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Abstract: In this paper, we propose a new surface registration approach using a generic
deformation model, which is efficient to compute and flexible to represent arbitrary lo-
cal shape deformations. From Riemannian geometry, local deformation at each point
of a surface can be characterized by the eigenvalues of a special transformation matrix
between two canonically parameterized domains. This local transformation specifies
all the deformations (i.e., diffeomorphisms) between surfaces while being independent
of both intrinsic (parametrization) and extrinsic (embedding) representations. In partic-
ular, we show that existing deformation representations (e.g., isometry or conformality)
can be viewed as special cases of the proposed local deformation model. Furthermore,
a computationally efficient, closed-form solution is derived in the discrete setting via
finite element discretization. Based on the proposed deformation model, the shape reg-
istration problem is formulated as a high-order Markov Random Field (MRF) defined
on the simplicial complex (e.g., planar or tetrahedral mesh). An efficient high-order
MRF optimization algorithm is designed in the paper for such a special structured
MRF-MAP problem, which can be implemented in a distributed fashion and requires
minimal memory. Finally, we demonstrate the speed and accuracy performance of the
proposed approach in the applications of shape registration and tracking.
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Un Modèle Générique de Déformation pour le Recalage

de Surfaces

Résumé : Dans ce rapport, nous proposons une nouvelle méthode de recalage de
surfaces utilisant un modèle générique de déformation dont l’évaluation est peu coûteuse
et qui permet de représenter des déformations locales arbitraires. En géométrie Riemannienne,
la déformation locale en chaque point d’une surface peut être caractérisée par les
valeurs propres d’une matrice de transformation reliant les parametrisations canoniques
des surfaces. Cette transformation locale permet de décrire tous les difféomorphismes
possibles entre surfaces tout en étant indépendante des représentations intrinsèques et
extrinsèques. En particulier, nous montrons que les modèles de déformation usuels
tels que les transformations isométries et conformes sont des cas particuliers de notre
modèle. D’autre part, une solution analytique est développée dans un cadre discret
en utilisant des éléments finis. Basé sur notre modèle de déformation, le problème de
recalage des surfaces est formulé comme un Champs de Markov Aléatoires (MRF)
d’ordre élevé défini sur le complexe simplicial. Afin de résoudre le problème de
maximisation a posteriori de ce type de champs de Markov, nous introduisons un
algorithme d’optimisation pour les potentiels d’ordre élevé à la fois peu gourmand en
mémoire et parallélisable. Pour finir, nous évaluons la vitesse et la précision de notre
approche dans le cadre d’applications de recalage et de suivi de surfaces.

Mots-clés : Recalage de Surfaces 3D, Géométrie Riemannienne, Champs de Markov
Aléatoires d’ordre élevé
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A Generic Local Deformation Model for Shape Registration 3
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4 Zeng, Wang, Wang, Gu, Samaras & Paragios

1 Introduction

The problem of shape registration has become increasingly important in computer vi-
sion due to the wide availability of acquisition devices [39, 24, 1]. Understanding
the transformation between two shapes (i.e., shape matching) is a fundamental task in
shape analysis (e.g., classification and recognition) and inference (e.g., registration and
tracking). Existing methods of matching shapes are often limited by the assumptions
of the underlying deformations. In this paper, we present a generic shape deformation
model that can represent arbitrary deformations between two shapes.

Our new deformation model is inspired by the basic ideas in Riemannian geometry
[10] in which a shape is equipped with a metric tensor at each point in the parametriza-
tion domain. The problem of matching two shapes is hence equivalent to finding cor-
respondences between their parameterized domains (Fig. 1). Different parametriza-
tions represent the same surface (modulo the isometric deformation) if and only if for
each correspondence, their metric tensors satisfy certain transformation rules. Hence,
for surfaces undergoing isometric deformations, the task of matching becomes finding
consistent parametrization such that the transformation rules are satisfied. To charac-
terize more general deformations, at a given point, we consider a special canonical

parametrization of the shape whose metric tensor at that point is Euclidean. Arbitrary
deformations can be described by the local distortion of a circle between each pair of
correspondence in the canonical parametrization domain [2, 26]. Such distortion can
be consequently characterized by the eigenvalues of a canonical transformation relating
to the Jacobian matrix between the two canonical parametrization domains (the canon-

ical distortion coefficient). In the discrete setting, we consider the common case that
a shape is represented as simplicial complex (e.g., a planar or tetrahedral mesh). By
assuming the deformation of the shape in the parametrization domain to be piecewise
linear, the problem of computing the canonical distortion coefficient at a point becomes
computing it at a face. The canonical parametrization at a point is simply equivalent
to mapping each face to the 2D domain. Within this setting, the computation of the
canonical distortion coefficient for each face becomes solving linear equations with a
closed-form solution.

Given the above shape deformation model, the problem of finding the optimal shape
registration result that best fits the deformation prior and the observed data can be for-
mulated using the Markov Random Field (MRF) framework [13]. Recent combinato-
rial methods (e.g., [28, 37]) have demonstrated the superiority of discrete optimization
with respect to both solution quality and computational speed. Moreover, in our prob-
lem, an MRF formulation allows us to take multiple matching criteria into the same
optimization framework. Because the deformation model is defined on each facet (e.g.,
triangle for planar mesh), the MRF optimization involves high-order cliques. Com-
pared to existing approaches, our method has the following advantages:

• The proposed deformation model is generic and flexible to handle arbitrary de-
formations. Most of the previous geometry-based deformation models (e.g.,
isometry and conformality) fall into certain special classes of our model. As
a result, our model can accurately describe the deviation from those existing
models, which is important in characterizing real-world deformations.

• In the discrete setting, the computation of the canonical distortion coefficient for
each basic element (e.g., a triangle for a planar mesh) can be computed efficiently
by solving linear equations with a closed-form solution.
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A Generic Local Deformation Model for Shape Registration 5

• An efficient high-order MRF optimization algorithm is designed and implemented
based on the dual-optimization technique ([33]) which requires minimal memory
and achieves a good approximate solution.

