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Abstract

Video segmentation is the task of grouping similar pix-
els in the spatio-temporal domain, and has become an im-
portant preprocessing step for subsequent video analysis.
Most video segmentation and supervoxel methods output
a hierarchy of segmentations, but while this provides use-
ful multiscale information, it also adds difficulty in select-
ing the appropriate level for a task. In this work, we pro-
pose an efficient and robust video segmentation framework
based on parametric graph partitioning (PGP), a fast, al-
most parameter free graph partitioning method that identi-
fies and removes between-cluster edges to form node clus-
ters. Apart from its computational efficiency, PGP performs
clustering of the spatio-temporal volume without requir-
ing a pre-specified cluster number or bandwidth parame-
ters, thus making video segmentation more practical to use
in applications. The PGP framework also allows process-
ing sub-volumes, which further improves performance, con-
trary to other streaming video segmentation methods where
sub-volume processing reduces performance. We evaluate
the PGP method using the SegTrack v2 and Chen Xiph.org
datasets, and show that it outperforms related state-of-the-
art algorithms in 3D segmentation metrics and running
time.

1. Introduction
Image segmentation is a mature field, with the output of

the segmentation methods being used for object detection
and segmentation [24][12], semantic understanding [32],
shadow detection [26], etc. It started with several seminal
works that cluster pixels with similar intensity and/or color
features into groups [8][20][6], and gradually moved into
clustering superpixels that share similar low level features
[27][31][5][14][19]. The increased importance of video
analysis necessitates efficient video segmentation, due to
the heavy processing cost of video data. Video segmen-
tation methods in general attempt to cluster similar pixels

together under a spatio-temporal setting, either by meth-
ods that generate a set of hierarchical segmentations (from
very detailed to more coarse) [10][7][30], or by methods
that group superpixels together to form spatio-temporal su-
perpixels or supervoxels [2][15][25]. The latter methods
are significantly more efficient computationally, albeit less
accurate. In this paper, we propose a ”superpixel group-
ing” method that improves the state-of-the-art by as much
as 30%, and is approximately 20 times faster.

Hierarchical video segmentation methods have demon-
strated excellent 3D (spatiotemporal) segmentation results
on standard datasets such as Segtrack [23] and Chen’s
Xiph.org [4] using a variety of metrics [28]. However, their
applicability in video processing pipelines remains limited,
due to computational complexity and the difficulty of au-
tomatically selecting the appropriate hierarchical layer for
particular applications. As an attempt to address these ob-
stacles, the recently proposed Uniform Entropy Slice (UES)
method ([29]) selects different supervoxels from the several
hierarchical layers to form a single output segmentation, by
balancing the amount of feature information of the selected
supervoxels [29]. UES builds on top of hierarchical seg-
mentation pre-processing techniques such as [10] and [7] to
produce a single segmentation that is more practical for fur-
ther use. This comes at the cost of increased computation
and decreased performance in 3D quantitative performance
metrics compared to [10] and [7]. To obviate the use of
expensive hierarchical segmentation as pre-processing, we
adopt the commonly used approach of grouping superpixels
under a spatio-temporal setting with a novel and efficient
clustering algorithm that performs parametric graph parti-
tioning (PGP) on the spatio-temporal superpixel graph.

PGP is a graph partitioning method that performs cluster-
ing without needing the user to specify the number of clus-
ters, or search-window parameters as in mean-shift [6]. The
method optimizes a number of two-component parametric
mixture models over the edge weights of a graph (one model
per feature type). The edges are bi-partitioned into a within-
cluster and a between-cluster group by performing infer-
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Figure 1. The overview of our proposed PGP method. First, a spatio-temporal superpixel graph is constructed from the video (dashed
lines indicate temporal connections). Then, the edge weights are modeled by a mixture of Weibull distributions, computed separately for
individual features. The mixture models generate information about the inter- and intra-cluster edges (intra-cluster edges in bold). The
inter-cluster edges are discarded and each of the remaining groups of superpixels becomes a final video segment.

ence on these mixture models. Thus the between-cluster
edges of the graph can be identified and removed, in or-
der to create a variable amount of isolated clusters in an
efficient manner (see also [33]). Each of these clusters cor-
responds to a 3D video segment. It is safe to assume that
Lp-norm based similarity distance statistics in general are
Weibull distributed [1]. Based on this observation, a previ-
ous method produced high quality single image partitioning
results and segmented contiguous image regions well [33].
Using PGP has a number of advantages:

• PGP is computationally efficient; its run time is linear
in the number of superpixels. This is especially suit-
able for processing big data such as video.

