) = (xi − xj)2
(
mink{I(k)invar(i)− I

(k)
invar(j)}

)2
, (16)

where I
(k)
invar(i) is the value of the k-th illumination invariant representation of

the image at pixel i. Note that our MRF model is modular with respect to the
illumination invariants used. Other cues can easily be integrated.

The latent variable xi for pixel node i ∈ P represents the quantized shadow
intensity at pixel i. We can perform cast shadows detection through a minimiza-
tion over the MRF’s energy defined in Eq. 14:

xopt = arg min
x
E(x) (17)

To minimize the energy of this MRF model we can use existing MRF inference
methods such as TRW-S [14], the QPBO algorithm [15, 16] with the fusion move
[17], etc. The latter was used for the experimental results presented in the next
section.

5 Experimental Validation

In this section we present qualitative and quantitative results with the bright
channel, and we show further results in an example application in illumination
estimation from shadows.
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Fig. 3. Results with images from the dataset by [6]. From left to right: the original
image; the (unrefined) bright channel; the bright channel refined using confidence es-
timation; the bright channel refined using the MRF model; the ground truth. These
examples show advantages and weaknesses of the two refinement methods.

5.1 Quantitative Evaluation

We evaluated our approach on the dataset provided by [6], which contains 356
images and the corresponding ground truth for the shadow labels. In order to
convert the bright channel values to a 0-1 shadow labeling, we used simple thresh-
olding. The pixel classification rates are presented in table 1. Example results
can be found in Fig. 3. Fig. 5 shows a case where our algorithm fails, due to very
large uniformly dark surfaces.

method classification rate (%) false positives (%) false negatives (%)

bright channel 83.52 13.16 3.31

bright channel + confidence 84.61 11.21 4.17

bright channel + MRF 85.88 8.83 5.28

brightness + MRF 52.53 46.31 1.15

Table 1. Pixel classification results for the unrefined bright channel (using a single
patch size κ = 6 pixels); the bright channel refined using confidence values and 4
scales; our MRF model with the bright channel (using a single patch size κ = 6 pixels);
and our MRF model with pixel brightness in the LAB color space instead of the bright
channel for the singleton potentials.

5.2 Simple Illumination Estimation

We can use the bright channel image to perform illumination estimation from
shadows. As a proof of concept, we describe a very simple voting method in
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Algorithm 1, which is in most cases able to recover an illumination estimate
given simple 3D geometry of the scene.

Algorithm 1 Voting to initialize illumination estimate

Lights Set: L ← ∅
Direction Set: D ← all the nodes of a unit geodesic sphere
Pixel Set: P ← all the pixels in the observed image
loop

votes[d] ← 0, ∀d ∈ D
for all pixel i ∈ P do

for all direction d ∈ D \ L do
if Ibright(i) < θS and ∀d′ ∈ L, ci(d′) = 0 then

if ci(d) = 1 then votes[d]← votes[d] + 1
else

if ci(d) = 0 then votes[d]← votes[d] + 1
d∗ ← arg maxd(votes[d])
Pd∗ ← {i|ci(d∗) = 1 and ∀d 6= d∗, ci(d) = 0}
αd∗ ← median

{
1−Ibright(i)

max{−n(p(i))·d∗,0}

}
i∈Pd∗

if αd∗ < εα then
stop the loop

L ← L ∪ (d∗, αd∗)

The idea is that, shadow pixels that are not explained from the discovered
light sources vote for the occluded light directions. The pixels that are not in
shadow vote for the directions that are not occluded. After discovering a new
light source direction, we estimate the associated intensity using the median of
the bright channel values of pixels in the shadow of this new light source. The
process of discovering new lights stops when the current discovered light does
not have a significant contribution to the shadows in the scene. To ensure even
sampling of the illumination environment, we choose the nodes of a geodesic
sphere of unit radius as the set of potential light directions [18]. The results of
the voting algorithm are used to initialize the MRF both in terms of topology
and search space leading to more efficient use of discrete optimization. When
available, the number of light sources can also be set manually.

We present results on illumination estimation on images of cars collected
from Flickr (Fig. 4). The geometry used in this case was a 3D bounding box
representing the car in each image, and a plane representing the ground. The
camera parameters were matched by hand so that the 3D model’s projection
would roughly coincide with the car in the image.

6 Conclusions

In this paper, we presented a simple but effective image cue for the extraction
of shadows from a single image, the bright channel cue. We discussed the lim-
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Fig. 4. Results with images of cars collected from Flickr. Top row: the original image
and a synthetic sun dial rendered with the estimated illumination; Bottom row: the
refined bright channel. The geometry consists of the ground plane and a single bounding
box for the car.

itations of this cue, and presented a way to deal with them, by examining the
bright channel values at multiple scales and computing confidence values for
each dark region using a shadow-dependent feature, such as hue. We further
described an MRF model as an alternative way to refine the bright channel cue
by combining it with a number of illumination-invariant representations. In the
results, we computed the classification accuracy for shadow pixels on a publicly
available dataset, we showed examples of the resulting shadow estimates, and
we discussed one potential application of the bright channel cue in illumination
estimation from shadows. In this application, the low false-negative rate and the
relatively accurate shadow estimate we can get from this simple cue makes it
possible to tackle a hard problem such illumination estimation with rough ge-
ometry information in natural images using simple algorithms such as the voting
algorithm we described. In the future, we are interested in incorporating this cue
in a more complex shadow detection framework.

Acknowledgments: This work was partially supported by NIH grants 5R01EB7530-2,
1R01DA020949-01 and NSF grants CNS-0627645, IIS-0916286, CNS-0721701.

Fig. 5. A failure case: from left to right, the original image, the bright channel, and
the refined bright channel. The uniformly dark road surface is identified as a shadow.
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