In summary, our paper proposes a generic deformation descriptor: the canonical dis-
tortion coefficient (CDC), and its use in a high-order MRF framework that allows us
to impose the deformation of a template as a prior in a Bayesian setting. The novel
formulation of the surface registration problem as an MRF problem with a cell com-
plex structure seamlessly brings together Riemannian geometry and modern graphical
model. Furthermore, our algorithm can be implemented in distributed hardware that
achieves significant speedup1. In our experiment, we demonstrate that the MRF opti-
mization technique combined with the generalized deformation model leads to signifi-
cant improvement for the problem of surface registration and tracking.

This paper is organized as follows: In Sec. 2 we review related work on shape
deformation models. The mathematical formulation of our general shape deformation
model is presented in Sec. 3, where both continuous concepts and discrete counterparts
are discussed. A high-order MRF formulation for shape registration is given in Sec. 4,
with the design of an efficient optimization algorithm. In Sec. 5 we show the appli-
cations of our new deformation model and optimization technique to the problems of
shape registration and tracking. Finally, we conclude our work in Sec. 6.

2 Related work

Accurately modeling surface deformation is a very challenging task due to the large
degrees of freedom that arbitrary deformations may present. Previously, the “rigidity"
assumption is widely used due to its good approximation to many real-world defor-
mations and simplicity in computation. Existing deformation models either character-
ize the rigidity in the extrinsic (embedding) space or in the intrinsic (parametrization)
space.

Assuming two representations of a shape in the embedding space only differ by
a global rigid deformation (i.e., rotation and translation), the iterative closest points
(ICP) [3] method has been successfully applied for shape registration with various
extensions (e.g., [7, 14]). However, global rigidity does not take into account bendable
shapes (e.g., garments or rubber bands). Hence the notion of local rigidity has been
proposed which assumes that the deformation between two local neighborhoods of
each correspondence be rigid. Although this increases the degrees of freedom of the
deformation, efficient algorithms have been proposed that achieves local optimality for
such deformation energy, e.g., [22, 25, 27, 8].

When the shapes undergo large deformations or are represented in different em-
bedding space, intrinsic methods (e.g., [5, 6, 32, 31, 35, 36]) become useful. The
basic idea of intrinsic methods is from Riemannian geometry [10], assuming a shape
be equipped with a metric measuring the distance between any two points. The no-
tion of rigidity (known as isometry) can be best characterized by assuming the metric
does not change across two shapes. Hence matching two surfaces becomes finding
consistent parametrization that best match the metric. However, finding a globally
consistent parametrization is often too restricted. Recently work ([36, 19, 37, 18, 38])
search among multiple parametrization and use multiple matching criteria (e.g., texture

1The source code and executable for the CUDA implementation of the high-order MRF optimization can
be downloaded from http://www.cs.sunysb.edu/~yzeng/software_HighorderMRF.html
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6 Zeng, Wang, Wang, Gu, Samaras & Paragios

f

Φ1 Φ2

Figure 1: The problem of finding correspondences between two surfaces can be re-
duced to finding correspondences between their parametrization domain. The problem
we solve in this paper is: given a predefined points on the first surface, find the cor-
respondences of only those points on the second one. Efficient candidate selection
schemes for surface registration and tracking are described in [37, 38].

or curvature) to improve the matching accuracy, though their underlying deformation

model is still based on isometry assumption.

3 Canonical distortion coefficient

In this section, we present the mathematical formulation of our deformation model in
both continuous and discrete settings.

3.1 Continuous setting

3.1.1 Riemannian metric and parametrization

Let (M, gM) denote a surface M equipped with a Riemannian metric gM. In Rie-
mannian geometry ([10]), a surface is described by its local charts {(Uα}, i.e., M =
Uα∪Uβ . . . and each open subset Uα is in 1−1 correspondences φα : Uα → R

2. Here
φα is the local parametrization. For any p ∈ Uα ⊂ M, a metric tensor is associated to
p as a symmetric positive definite matrix:

gα(p) =

(

gα
11(p) gα

12(p)
gα
21(p) gα

22(p)

)

. (1)

Within such setting, a point on M may be covered by multiple charts. In order for
different local representations to describe the same surface, certain transformation rules
must be satisfied, i.e., if a point p ∈ Uα ∩ Uβ , we must have

gα(p) = Jαβ(p)T gβ(q)Jαβ(p). (2)
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A Generic Local Deformation Model for Shape Registration 7

Here Jαβ is the Jacobian matrix of the transformation xα(xβ) (xα(xβ) is the local
coordinate system of patch Uα(Uβ)) between charts Uα and Uβ , i.e.,

Jαβ =





∂x1
α

∂x1
β

∂x1
α

∂x2
β

∂x2
α

∂x1
β

∂x2
α

∂x2
β



 . (3)

Any local representation satisfying this transformation rule is a valid parametrization of
the surface. Therefore, since the metric tensor at any point p ∈ M is positive definite,
it is always possible to apply a proper linear transformation to its parametrization φα

such that gα(p) is the identity matrix. We call such a parametrization the canonical

parametrization for point p:

Definition 1. (Canonical parametrization at a point) For any p ∈ M, a parametriza-

tion φα : Uα → R
2 is called canonical parametrization for p if the metric tensor at p is

the identity matrix.

Please note that although there exists infinite number of such a canonical parametriza-
tion for a surface, the parametrization at the particular point is unique. In the following
we shall show that focusing on the parametrization only at one point at a time allows us
to characterize arbitrary deformations between two surfaces while regardless of both

the intrinsic and extrinsic representations of the surface, which is the main advantage
of our new deformation model.