• PGP is a one-pass algorithm that produces a non-
hierarchical result, which eliminates the need to select
the appropriate hierarchical layer.

Figure 1 gives an overview of our method. In summary
our main contributions are:

1. A novel general graph partitioning algorithm, that re-
quires the differences between the feature vectors to
be correlated and non-identically distributed. Our fea-
tures satisfy this requirement (Section 3.1).

2. An efficient and robust video segmentation method
that outputs a single segmentation map. We use PGP
to partition the spatio-temporal superpixel graph. PGP
models parametrically the similarity distance statistics
for the features of interest. In this paper they are: in-
tensity, hue, ab (from the Lab colorspace), motion (op-
tic flow), and gradient orientation. We integrate these
cues with an adaptive feature weighting scheme.

3. An extensive evaluation and comparison with the pre-
vious state-of-the-art method[29] on two widely used

benchmark video datasets. Our video segmentation
method improves the state-of-the-art significantly in 7
out of 8 total evaluation metrics, using less than 1/20th
of the computation time and memory.

We describe the details and our adaptation of the PGP
method in Section 2, followed by a series of experiments
and quantitative evaluations with related work using Seg-
Track v2 [15] and Chen’s Xiph.org datasets [3] in Section
3. Finally, possible improvements and future work for our
proposed work is discussed in Section 4.

2. Segmentation via superpixel clustering
In image segmentation, it is common to build a graph

where the nodes represent superpixels and the edges con-
nect adjacent superpixels, weighted by the similarity dis-
tance of some feature [26][27]. Then an algorithm parti-
tions this graph to obtain a set of disjoint superpixel groups
as the resulting segmentation. For video segmentation,
pixel-based methods tend to perform better than super-
pixel segmentation methods ([10][7]) because superpixels
segmented on individual frames can be temporally unsta-
ble. However, since superpixel image segmentation meth-
ods are more computationally efficient compared to work-
ing with pixels, they are sometimes the only viable choice
[11][18]. The most prominent methods for grouping su-
perpixels are spectral clustering [11][9] and agglomerative
clustering [18]. However, spectral clustering requires a
quadratic increase in storage and computation as data in-
stances grow, which is particulatly costly for videos, while
the computational efficiency of agglomerative clustering
comes at the cost of reduced segmentation performance.

We propose a novel clustering method for video seg-
mentation via superpixel grouping, called parametric graph
partitioning (PGP). The algorithm attempts to label and re-
move between-cluster edges of a graph by fitting a two-



component Weibull mixture model (WMM) over the distri-
bution of similarity distances between the connected nodes
(i.e. the edge weights) of the entire graph. The value at
the cross-over point (critical value) between the two compo-
nents represents the split between the intra- and inter-cluster
edge weights. The edge weights that are higher than the
critical value are removed and identified as the inter-cluster
edges. An edge of a graph can only be labeled as inter- or
intra-cluster, hence the algorithm fixes the number of mix-
ture components at two.

In the next section, we describe the PGP algorithm in de-
tail, including the motion features used for video segmen-
tation, our adaptive feature weighting scheme, and branch
reduction method as parts of an integrated framework.

2.1. Spatio-temporal superpixel graph

Given a graph G = (V,E), an edge eu,v ∈ E connects
two neighboring nodes (superpixels) u, v ∈ V . Let xi be the
weight of the ith edge ei of the graph, the task is to assign
a binary label to ei by an indicator function yi = I(xi),
such that yi = 1 if ei is an intra-cluster edge that should be
retained, or yi = 0 if ei is a inter-cluster edge that should
be removed from the graph. For a given feature f ∈ F, xi
is the similarity distance between the feature histograms of
nodes (superpixels) va and vb connected by the ith edge ei
such that xi = D(va, vb|f), and we denote x as similarity
distances of different features.

