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Abstract. fMRI analysis has most often been approached with linear
methods. However, this disregards information encoded in the relation-
ships between voxels. We propose to exploit the inherent spatial structure
of the brain to improve the prediction performance of fMRI analysis. We
do so in an exploratory fashion by representing the fMRI data by graphs.
We use the Weisfeiler-Lehman algorithm to efficiently compute subtree
features of the graphs. These features encode non-linear interactions be-
tween voxels, which contain additional discriminative information that
cannot be captured by a linear classifier. In order to make use of the effi-
ciency of the Weisfeiler-Lehman algorithm, we introduce a novel pyramid
quantization strategy to approximate continuously labeled graphs with
a sequence of discretely labeled graphs. To control the capacity of the re-
sulting prediction function, we utilize the elastic net sparsity regularizer.
We validate our method on a cocaine addiction dataset showing a signif-
icant improvement over elastic net and kernel ridge regression baselines
and a reduction in classification error of over 14%. Source code is also
available at https://gitorious.org/wlpyramid.
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cocaine addiction

1 Introduction

Functional magnetic resonance imaging (fMRI) is a wide-spread, non-invasive
modality used for studying brain activity, under the objectives of localizing
brain regions participating in a specific task, determining connectivity networks
or making predictions about disease states. Numerous approaches have been
proposed for analyzing fMRI data. Most of them select features either by a pre-
defined set of regions of interest (ROIs) using prior knowledge [1, 2], statistical
methods [3, 4] or thresholding [5]. Recently, there has been an exploration of
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sparsity regularization methods in fMRI analysis [6, 7]. fMRI analysis is par-
ticularly suited to sparsity regularization due to the intrinsic high dimensional
nature of fMRI data, the small size of datasets and the lack of requirement for
predefined ROIs. Although the aforementioned methods perform well in analyz-
ing fMRI data, they tend to ignore the 3D structure of the brain. On the other
hand, graph-theoretic methods can model structural information, and have also
been used in fMRI analysis. The most common use is modeling the network of
brain connectivity [8, 9]. Graph kernel methods have also been used in fMRI
connectivity graphs for brain decoding [10].

The majority of previous approaches treat prediction in fMRI as a linear
combination of functions over individual voxels. Such approaches do not cap-
ture potentially complex interactions between voxels. We enrich our capacity
to model such dependencies by representing fMRI recordings as graphs, and
we design an algorithm that learns from the interconnections between voxels.
Through efficient graph algorithms, we are able to learn in a fully exploratory
fashion without restricting our prediction, e.g., to a pre-defined region of interest
or a connected component. We control the complexity of our prediction while
modeling non-linear interactions between voxels by adding a sparsity regular-
izer using the elastic net [11]. We represent fMRI data as graphs over voxels,
and compare the resulting graphs with a novel method that combines elements
of the Weisfieler-Lehman graph kernel [12] and the pyramid match kernel [13].
This method achieves the computational advantages of efficient graph kernels
while extending the representation to continuous node labels, which represent a
contrast map at a given voxel. We validate the approach on a clinically impor-
tant cocaine addiction dataset [14], achieving a reduction in classification error
from an elastic net baseline of over 14% with statistical significance.

2 Methods

Graphs are rich representations of networks of data, and are consequently a
promising representation for neural populations. A typical approach for explor-
ing graph representation is to consider a measure of similarity between graphs as
a kernel [15, 12]. The most popular strategy to define similarity over graph rep-
resentations is to aggregate statistics of subgraphs and compare them. Here we
agregate statistics of subtree patterns from a graph representation constructed
from fMRI data. We then use these statistics with a sparsity regularizer to make
predictions from graphs representing brain contrast maps. In order to make use
of a graph representation for learning from fMRI data, several design choices
must be made: (i) the learning algorithm, (ii) the graph construction, (iii) the
graph statistics employed as a feature representation, and (iv) the node labeling.
We address each of these choices in the following sections.

2.1 Sparsity Regularization

In the sequel, we will assume that we have access to a training set of data
{(xi, yi)}1≤i≤n of size n, where x ∈ X is a fMRI recording and y ∈ Y ≡ {−1,+1}

ha
l-0

08
45

06
8,

 v
er

si
on

 1
 - 

18
 J

ul
 2

01
3



Algorithm 1 The statistical learning pipeline for fMRI analysis with sparse
subgraph statistics.