3.1.2 Diffeomorphisms between two shapes

Now we consider arbitrary diffeomorphisms between the parametrization domains of
two surfaces (Fig. 1). For any correspondence p ∈ Uα ⊂ M → q ∈ Uβ ⊂ N ,
the change of metric gα(p) → Jαβ(p)T gβ(q)Jαβ(p) reflects how locally a circle is
deformed into an eclipse (Fig. 2(a))2. In particular, under canonical parametrization
for points p and q, the matrix JT

pqJpq accurately characterizes such local deformation,
where Jpq is the Jacobian at point p. If we only consider the change of shape, i.e.,
how a circle is deformed into an eclipse regardless its orientation, the eigenvalues λ1,
λ2 of JT

pqJpq can best describe such change. Therefore, the local deformation between
two surfaces can be characterized by the eigenvalues λ1, λ2 for each correspondence.
Formally, we define:

Definition 2. (Canonical distortion coefficient) The eigenvalues of the Jacobian trans-

formation matrix JT
pqJpq between any canonical parametrization at p and q are the

canonical distortion coefficients between the two points.

We call the Jacobian matrix Jpq between the two points p and q under the canon-
ical parametrization the canonical Jacobian. The significance of using canonical Ja-
cobian is that it allows us to characterize arbitrary deformation by considering the

parametrization of the surface at a single point. Some special cases of deformations
can be characterized by the canonical distortion coefficient as follows:

1. In the case of the isometric deformation, a unit circle is mapped to a unit circle,
i.e., λ1 = λ2 = 1.

2. In the case of the conformal deformation, a unit circle can be mapped to a circle
with arbitrary radius [26]. Thus, λ1 = λ2.

2A rigorous formulation can be found in the Appendix.
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8 Zeng, Wang, Wang, Gu, Samaras & Paragios

f(p)

p q

e1

e2

e1’

e2’

(a) Continuous setting

a

b

c

a’
b’

c’

f(abc)

(b) Discrete setting

Figure 2: The finite element method assumes the transformation between facets to be
piecewise linear and f( ~ab) = ~a′b′, f( ~ac) = ~a′c′. Under the linearity assumption, the
Jacobian can be computed in a closed form for each triangle pair △abc 7→ △a′b′c′.

To further connect the canonical distortion coefficient to a general class of diffeo-
morphisms defined in the complex plane f : Uα → Uβ , between any canonical
parametrization xα and xβ for p and q respectively, we define

∂f

∂z
=

1

2
(
∂x1

α

∂x1
β

+
∂x2

α

∂x2
β

) +
i

2
(
∂x2

α

∂x1
β

− ∂x1
α

∂x2
β

)

∂f

∂z
=

1

2
(
∂x1

α

∂x1
β

− ∂x2
α

∂x2
β

) +
i

2
(
∂x2

α

∂x1
β

+
∂x1

α

∂x2
β

),

The notion of quasi-conformality [2] can be characterized by the following Beltrami-

coefficient:

µ(z) ≡ ∂f

∂z
/
∂f

∂z
,

which gives us all the information about the conformality of f . Suppose λ1 ≥ λ2, it
can be shown that |µ(z)| = (

√
λ1−

√
λ2)/(

√
λ1+

√
λ2). In particular, f is called holo-

morphic if µ(z) = 0 ([12]), i.e., λ1 = λ2, coinciding with the fact that holomorphic
function is another description of conformal mapping. Hence the Beltrami-coefficient
generalizes conformal mapping and can be partially determined using the canonical
distortion coefficient. However, the Beltrami-coefficient is for surface parametrization,
where scaling factor is lost. The proposed canonical distortion coefficient preserves
the scale information which is important for shape matching. Besides, the canonical
distortion coefficient is directly extendable to nD. In this paper, we propose an efficient
approach to compute the local deformation based on the canonical distortion coefficient
in the context of shape registration.
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A Generic Local Deformation Model for Shape Registration 9

3.2 Finite element discretization

The basic assumption in finite element analysis [4] is that the continuous space can be
approximated using a set of basic elements (e.g., polynomial functions defined on each
face). Meanwhile, consistencies must be preserved at the boundaries among the basic
elements. In this paper, we consider the most common representation of a continuous
surface – a triangular mesh, whose basic finite element is a triangular face. In this
discrete setting, the canonical distortion coefficient (CDC) is assumed to be constant
for each basic element (i.e., △abc shown in Fig. 2).

Thus, the concept of canonical parametrization (Sec. 3.1.1) can be expressed in the
following manner: a parametrization of a point p is locally Euclidean at p if the images
of any two tangent vectors have the same angle and length. In the discrete setting, this
means a triangle △abc keeps all its angles and lengths in its parametrization, which
can be achieved by simply mapping the face △abc onto a 2D domain by keeping all its
edge lengths.

Finally, we consider the computation of the canonical Jacobian (Sec. 3.1.2). In the
continuous setting, the Jacobian matrix at a point p is a linear operation that transforms
tangent vectors at p to tangent vectors at q. Given a basic element △abc in the discrete
setting, the tangent space at p is equivalent to the linear space spanned by △abc. Hence
the linear mapping J(·) between two canonical domains should satisfy J( ~ab) = ~a′b′

and J( ~ac) = ~a′c′. The Jacobian of a linear transformation between two triangles is a
2 × 2 matrix and can be computed in closed-form. Since J(·) is linear, J(~bc) = ~b′c′

must be satisfied as well, i.e.,

Jacobian for mapping p → q ⇔ Linear transformation matrix for mapping ~ab → ~a′b′,
~ac → ~a′c′

For clarity, Alg. 1 summarizes the algorithm for computing the canonical distortion
coefficient. Note that the computation is in analogy with previous work for surface
parametrization (e.g., [20, 21, 23]) since both are based on the same piecewise linear
assumption. However, here we derive it from a different continuous setting in the
context of shape deformation estimation. Also note that when the shape is n-manifold,
the computation of CDC becomes solving n linear equations and eigenvalues.

Algorithm 1: Algorithm for computing the canonical distortion coefficient (CDC) for
each triangular face.

Input :△abc and its mapping△a′b′c′

Output : CDC for mapping from△abc to△a′b′c′.