Neighboring nodes in a spatio-temporal graph are de-
fined as nodes that are spatially or temporally adjacent to
one another, where temporal adjacency in our framework is
defined differently depending on whether the motion feature
(described in Section 3.2) is used: if the motion feature is
used, the temporal neighbors of va are nodes located within
a n×n window on the next temporal frame, where the cen-
ter of the window is specified by the mean motion vector
of va; if the motion feature is not used, then temporal adja-
cency is defined by a 4n × 4n window directly on the next
temporal frame using the centroid of va as the center of the
window.

2.2. Parametric graphic partitioning

Since the edges can only be either intra-cluster or inter-
cluster, the distribution of the edge weights x computed
from a given feature f is therefore composed of the two
respective populations, where the lower values are more
likely to be intra-cluster distances and the higher values are
more likely to belong to the inter-cluster group. Given a
single feature, there is one ideal critical value that separates
x into these two components. Finding this critical value
would solve the edge labeling problem. To find the critical
value, one can naively perform k-means with k = 2 or fit
a two-component Gaussian mixture model over the distri-
bution of x (assuming the similarity distances are Normally

distributed). However, the underlying structure of the sim-
ilarity distance is unknown, so these assumptions are po-
tentially wrong. However, it has been shown [1] that, if
an Lp-norm based distance (e.g. Earth Mover’s Distance
[33]) is used as the similarity distance metric for the fea-
ture histograms, that Lp distance follows a Weibull distri-
bution if the differences between the two feature vectors to
be compared are correlated and non-identically distributed.
We show that our features satisfy the above assumptions in
Section 3.1. It is therefore theoretically plausible to find
the critical value by fitting a 2-component Weibull mixture
model over the distribution of Lp distance statistics, and re-
tain the cross-point of the two components as the critical
value for graph partitioning. The Weibull mixture model
(WMM) has the general form:

WK(x|θ) =

K∑
k=1

πkφk(x; θk) (1)

φ(x|α, β, c) =
β

α
(
x− c
α

)β−1e−(
x−c
α )β (2)

where θk = (αk, βk, ck) is the parameter vector for the
kth mixture component, and φ denotes the three-parameter
Weibull p.d.f. with the scale (α), shape (β), and location
(c) parameter, and mixing parameter π such that

∑
k πk =

1. In this case, the two-component WMM contains a 6-
parameter vector θ = (α1, β1, α2, β2, c2, π) that yields the
following complete form:

W2(x|θ) = π(
β1
α1

(
x

α1
)β1−1)e−(

x
α1

)β1

+ (1− π)(
β2
α2

(
x− c2
α2

)β2−1)e−(
x−c2
α2

)β2
(3)

To optimize the above mixture model, we estimate
the parameters using both maximum likelihood estimation
(MLE) and Nonlinear least squares (NLS) and compare the
results in Tables 1 and 2. The log-likelihood function of
W2(x; θ) is given by:

lnL(θ;x) =

N∑
n=1

ln{π(
β1
α1

(
xn
α1

)β1−1)e−(
xn
α1

)β1

+ (1− π)(
β2
α2

(
xn − c2
α2

)β2−1)e−(
xn−c2
α2

)β2}

(4)

We adopt the Nelder-Mead algorithm as a derivative-free
optimization method of MLE [17] due to the complexity
of the likelihood function. With NLS, we approximate x
with histograms where the appropriate bin-width is adap-
tively computed by l = 2(IQR)n−1/3, where IQR is the
interquartile range of x with sample size n [13]. Then, NLS



Figure 2. The nonlinear least-squares fits of Weibull Mixture Models (one and two components) on the Earth Mover’s Distance statistics
of the five features with model selection done for the BMX-1 video. The blue lines are the posterior probability and the red lines are the
probability of individual mixture components. The models in the red boxes are the selected ones by AIC. a: intensity, b: hue, c: ab, d:
motion, and e: gradient orientation.

optimizes the parameters of Eq. 3 by treating the height of
each bin as a curve fitting problem; the least squares mini-
mizer is computed by applying the trust-region method [21].