Require: Training set D = {(xi, yi), i = 1, . . . , n}.
Compute β̂lin from the objective in Equation (1) with φlin(x) ≡ vecx.
Construct k-nearest neighbor graphs for all training samples from the voxels associ-
ated with non-zero β̂lin.
for each level in the quantization pyramid do

Label the nodes of all graphs according to the quantization of the voxel value.
Compute the Weisfeiler-Lehman statistics for the given quantization level over all
graphs and aggregate them into the feature vector φgraph(x).

end for
Compute β̂graph from the objective in Equation (1) with φgraph(x).

is a label to be predicted (cf. Section 2.5). As our statistical estimator, we have
made use of the elastic net [11]. The elastic net combines `1 with `2 regularization
in order to appropriately trade off sparsity with a low variance estimator in the
case of correlated signals. Formally, if φ(x) ∈ Rd is a feature vector computed
from x, the elastic net computes

β̂ = arg min
β∈Rd

λ2‖β‖22 + λ1‖β‖1 +
1

n

n∑
i=1

(〈β, φ(xi)〉 − yi)2 , (1)

where λ1, λ2 ≥ 0 are scalar regularization parameters. This method is particu-
larly appropriate in fMRI where nearby voxels are likely to be correlated, and
regions responsible for a given function or behavior distributed across multiple
voxels. Furthermore, it is typical that the majority of voxels in the brain are
not discriminative of a specific output, y. We make use of the elastic net twice
in our learning pipeline (Algorithm 1). In the first instance, we use the elas-
tic net on the raw voxel values to determine a subset of voxels on which we
build a graph representation, specifically those with non-zero β̂lin. Our model
selection step has typically chosen approximately 103 voxels for this stage. We
subsequently compute subgraph statistics over this graph to generate a feature
vector, φgraph(x). Finally, we use the elastic net on these subgraph statistics in
order to determine our final prediction function, with a model selection step to
determine appropriate values for λ1 and λ2.

2.2 Graph Construction

To construct the graph representation, we have made use of k-nearest neighbor
graphs on the voxels that were selected by an initial training of the elastic net. We
symmetrize the k-nn relationship by considering the edges to indicate an undi-
rected graph structure. While other models of connectivity are of interest [16,
17], we have found that the use of k-nearest neighbors to determine the graph
topology yields good performance in general. Furthermore, the subtree statistics
considered in the next section implicitly account for longer distance connections
for sufficiently deep subtree patterns. We set k = 5 in all experiments.

ha
l-0

08
45

06
8,

 v
er

si
on

 1
 - 

18
 J

ul
 2

01
3



2.3 The Weisfeiler-Lehman Algorithm

The subgraph statistics considered here are subtree patterns from the Weisfeiler-
Lehman algorithm [18], which has recently been employed in the construction
of a graph kernel [12, Algorithm 2]. These statistics are linear-time in the num-
ber of edges in the graph, and make use of an efficient hashing scheme in order
to only enumerate relevant (non-zero) dimensions of an exponentially sized fea-
ture space. In addition to these computational benefits, Weisfeiler-Lehman graph
kernels have been shown to perform comparably to or better than a number of
more computationally complex kernels [12]. Although Weisfeiler-Lehman statis-
tics over subtree patterns have most recently been used in the construction of
a kernel function after which `2 regularized learning is applied [12], we retain
the vectors of subtree pattern counts and apply a sparsity regularizer in order
to control model complexity in a high dimensional representation (Section 2.1).

2.4 Pyramid Quantized Weisfeiler-Lehman for Continuous Labels

The Weisfeiler-Lehman algorithm is efficient precisely because it makes use of a
discrete labeling over nodes, which enables an efficient hashing scheme in order
to scale linearly in the number of edges. This presents a problem when extend-
ing this method to continuous vector labeled graph vertices. Our vertices (fMRI
voxels) are naturally labeled by their (continuous) contrast values. To retain
the computational efficiencies of the graph representation, and to extend the
method to continuous node labels, we consider a pyramid quantization strategy
to determine a logarithmic number of discrete labelings for which we run the
Weisfeiler-Lehman algorithm. This approximates a graph representation with
continuous labels as a sequence of graphs with increasingly granular discrete la-
bels. To construct our pyramid quantization, we recursively partition the space
as proposed by [13]. In this manner, we have a series of nested vector quanti-
zations of increasing granularity. We believe our method is the first to propose
a pyramid quantization scheme for the efficient application of graph kernels to
continuous (multi-dimensional) node labels. We expect that this will addition-
ally be of high interest to the machine learning community, so code is available
at https://gitorious.org/wlpyramid.

2.5 Cocaine Addiction Dataset

Our dataset [14] contains an approximately equal number of cocaine addicted
individuals and control subjects performing a neuropsychological experiment of
block design known as drug Stroop. Each subject performs six sessions with two
varying conditions, a monetary reward (50¢, 25¢ and 0¢) and the cue shown
(drug-related or a neutral word). We focus here on the 50¢ condition based
on previous analysis of the data [5]. For the subjects that complied to motion
< 2mm translation, < 2◦ rotation and at least 50% performance of the subject
in an unrelated task [14], contrast maps were computed using the SPM pack-
age (http://www.fil.ion.ucl.ac.uk/spm/), which were used to determine the
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(a) Regions selected by Elastic Net.