Step One: Map the triangles△abc and△a′b′c′ to 2D and keep their orientation.
Step Two: Compute the 2× 2 linear transformation J mapping ~ab to ~a′b′ and ~ac to ~a′c′.
Step Three: Compute the eigenvalues, λ1 and λ2 of JT J .
Step Four: Output λ1 and λ2

4 High-order MRF-based shape registration

4.1 MRF formulation for shape registration

Given the canonical distortion coefficient (CDC) defined for each basic element, i.e.,
the triangular face, one can either deform the original shape (e.g., [25]), or find the
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10 Zeng, Wang, Wang, Gu, Samaras & Paragios

correspondences between two shapes combined with other matching cues (e.g., [37]).
Here we consider the problem of finding the mapping f between two shapes M and
N . Similar to [37], we assume a set of n points V = {pu|pu ∈ M, u = 1, . . . , n} are
sampled on the surface M and a triangulation of these points are constructed (Fig. 1).
Hence the task of shape registration becomes finding the correspondences for the set
V ⊂ M on shape N .

To formulate the shape matching problem using graphical models, we construct a
graph G = (V,F) where V is a set of vertices and F ⊂ V ×V ×V is a set of faces. For
each u ∈ V , let the random variable xu ∈ L = {1, . . . , L} denote the discrete labeling
of all the possible matching candidates of vertex u ∈ M on shape N . In the rest of
this paper, we use xu to denote the labeling of vertex u or the point on shape N when
it is clear from the context.

Firstly, let fea(·) be the feature vector (e.g., texture or shape context) at each point
on the shape. We define the cost function θu(xu) of matching u to xu:

θu(xu) = |feaM(u) − feaN (xu)|2.

Next, we denote by λM(u, v, w) =

(

λ1(u, v, w)
λ2(u, v, w)

)

as the prior knowledge of CDC that

characterizes the deformation for the face (u, v, w) and λN (xu, xv, xw) =

(

λ1(xu, xv, xw)
λ2(xu, xv, xw)

)

as the CDC computed from deforming △uvw to △xuxvxw (Alg. 1). Hence we define:

θuvw(xu, xv, xw) = d(λM(u, v, w), λN (xu, xv, xw))

as the deformation energy. Here d(·, ·) is the distance function that is defined according
to the application.

Finally, given the feature function fea(·) and the deformation prior λM(·, ·, ·) for
each vertex and face, the problem of shape registration becomes solving the best con-
figuration x that minimizes the following energy:

min
x

E(x) =
∑

u∈V

θu(xu) +
∑

(u,v,w)∈F

θuvw(xu, xv, xw). (4)

To reduce the search space L and avoid local minima, we adopt a hierarchical
optimization scheme in solving the energy function (4). Inspired by [37], sparse feature
points are first selected to compute the initial matching with the global constraint λ1 =
λ2 = 1 for each triangle (u, v, w) ∈ F . Then, a small set of candidates L are selected
to find the best local match by minimizing the energy function (4).

4.2 An efficient high-order MRF optimization

The high-order potential of Eq. 4 presents the difficulty for solving our surface regis-
tration problem. Existing algorithms either transform high-order cliques into pairwise
ones (e.g., [15]) or decompose the original problem into a union of sub-problems (e.g.,
[17]). However, these algorithm are designed for general problems and requires extra
memory to store the transformed problem or the dual variables that relates the sub-
problems. For the problem of high-order MRF inference, memory efficiency is an im-
portant issue since a poorly designed optimization algorithm can easily reach the limit
of current hardware. In this paper, we follow the framework by Thomas [33] to design
a fast and memory efficient MRF optimization algorithm using the linear programming
(LP) relaxation technique.
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A Generic Local Deformation Model for Shape Registration 11

u

v w

Muvw;u

Muvw;v

Muvw;w

Figure 3: An example of the messages defined for the dual problem of Eq. 5. For each
face △uvw, the messages are defined from the high-order clique (u, v, w) to each of
the nodes u, v and w.

The first step in the LP relaxation of Eq. 4 is to introduce the indicator variables.
For any u ∈ V and i ∈ L, we define

τu;i =

{

1 if xu = i

0 otherwise
.

Also for any (u, v, w) ∈ F and (i, j, k) ∈ L × L× L, we define

τuvw;ijk =

{

1 if xu = i, xv = j, xw = k

0 otherwise
.

Similarly, we define θu;i = θu(i) and θuvw;ijk = θuvw(i, j, k). Hence we have the
integer LP formulation of the problem of Eq. 4:

min
τ

∑

u∈V

∑

i∈L

θu;iτu;i +
∑

(u,v,w)∈F

∑

(i,j,k)∈L3

θuvw;ijkτuvw;ijk

s.t.
∑

i

τu;i = 1, ∀u ∈ V
∑

i,j,k

τuvw;ijk = 1, ∀(u, v, w) ∈ F

∑

j,k

τuvw;ijk = τu;i, ∀(u, v, w) ∈ F and i ∈ L

τu;i, τuvw;ijk ∈ {0, 1}.

By relaxing the variables to the domain [0, 1], we obtain the dual form of the above LP
problem as

max
M

∑

u

min
i

θu;i +
∑

(u,v,w)∈F

min
i,j,k

θuvw;ijk (5)

s.t. θu;i = θu;i +
∑

(u,v,w)∈F

Muvw;u:i,∀u ∈ V and i ∈ L

θuvw;ijk = θuvw;ijk − Muvw;u:i − Muvw;v:j − Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L.