Both optimization methods require a well chosen initial
guess parameter vector θ′ to avoid local minima. The initial
guesses are intuitive in our graph framework. Given a node
vi and its set of adjacent neighbors vNi , the neighbor that is
most similar to vi is most likely to belong to the same cluster
as vi. We therefore fit a single Weibull over the minimum
neighbor distance of all superpixels as the initial guess of
the first mixture component. For the initial guess of the
second mixture component, we extract the edge weights that
are more than some percentile of x, where p = 0.6 was
found to be a good point in our experiments.

2.3. Model selection and edge labeling

While the edge weights x are composed of the two popu-
lations (intra- and inter-cluster), there are several situations
when the distribution of x appears more uni-modal than bi-
modal (as per our assumption), such as when there are very
few inter-cluster edges, or more frequently when the differ-
ences between the two populations are less pronounced and
more tapered. Therefore, we also fit a single Weibull model
over x in addition to the two-component WMM, and select
the appropriate model via the Akaike Information Criterion
(AIC) (Figure 2). AIC suits our two-population assumption
because it penalizes the more complex (two-component)
model less. Standard AIC is used with MLE. For NLS, we

use the corrected AIC (AICc) with residual sum of squares
(RSS) because the sample size is smaller (generally if n/k
≤ 40, where n is the number of histogram bins, and k is
number of model parameters):

AICc = n ln(
RSS

n
) + 2k +

2k(k + 1)

n− k − 1
(5)

When the two-component model is selected such that
AIC(W2) ≤ AIC(W1), the critical value γ is the cross-
point between the two components. Otherwise γ is set at a
given sample percentile parameter τ , computed by the in-
verse c.d.f. ofW1:

if AIC(W2) ≤ AIC(W1)

γ = x, s.t. π1φ1(x|θ1) = π2φ2(x|θ2)

otherwise

γ = −α1(ln(1− τ))1/β1

After obtaining γ, we combine the n features to compute
the label for xi as the weighted-sum over the scaled x:

yi = I(

n∑
k=1

wiσ(xi, γ) < 0 | fk) (6)

where σ(xi, γ) is a scaling function that linearly scales
[min(x), γ] to [−1, 0], and [γ,max(x)] to [0, 1]. σ(xi, γ)
is a piecewise function with γ being the breakpoint:



σ(xi, γ) =


(xi − γ)/(γ −min(x)) if xi < γ

(xi − γ)/(max(x)− γ) if xi ≥ γ
(7)

Notice that when there is only one feature being considered,
Eqs. 6 and 7 combine into a simple threshold function and
γ becomes a threshold that partitions the graph such that
yi = I(xi >= γ).

When multiple features are considered, we expect that
in different parts of the image, different features will be
most prominent. For instance if two neighboring superpix-
els both undergo significant motions, their mean motion fea-
ture value will be higher than most other superpixel pairs,
indicating that motion similarity is of higher importance
when combined with the other features in Eq. 6. Hence, for
each such superpixel pair, we want to promote the weight
wi of the most prominent feature by computing wi adap-
tively. This adaptive scheme comes from the intuition that
the importance of a feature depends on how much of it is
present. wi is the mean feature value of va and vb (con-
nected by ei), normalized by the maximum feature value
for the entire video: wi = avg((fk|va), (fk|vb))/max(fk).
Specifically, the saturation value is used to measure how
much color is present, while the intensity feature weight is
1 minus the weight of the color feature.

As a final step before labeling the edges, we compute
the minimum spanning tree (MST) of the fully connected
graph G before making the cuts. This step has been shown
to reduce the under-segmentation of the graph by remov-
ing cycles and retaining only the most essential edges of the
graph [33]. The MST is computed over the product of the
edge weights for the n features, further multiplied by the
distance d between the centroids of the neighboring super-
pixels, to ensure that closer neighbors are more likely to be
under the same cluster. E′ is the list of edges from the MST:

E′ = MST (d

n∏
k=1

xk | fk) (8)

Edge labeling is performed over E′ according to Eq. 6.