(b) Elastic Net - Control

(c) Elastic Net - Cocaine

(d) Weisfeiler-Lehman - Control (e) Weisfeiler-Lehman - Cocaine

Fig. 1: 1(a): A visualization of the areas of the brain selected by the elastic net.
The selected regions correspond to areas previously implicated as being related
to addiction [14]. 1(b)-1(c): A visualization of the function learned by Elastic
net for control and cocaine subjects. 1(d)-1(e): A visualization of the function
learned by the proposed system applied to control and cocaine addicted subjects.

node labels of the graphs. Finally, the task of interest is the classification of a
subject as cocaine addicted or control.

3 Results

We evaluate our proposed pyramid quantized Weisfeiler-Lehman method for con-
tinuous node labels using the cocaine addiction dataset. We perform a random
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Table 1: Mean accuracy over the hold-out data of 50 trials of the pyramid
quantized Weisfeiler-Lehman algorithm for four different subtree pattern depths,
h ∈ {0, 1, 2, 3}. Maximum performance is achieved with subtree patterns up to
depth two.

Pyramid Quantized Weifeiler-Lehman

h 0 1 2 3

Accuracy 54.00% 57.14% 64.28% 63.42%

GKRR Elastic Net WLpyramid Combined WL+voxels

0.5

0.55

0.6

0.65

0.7

0.75
Accuracy for different methods

M
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Fig. 2: Mean accuracy and standard error on the cocaine addiction dataset. The
compared methods are (left to right) Gaussian kernel ridge regression (GKRR),
the elastic net on raw voxels, pyramid quantized Weisfeiler-Lehman (WLpyra-
mid), and the elastic net with a concatenation of the raw voxels and the pyramid
Weisfeiler-Lehman features (Combined EN+WL). The horizontal red line indi-
cates chance performance. The pyramid quantized Weisfeiler-Lehman features
perform better than GKRR and the elastic net on raw voxels with statistical
signficance.

splitting scheme with 50 trials to estimate the classification performance. In
each trial, a random selection of 80% of the data are used for training, while the
remaining 20% are used to estimate the performance. In Table 1 we show the
performance of the pyramid quantized Weisfeiler-Lehman model for four differ-
ent depths of subtree patterns (cf. Section 2.3). Our approach achieves a mean
accuracy of 64.28% for subtree patterns up to depth two. We also compare our
proposed technique with three other methods on the same dataset: (i) Gaus-
sian kernel ridge regression, (ii) the elastic net with raw voxels as features, and
(iii) elastic net with raw voxels and pyramid Weisfeiler-Lehman features con-
catenated in a joint feature vector. In Fig. 2 we show the mean accuracy of
the final system and the standard error. Pyramid quantized Weisfeiler-Lehman
outperforms the rest of the methods. With a Wilcoxon signed rank test between
elastic net with raw voxels and pyramid quantized Weisfeiler-Lehman we deter-
mine that our proposed method is statistically significantly better (p = 0.02).
Additionally, a reduction of over 14% in classification error is recorded between
elastic net on the raw voxels and our method.
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4 Discussion

Fig. 1 shows the areas selected by the elastic net and visualizations of the learned
functions. One of the main areas is the rostral anterior cingulate cortex (rostral
ACC), which has been previously shown to deactivate in cocaine users in com-
parison to controls [14]. Moreover, it is an area whose activity is normalized by
oral methylphenidate [19], which blocks the dopamine transporters, similar to
cocaine, increasing extracellular dopamine–an escalation that has correlated with
lower task-related impulsivity (errors of commission). Furthermore, this region
has shown reduction in drug cue reactivity as a response to pharmacotherapeutic
interventions in cigarette smokers [20, 21] and might be a marker of treatment
response in other psychopathology (e.g. depression).

Although our method works in an implicitly high dimensional space, we em-
pirically observe that Elastic Net regularization controls the complexity at each
stage of the pipeline. The first learning step selects approximately 1100 voxels.
Using the Weifeiler-Lehman algorithm, we generate a feature vector of length
6× 105, but with a sparsity of ∼ 2%. The second application of Elastic Net se-
lects only ∼ 2K dimensions. In each step, the method retains complexity much
lower than a “simple” linear function over tens of thousands of voxels as has
been proposed in previous works.

Several broad observations are apparent from our quantitative results. From
Table 1, we note that subtree patterns up to depth two seem to perform best, and
that deeper subtree patterns begin to reduce average performance. This indicates
that the big-O complexity of the graph representation is only slightly higher
than using a simple linear function. The proposed method performs significantly
better than the ridge regression and elastic net baselines (Table 1 and Figure 2).
In our final experiment of combining the raw voxel values with the subtree
pattern features, we found that performance decreased slightly from that of only
considering subtree pattern features.

In this work, we have presented a fully automated, statistically sound method
for classification of brain states with graph representations. It combines the
Weisfeiler-Lehman graph kernel [12] with the pyramid match kernel [13], in or-
der to learn from graphs with continuous labels through a pyramid quantization
scheme. The method was evaluated on a real world dataset and outperformed
other machine learning techniques with statistical significance, including kernel
ridge regression and the elastic net. This validates the primary hypothesis of this
work: that the interconnections between voxels can contain additional informa-
tion about brain structure that is not apparent in a linear function on the raw
voxel values.
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