Here Muvw;u:i is the dual variable (message) corresponding to the constraint
∑

j,k τuvw;ijk =
τu;i. (Fig. 3).
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12 Zeng, Wang, Wang, Gu, Samaras & Paragios

Algorithm 2: Min-sum diffusion algorithm.

repeat

for each Muvw;u:i do

Muvw;u:i− = 1
2 [θu;i − minj,k θuvw;ijk] and reparameterize θu;i and θuvw;ijk

according to the constraints in Eq. 5.
end for

until convergence

The dual problem of Eq. 5 can be solved by the simple min-sum diffusion algorithm
[33] as shown in Alg. 2 (Note that in [33] their optimization problem is a maximization
so the algorithm is called max-sum). It has been shown that at convergence, the
solution satisfies J-consistency condition as introduced in [33]. Since after each update
of the message, reparameterization is performed, no extra memory is needed for storing
all the dual variables Muvw;u:i. Hence the memory requirement for the Alg. 3 is the
storage for the primal variables, i.e., O(|V ||L| + |F||L|3), which can not be avoided
by any algorithm.

Each update of the message in Alg. 2 only involves the parameters in a triangle.
Also within each face △uvw, the update of each label Muvw;u:i, i = {1, . . . , L} is
independent. Hence the algorithm can be significantly accelerated using distributed
hardware.

In order to explore the parallelism of the min-sum Algorithm 2, we define the con-
cept of independent face set:

Definition 3. (Independent face set) Given a graph G = (V,F), a subset Fk ⊂ F is

called independent face set if for any fi, fj ∈ Fk, fi ∩ fj = ∅.

The decomposition of a set F into subsets of independent face sets F = ∪iFi can
be efficiently computed in polynomial time by a simple greedy algorithm. Hence we
can implement Alg. 2 in parallel as shown in Alg. 3. The maximal speedup achieved

Algorithm 3: Parallel min-sum diffusion algorithm.

Decompose F into independent face sets ∪iFi

repeat

for each Independent face set Fi, in parallel for all (u, v, w) ∈ Fi and k ∈ L do

Update the message Muvw;u:k, Muvw;v:k and Muvw;w:k and do
reparameterization (Alg. 2).

end for

until convergence

in Alg. 3 is maxi(|Fi||L|).

4.3 Performance evaluation

We implement Alg. 3 using the NVIDIAr CUDA architecture [16]3. In approximation
algorithms[29], the approximation error (AE) is defined as the gap between the optimal

3The source code for CUDA implementation of the MRF optimization algorithm and the exe-
cutables used in our comparison between CPU and GPU implmentations can be downloaded from
http://www.cs.sunysb.edu/~yzeng/software_HighorderMRF.html.
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A Generic Local Deformation Model for Shape Registration 13
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Figure 4: Performance analysis of our MRF optimization algorithm. (a) shows the
optimality using the test cases described in Sec. 4.3. (b) shows the speedup using the
parallel implementation of Alg. 3. We show the runtime per iteration since different
inputs would result in different iteration counts.

integral solution and the solution obtained by the algorithm. The gap between the result
by the LP relaxation and the optimal integral solution is often used to upper bound the
approximation error. Here we aim to test the true approximation error, as well as the
speedup, by designing the test inputs as follows: Given any input mesh, we randomly
assign a default labeling lu for each node u ∈ V . We define the singleton potentials of
Eq. 4 as

θu(xu) =

{

0 if xu = lu

rnd(1) otherwise
,

where rnd(1) is a random number between [0, 1]. Also we define the high-order po-
tentials as

θuvw(xu, xv, xw) =

{

0 if (xu, xv, xw) = (lu, lv, lw)

rnd(1) otherwise
.

In such case, the optimal solution of Eq. 4 should be {lu|u ∈ V}. Fig. 4 (a) shows the
result of our algorithm using the above designed test cases for different mesh and label
size. Note that although the total energy increases with mesh size, the average energy
per term (vertex and face) remains significantly low (< 0.01 for all cases). Fig. 4 (b)
shows the comparison on average time taken per iteration, between the implementa-
tions with and without GPU accelerations. The total number of iterations depends on
the energy. In our experiment the algorithm converges within 3000 iterations. Hence
our algorithm is both memory and computational efficient, which is important for shape
tracking.

5 Experimental results

In this section, we apply our deformation model and optimization technique to the
problems of shape registration and tracking. The input to our algorithm is two 3D
shapes M and N , and a triangulated sampling point set G = (V,F) on M (Fig. 6
(a)). The output is the registered result on N for each point in V (Fig. 6 (c)). We
implement our algorithm on an Intelr Core(TM)2 Duo 3.16G PC with 4G RAM and
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14 Zeng, Wang, Wang, Gu, Samaras & Paragios

Data Zeng et.al. [37] Our method
Face_Smile (2.26, 0.19, 67.83) (1.24, 0.86, 4.2)
Face_Laugh (1.75, 0.12, 111.11) (1.36, 0.82, 11.0)
Face_Sad (1.87, 0.19, 78.62) (1.48, 0.87, 7.52)

Table 1: Comparison with [37]. Here (·, ·, ·) denote the average, minimal and maximal
area ratios between the original facets and the matched facets.

an NVIDIAr Geforce 9800GTX+ graphics card with 128 CUDA cores. The number
of labels L (matching candidates) is set to be 2n for best hardware performance. In
most of our experiments, we set L = 64. The computation of all the L3 possible
CDCs for one face takes only 2.0ms on average on GPU. Hence the computation of
the energy term θuvw;ijk for a mesh with 165 vertices and 272 faces takes only 0.5s.

Estimation of deformation prior: In our experiment, we assume that the defor-

mation priors are similar across different shapes of the same type (e.g., human faces
[30]). The ground truth deformation prior can be obtained by 3D scanning systems
with reliable texture information (e.g., markers). As shown in Fig. 5, the two 3D data
in (a) and (c) are captured with markers using the system introduced in [32]. Here we
select two frames with the largest expression difference to measure the maximal possi-
ble change of CDC. Fig. 5 (b), (d), (f) and (g) show the visualization of the distribution
of CDC. From the above data set we obtain the allowed bound for human face expres-
sion changing from neutral to large deformation as I1 = [0.7, 5.66], I2 = [0.1, 4] for
λ1 and λ2, respectively. For the problem of surface registration, we define a Potts-like
energy for the high-order terms in Eq. 4 as follows:

θuvw(xu, xv, xw) =

{

0 if λ1 ∈ I1 and λ2 ∈ I2

10 otherwise
, (6)

where λ1 and λ2 are the CDCs obtained by matching △uvw to △xuxvxw.