2.4. Branch reductions

After removing the between-cluster edges that are iden-
tified by PGP, we obtain a set of disjoint superpixel clusters
which are merged into separate video segments. However,
a single frame slice of a spatio-temporal segment may re-
sult in several non-contiguous regions (branches) on that
single frame. Although the branches may be the result of
minor occlusion, they are undesirable in most cases and
care should be taken to address this issue [18]. Therefore,
we separate the branches of the spatio-temporal segments
by post-processing using a greedy algorithm: we iterate

Figure 3. Example process of our greedy branch reduction method.
Given the nodes (representing superpixels), the red edge is re-
moved first, followed by the green edge.

through every spatio-temporal segment and check if it pro-
duces non-contiguous regions in any single video frame. If
found, the algorithm picks the two largest regions on that
frame and removes the edge with the highest weight along
the path between the two regions. This step is repeated un-
til all branches of the given spatio-temporal segment are re-
moved, or a pre-defined number of iterations is reached .
Figure 3 illustrates an example of this process.

3. Experiments and results
We evaluate our PGP video segmentation method quan-

titatively using two video datasets: Segtrack V2 [15] and
Chen’s Xiph.org [4]. The recently proposed Segtrack V2 is
an extended version of the Segtrack V1 dataset [23], where
the number of videos increased from 6 to 14. Videos vary in
length and each has multiple objects and pixel-level ground-
truth. Chen’s dataset is a 8-video subset of the Xiph.org
videos that contains semantic pixel-level labeling of multi-
ple classes as ground-truth.

The features f that we use in this work are i) inten-
sity (256-bin 1D histogram), ii) hue of the HSV colorspace
(77×77 2D histogram), iii) the color component (AB) of
the LAB colorspace (20×20 2D histogram), iv) motion op-
tic flow (50×50 2D histogram), and v) gradient orientation
(360-bin 1D histogram). Earth Mover’s Distance (EMD) is
used for all features. We generate superpixels using [16].
For the temporal neighbors’ n× n search window size, we
empirically set n to be 2.5% of the (video width + video
height)/2; and cap the branch reduction iteration at 100 per
spatio-temporal segment.

3.1. Feature properties

In order for the Lp distance statistics to follow a Weibull
distribution, the compared feature differences must be cor-
related but non-identically distributed random variables, as
mentioned in Section 2.2. We follow [1] to test the 5 fea-
tures used in this paper.

In summary, for each feature, we take its feature his-
togram from a randomly selected reference superpixel s



SegTrack V2
3D Accuracy (AC) 3D Under-segmentation Error (UE) 3D Boundary Recall (BR) 3D Boundary Precision (BP)

Video-obj MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b
Bird of P. 93.2 96.3 93.5 97.6 95.3 3.1 2.9 3.0 1.6 2.6 85.4 91.7 87.8 94.8 91.6 10 6.7 8.2 6.9 5.8

Birdfall 67.3 71.3 70.7 65.3 53.8 81.5 50.9 44.4 28.8 23.2 83.6 84.7 83.8 88.5 82.1 1.5 0.8 1.1 0.8 0.9
BMX-1 95.6 95.0 95.6 90.3 65.6 7.1 7.1 6.9 6.3 7.7 97.3 97.4 97.5 97.7 93.6 4.7 4.2 4.5 5.1 3.6
BMX-2 78.2 78.9 79.0 44.3 27.1 9.4 8.4 10.0 11.7 16.8 90.6 91.5 91.0 92.6 88.1 4.3 3.9 4.1 4.7 3.3

Cheetah-1 72.8 74.3 73.9 0 39.4 9.0 6.5 9.5 47.4 34.1 93.4 97.2 94.7 63.8 75.3 1.1 1.1 1.1 1.4 1.6
Cheetah-2 69.9 70.1 69.7 0 12.0 8.7 6.9 8.9 54.5 34.4 98.4 98.5 98.4 76.8 75.3 1.5 1.4 1.5 2.2 2.0

Drift-1 92.4 92.2 92.6 83.0 75.6 6.7 3.9 6.0 3.5 7.1 92.9 93.6 93.5 94.9 90.6 1.2 1.0 1.1 1.0 1.2
Drift-2 91.9 93.2 92.8 84.9 56.8 7.5 4.1 7.3 4.2 10.0 91.3 92.7 91.6 87.6 82.9 0.9 0.8 0.9 0.7 0.8