5.1 Shape registration

Fig. 6 shows one of our shape registration results and its comparison with the results
of Zeng et.al [37]. The singleton terms are defined similarly as in [37]. To obtain
enough matching candidates, re-sampling is made near its original candidates. The
high-order graph matching formulation in [37] assumes the two surfaces are isomet-
rically deformed so they have consistent conformal mapping if three correspondences
are found. Hence when the deformation is not isometric, the registered points can be
significantly distorted (Fig. 6 (b) and (c)). Besides, the optimization technique in [37]
requires reducing high-order terms into pairwise ones so the memory required is huge
and it only handle label size < 5. In contrast, our method poses deformation constraint
onto each triangle and guarantees the consistency condition for the final solution. As
a result, unlikely matching is avoided and the results are visually plausible (Fig. 6 (e)
and (f)). More quantitative comparisons are given in Table 1. It can been seen that the
unnatural deformations presented in [37] are significantly reduced.

To test the accuracy achieved by using a anisometric deformation prior, defined as
the canonical distortion coefficient (CDC) in our paper, we design the following exper-
iment. The 3D scan of a highly deformable toy is captured by the system introduced in
[32] before and after a large deformation, as shown in Fig. 7 (a) and (b), respectively.
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A Generic Local Deformation Model for Shape Registration 15

(a) (b) (c) (d)
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Figure 5: Expression deformation prior is obtained by 3D scanned data with markers.
(a) and (b) show the 3D scan of the onset and peak of a facial expression with large
shape deformations respectively. (c) and (d) are the corresponding triangular meshes
constructed from the 3D scan data. The color coding in (d) shows the deformation
intensity as illustrated in (e). The histogram of the canonical distortion coefficient
values are shown in (f) and (g).

Outliers are pruned off using the selection tool provided by the MeshLab software 4.
An original set of points and their candidates are selected using the method described
in [37]. To establish the ground truth and estimate the deformation prior, we manually
select 20 facets and their matches based on the texture information. The two shapes are
then matched without using the texture information, i.e., in Eq. 4 of in the paper, we
use curvature as the singleton term (data likelihood) and the learnt deformation prior as
the high-order term (the deformation prior). Fig. 8(b) shows the result using isometric
assumption (λ1, λ2) = (1, 1) and Fig. 8(c) shows the result using the learnt CDC prior
(λ1, λ2) = (1.028, 0.993). To compare the accuracy achieved by the two assumptions,
we compare the average texture difference between the original area covered by the
matching points (the blue mesh in Fig. 8) and the matched area.

5.2 Shape tracking

To apply our method to tracking dynamic 3D scanned data, we consider both inter-
frame consistency and the consistency between the current frame and the first frame.
For the singleton term in Eq. 4, we use the robust metric defined in the paper of [38].
To impose inter-frame consistency, we use the same data set (here we select two con-

4http://meshlab.sourceforge.net/
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16 Zeng, Wang, Wang, Gu, Samaras & Paragios

(a) Input (b) Result by [37] (c) Closeup of (b)
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(d) Area ratio (e) Our result (f) Closeup of (e)

Figure 6: Shape registration result. (a) shows the input mesh with triangulated discrete
samples obtained by the method described in [37]. The matching result and its closeup
is shown in (b) and (c).

(a) Original shape (b) Deformed shape

Figure 7: The 3D scan of a highly deformable toy.

secutive frames with largest deformation change) and obtain the allowed change of
CDC between frames to be I1 = [0.874, 1.143] and I2 = [0.846, 1.182] for λ1 and λ2
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A Generic Local Deformation Model for Shape Registration 17

(a) Original shape with discrete samples (b) Result with isometric assumption (c) Result with learnt CDC prior

Figure 8: The comparison between the results of shape registration with isometric as-
sumption (b) and with learnt CDC prior (c). Only curvature and high-order deformation
prior are used in the registration.

With isometry assumption With learnt CDC
0.073 ((λ1, λ2) = (1, 1)) 0.005 ((λ1, λ2) = (1.028, 0.993))

Table 2: Comparison between results with and without isometric assumption. The
matching is done without using the texture information. The comparison is based on
the average texture difference (the gray level is normalized in [0, 1]), by warping the
source mesh to the matched target mesh.

respectively. Also we handle drift error by imposing the consistency between the first
frame and the current frame, using the same face deformation prior learnt in Fig. 5.

Fig. 9 shows tracking results on the BU-4DFE database [34]. A template is con-
structed in the first frame and tracked in the subsequent frames (same as in [38]. Be-
cause of the temporal continuity in consecutive frames, sufficient matching candidates
can be obtained by only looking at the neighborhood of each point. In this data set,
the texture information is noisy so relying on texture information only can lead to er-
roneous results. By imposing a simple prior on the bound of the deformation, we have
achieved plausible tracking results as shown in Fig. 9.

6 Conclusion

We have presented a generic, geometry-inspired deformation model for characteriz-
ing arbitrary diffeomorphisms between shapes. An efficient and accurate algorithm to
compute the canonical distortion coefficients (CDCs) is proposed based on finite ele-
ment analysis in the discrete setting. Searching for the optimal shape registration result
given such model is made possible with a high-order MRF framework. An efficient
optimization algorithm is designed for such problem. We demonstrated the speed and
accuracy performance on 2-manifold shape registration. However, both the deforma-
tion model and the optimization algorithm can be easily extended to high-dimensional
space.
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18 Zeng, Wang, Wang, Gu, Samaras & Paragios

Frame 0 Frame 20 Frame 49 Frame 87

Frame 0 Frame 50 Frame 78 Frame 100

Frame 0 Frame 5 Frame 69 Frame 86

Figure 9: Shape tracking results.

7 Appendix

7.1 A. Theoretical analysis of the canonical distortion coefficient

In this section, we give the rigorous definitions for characterizing arbitrary diffeomor-
phisms between two surfaces using Riemannian geometry. Specifically, we give the
precise meaning of “deformation of a unit circle into an eclipse" mentioned in the pa-
per and explain why it is able to represent arbitrary deformations. We also connect our
canonical distortion coefficient to the Beltrami-coefficient defined in quasi-conformal
mapping theory. Most of our notations and definitions are adapted from the classic
textbooks [9], [12] and [2].
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A Generic Local Deformation Model for Shape Registration 19

7.1.1 Tangent space, inner product and metric tensor

In Riemannian geometry, the concept of tangent space is the vehicle for studying the in-
trinsic properties of the geometric shape such as isometry, conformality and diffeomor-
phism. Intuitively, this is because the tangent space gives us the first-order information
of the surface which is linear and hence easy to handle.

Definition 4. A tangent vector at p ∈ M, call it X, assigns to each coordinate patch

(Uα, xα) holding p, and n-tuple of real numbers

(Xi
α) = (X1

α, . . . , Xn
α) (7)

such that if p ∈ Uα ∩ Uβ , then

Xi
β =

n
∑

j=1

[
∂xi

β

∂xj
α

(p)]Xj
α (8)

Here the matrix (
∂xi

β

∂x
j
α

) is the Jacobian matrix between the two charts Uα and Uβ ,
as defined in Eq. 8. Hence a tangent vector can be represented by different coordinates
under different parametrizations as long as Eq. 8 is satisfied. Also at each point, all
the tangent vectors form a linear space, which can be represented by a coordinate basis
under any parametrization Uα.

Definition 5. The tangent space to M at the point p ∈ M is the real vector space

consisting of all tangent vectors to M at p. If xα = {x1, . . . , xn} is a coordinate

system holding p, then the n vectors

∂

∂x1
, . . . ,

∂

∂xn
(9)

form a basis of this n-dimensional vector space and the basis is called a coordinate

basis. We denote by Tp(M) as the tangent space at a point p ∈ M.

Both the tangent vector and the tangent space are defined at a single point on the
surface. If we consider the “bundle" of tangent vectors defined at every point, we can
define a vector field on an open set U to be the differentiable assignment of a vector X

to each point of U ; in terms of local coordinates

X =

n
∑

j=1

Xj(x)
∂

∂xj
. (10)

Given the vector field defined on each point p ∈ M, we can define a basis in the
tangent space {e1(p), . . . , en(p)}. Hence we can define the inner product 〈·, ·〉 that
measures the distance between two tangent vectors at each point.

〈v,w〉p = 〈
∑

i

eiv
i,

∑

j

ejw
j〉p =

∑

i

∑

j

vi〈ei, ej〉pwj (11)

If we define the matrix G = (gij)p with entries

gij := 〈ei, ej〉p (12)
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20 Zeng, Wang, Wang, Gu, Samaras & Paragios

f(p)

p q

e1

e2

e1’

e2’

Figure 10: The deformation of a unit circle into an eclipse is defined in the tangent
space.

then 〈v,w〉 = vGw. The matrix (gij) is called the metric tensor. Note that here G is
a function defined at each point on the surface.

A Riemannian metric tensor (gij) is required to be symmetric positive definite at
every point. Hence it is always possible to apply a linear transformation to (gij) at
a given point p such that the new metric tensor (g′ij) = JT

p (gij)Jp is the identity
matrix I , where Jp is an non-degenerate matrix. Therefore, given any coordinate chart
{Uα, xα}, we can define a new coordinate chart {U ′

α, x′
α} where x′

α = Jpxα. It can
be easily verified that at point p

〈e′i, e′j〉p = 〈Jpei, Jpej〉p = eT
i JT

p (gij)Jpej = δj
i . (13)

Consequently, the new coordinate chart is called the canonical parametrization as de-
fined in Definition 1.

7.1.2 Diffeomorphisms, isometries and conformal maps

Given a diffeomorphism f : M → N , the mapping between two tangent spaces
df : Tp(M) → Tq(N ), where q = f(p), is a linear mapping [9]. The mapping f can
be fully characterized by its differential df at each point on the surface given an initial
correspondence [11]. The advantage of studying the mapping f from its first-order
derivative is its simplicity since df is defined on a linear space. Within this setting, the
change of the tensor metric, i.e.,

〈v,w〉 → 〈df(v), df(w)〉q (14)

is determined by the linear transformation df . Hence, under this the linear transfor-
mation, a unit circle in Tp(M) is mapped into an eclipse in Tq(N ). Under canon-
ical parametrization (Def. 1), such change of metric tensor can be represented as
I → JT

pqJpq. Since JT
pqJpq = OT diag(λ1, λ2)O, this deformation represents both

scale change information and angle change information. Here λ1 and λ2 represents the
scale change along the two axes and the (rotational) orthogonal matrix O represents
the angle change. Equivalently, such changes can be fully characterized by the distor-
tion of a unit circle in the tangent space at p into an eclipse in the tangent space at q
(Fig. 10). In the following, we show that the canonical distortion coefficient can fully
characterize two deformation models that is prevalent in computer vision, i.e., isometry
and conformality.

Definition 6. A diffeomorphism f : M → N is an isometry if for all p ∈ M and all

pairs of tangent vectors v,w ∈ Tp(M), we have

〈v,w〉p = 〈df(v), df(w)〉q (15)
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A Generic Local Deformation Model for Shape Registration 21

Hence, under canonical parametrization, the mapping must satisfy

JT
pqJpq = I, (16)

i.e., λ1 = λ2 = 1.

Definition 7. A diffeomorphism f : M → N is called a conformal map if for all

p ∈ M and all pairs of tangent vectors v,w ∈ TP (M), we have

〈df(v), df(w)〉q = λ2(p)〈v,w〉p, (17)

where λ2 is a nonwhere-zero differentiable function on M.