Frog 14.3 33.5 25.6 n/a 62.4 16.5 15.8 15.7 n/a 13.1 29.5 55.1 44.6 n/a 81.4 13.2 8.7 7.1 n/a 1.7
Girl 87.2 88.4 87.9 65.5 63.5 9.9 10.3 9.3 12.3 13.5 90.3 91.7 92.0 75.6 83.2 4.3 5.2 4.1 5.2 4.6

Hbird-1 64.5 64.1 69.5 55.9 0 9.1 20.1 8.8 7.8 14.5 76.3 80.7 86.8 79.8 35.0 2.8 5.8 3.2 6.3 3.3
Hbird-2 78.4 67.5 81.9 70.6 0 7.8 11.2 7.9 8.0 13.4 90.4 83.3 95.5 92.7 86.0 5.0 9.0 5.3 11 12
Monkey 88.8 87.5 90.7 87.5 0 6.7 3.5 5.7 11.7 19.6 91.8 94.3 93.6 92.0 64.0 1.7 1.5 1.6 1.7 3.4
Mdog-1 86.7 88.2 88.1 41.7 79.9 12.6 11.0 11.6 41.4 43.2 94.8 95.7 95.7 94.3 91.0 1.6 1.5 1.5 2.1 3.0
Mdog-2 56.9 65.0 66.7 43.2 0 8.0 8.1 6.5 27.9 22.0 84.5 88.5 90.0 78.5 44.0 1.0 1.0 1.0 1.3 1.0

Parachute 93.5 93.4 93.4 90.9 89.3 22.0 7.2 19.9 18.5 38.6 94.9 97.3 96.0 95.7 87.4 1.3 0.7 1.1 1.5 10
Penguin-1 96.2 96.4 94.6 94.8 85.0 3.4 3.3 3.3 2.2 1.8 49.3 48.8 49.3 77.3 65.5 1.1 0.9 1.1 1.4 0.9
Penguin-2 96.4 96.5 96.6 85.1 93.1 4.7 4.6 4.7 3.3 2.1 69.6 74.9 71.7 66.8 75.3 1.6 1.5 1.6 1.3 1.1
Penguin-3 96.2 95.6 96.1 87.6 83.7 4.0 3.8 4.0 2.9 2.5 70.7 74.2 71.6 54.2 72.7 1.6 1.4 1.6 1.0 1.0
Penguin-4 96.0 95.8 96.1 83.8 82.8 3.9 3.9 3.8 2.0 2.4 73.4 75.4 74.0 45.7 56.7 1.4 1.2 1.4 0.7 0.7
Penguin-5 87.9 89.3 89.3 81.8 72.3 8.2 9.7 8.1 4.6 4.1 72.9 76.0 74.9 59.2 54.0 1.2 1.1 1.2 0.8 0.6
Penguin-6 96.7 98.8 97.0 85.7 86.8 4.1 4.1 4.0 2.2 2.5 61.1 47.1 66.2 66.4 63.3 1.2 0.8 1.3 1.1 0.8

Soldier 88.5 87.1 89.5 65.3 67.2 10.0 4.9 4.9 8.3 10.8 91.6 94.4 94.3 88.4 86.3 3.2 1.9 2.2 1.9 2.5
Worm 90.9 92.4 91.2 n/a 0 23.0 20.3 21.3 n/a 32.8 87.1 90.3 90.0 n/a 69.2 1.9 1.5 1.6 n/a 1.8

Average 82.5 83.8 84.2 68.4 53.8 12.0 9.7 9.8 14.2 15.5 81.7 84.0 84.4 80.2 74.8 2.9 2.6 2.5 2.7 2.8
Median 88.7 88.9 89.6 82.4 64.6 8.1 7.0 7.6 7.9 13.3 88.7 90.9 90.5 83.7 78.4 1.6 1.5 1.5 1.5 1.8

Table 1. Quantitative evaluation on the SegTrack v2 dataset, [29]a is UES+SWA, and [29]b is UES+GBH. For the 3D under-segmentation
metric, the lower the error the better. For all the other metrics, the higher the score, the better. Best values are shown in bold. For the
variants of our methods, the letters stand for the optimization method used, and +/- indicates the use of motion feature. All of the reported
variants were based on 300 initial superpixels per frame at a 1/4 sub-volume processing mode. This table shows that our method’s averages
outperformed [29] in all 4 metrics, while our medians came out on top in 3. The n/a entry indicates that the method failed to converge to a
result, the cases here were due to memory overload.