Again, under canonical parametrization, we have JT
pqJpq = λ2(p), implying λ1 =

λ2.

7.1.3 Canonical distortion coefficient and quasi-conformal mapping

The above discussion established the link between the popular deformation models
(i.e., isometry and conformality) and the canonical distortion coefficient. In fact, the
canonical distortion coefficient is also closely related to the more general quasi-conformal
mapping [2]. The quasi-conformal mapping studies the deformation between two
planes w = f(z), where z = x + iy and w = u + iv. At a given point z0, f in-
duces a linear mapping of the differentials

du = uxdx + uydy (18)

dv = vxdx + vydy (19)

which we can also write in the complex form:

fz =
1

2
(fx − ify) and fz =

1

2
(fx + ify) (20)

Note that this transformation is defined on two charts Uα and Uβ which is assumed to
have Euclidean metric. Hence one can write in classical notation

du2 + dv2 = Edx2 + 2Fdxdy + Gdy2 (21)

with

E = u2
x + v2

x, F = uxuy + vxvy, G = u2
y + v2

y (22)

Under canonical parametrizations at q (f(z0)), since it is Euclidean at q, the metric
tensor can be represented as du2 + dv2. Hence we can establish

JT
pqJpq =

(

E F
F G

)

. (23)

In the theory of quasi-conformal mapping, the beltrami-coefficient µ(z) = fz

fz
can be

partially determined by the eigenvalues of the matrix

(

E F
F G

)

, which is equivalent to

the canonical distortion coefficient. To see this, we first define

Df =
|fz| + |fz|
|fz| − |fz|

. (24)
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22 Zeng, Wang, Wang, Gu, Samaras & Paragios

From

dw = fzdz + fzdz, (25)

we have

(|fz| − |fz|)|dz| ≤ |dw| ≤ (|fz| + |fz|)|dz|. (26)

Hence Df denotes the ratio of the major to the minor axis of the mapping f at z0, i.e.,

Df = (
λ1

λ2
)

1
2 (27)

Therefore we can easily obtain

|µ(z)| =

√
λ1 −

√
λ2√

λ1 +
√

λ2

. (28)

7.2 B. Details of high-order MRF optimization algorithm

7.2.1 Derivation of dual optimization

In linear programming (LP), a general form of primal-dual relation is the following

min cT x max bT y (29)

s.t. Ax = b ⇔ s.t. AT y ≤ c

x ≥ 0

Here c and b are two vectors and A is a matrix.
Now let us consider the LP relaxation of the problem of Eq. 4 as derived in Sec. 4:

min
τ

∑

u∈V

∑

i∈L

θu;iτu;i +
∑

(u,v,w)∈F

∑

(i,j,k)∈L3

θuvw;ijkτuvw;ijk (30)

s.t.
∑

i

τu;i = 1, ∀u ∈ V
∑

i,j,k

τuvw;ijk = 1, ∀(u, v, w) ∈ F

∑

j,k

τuvw;ijk = τu;i, ∀(u, v, w) ∈ F and i ∈ L

τu;i ≥ 0, τuvw;ijk ≥ 0,

Introducing the dual variables

∑

i

τu;i = 1 → yu (31)

∑

i,j,k

τuvw;ijk = 1 → yuvw (32)

∑

j,k

τuvw;ijk = τu;i → Muvw;u:i, (33)
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A Generic Local Deformation Model for Shape Registration 23

by following the primal-dual formulate of Eq. 29, we have the dual problem of the LP
problem (Eq. 30):

max
∑

u∈V

yu +
∑

(u,v,w)∈F

yuvw (34)

yu −
∑

(v,w),(u,v,w)∈F

Muvw;u:i ≤ θu;i, ∀u ∈ V and i ∈ L

yuvw + Muvw;u:i + Muvw;v:j + Muvw;w:k ≤ θθuvw;ijk
,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L

If we define the reparametrization

θu;i := θu;i +
∑

(u,v,w)∈F

Muvw;u:i, ∀u ∈ V and i ∈ L

θuvw;ijk := θuvw;ijk − Muvw;u:i − Muvw;v:j − Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L,

we have for any u ∈ V

yu ≤ θu;i ∀i ∈ L (35)

and for all (u, v, w) ∈ F

yuvw ≤ θuvw;iijk ∀(i, j, k) ∈ L × L× L (36)

Hence the dual optimization problem of Eq. 34 can be equivalently formulated as

max
M

∑

u

min
i

θu;i +
∑

(u,v,w)∈F

min
i,j,k

θuvw;ijk (37)

s.t. θu;i = θu;i +
∑

(u,v,w)∈F

Muvw;u:i, ∀u ∈ V and i ∈ L

θuvw;ijk = θuvw;ijk − Muvw;u:i − Muvw;v:j − Muvw;w:k,

∀(u, v, w) ∈ F and (i, j, k) ∈ L × L× L.

7.2.2 An efficient algorithm for finding independent face sets

Alg. 4 shows the algorithm that decomposes a third-order graph G = (V,F) into sub-
sets of independent face sets defined in Sec. 4.2 in the paper. To see to complexity of
this algorithm, for each iteration of step two, it take O(|max(V,F)|) to traverse all the
faces to construct a new independent face set. The total number of iterations depends
on the total number of decomposed sets (< O(|F|)). Hence the worst case complex-
ity of this algorithm is O(|V||F|). However in practice the number of iterations is
expected to be very small.
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Algorithm 4: Greedy algorithm for independent face sets.

Input : A third-order graph G = (V,F).
Output : Decomposition of F into independent face sets ∪iFi.

Step One: Initialization.
for each f ∈ F do

visited[f ]← false
end for

Step Two: Find maximal independent face set among the un-visited faces.

count = 0
i = 0
while count 6= |F| do

Fi← ∅

for each v ∈ V do

visited[v]← false
end for

for each f = (v1, v2, v3) ∈ F do
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end while
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