Chen Xiph.org
3D Accuracy (AC) 3D Under-segmentation Error (UE) 3D Boundary Recall (BR) 3D Boundary Precision (BP)

Video MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b MLE+ NLS- NLS+ [29]a [29]b
Bus 61.7 68.2 69.3 55.5 8.1 37.6 6.8 37.0 33.2 656 73.8 80.7 74.6 84.5 29.1 41.5 38.4 39.2 35.5 55.5

Container 82.2 89.8 90.2 89.2 77.3 11.6 3.6 7.5 1.8 4.5 58.6 71.8 69.4 64.7 51.5 14.9 8.3 14.9 9.9 11.6
Garden 82.7 83.8 83.3 83.8 63.1 1.8 1.9 1.8 1.6 3.3 69.9 73.6 70.6 76.1 40.0 13.9 13.4 13.9 12.1 25.3

Ice 89.6 87.6 87.5 79.4 46.6 29.3 26.0 27.1 16.6 69.1 83.3 84.3 83.0 80.6 50.3 33.8 31.4 32.4 36.1 43.8
Paris 49.5 52.0 50.9 47.6 2.0 14.7 12.4 14.3 19.2 40.2 46.4 53.0 50.8 44.8 34.1 4.7 4.4 4.6 3.8 5.3

Salesman 71.1 82.2 72.5 64.6 0 4.0 4.4 4.1 3.4 12.7 38.0 51.0 38.0 40.0 1.0 6.4 7.1 6.6 5.7 0.7
Soccer 72.9 79.4 78.3 70.9 26.4 46.6 32.7 34.0 17.0 145 73.3 76.1 74.9 75.2 58.8 16.7 14.4 16.3 16.3 29.2
Stefan 74.5 84.3 85.4 65.5 64.3 8.2 6.6 6.3 19.0 13.4 62.7 82.2 81.0 72.1 63.9 12.7 11.1 11.5 13.2 13.4

Avgerage 73.0 78.4 77.2 69.6 36.0 19.2 11.8 16.5 14.0 107 63.2 71.6 67.8 67.2 41.1 18.1 16.1 17.4 16.6 23.1
Median 73.7 83.0 80.1 68,2 36.5 13.2 6.7 10.9 16.8 26.8 66.3 74.8 72.6 73.7 45.2 14.4 12.3 14.4 12.7 19.4

Table 2. Quantitative evaluation on the Chen Xiph.org dataset. All of the settings are exactly the same as Table 1. For this dataset, both our
average and median values outperformed [29] in 3 out of 4 metrics.

and 100 other randomly selected superpixels T , and com-
pute the difference ∆i = |si − Ti|p, at all histogram bins
i. Then, we compute the Wilcoxon rank sum test between
the difference values ∆i and ∆j of all possible pairs of in-
dices, i 6= j. We set the confidence level at 0.05, and re-
sample s and T 500 times per video, for all 5 features. As
a result, we found that over 98% of the feature differences
for all 5 features for both video datasets are non-identically
distributed. This procedure is repeated for testing whether
the feature differences are correlated, the second required
assumption for satisfying the Weibull distribution property
of Lp-norm based distance statistics. In this case we used
Pearson’s correlation, and we again found that over 98%

of all feature differences for all 5 features are significantly
correlated. This is not surprising as [1] showed that even
for hand-designed-features such as SIFT, SPIN, and GLOH
over 85% of the feature differences satisfy both conditions.

3.2. Quantitative evaluations

In the following, we compare our methods with the state-
of-the-art related method on two datasets, and discuss the
effects of the motion feature, number of superpixels ex-
tracted in pre-processing, sub-volume processing, the per-
centile parameter τ , and provide run time analysis.

Method Comparisons. Table 1 and 2 shows our quan-
titative results using the metrics proposed by [28] and com-



Figure 4. The plots that show the effects of varying different conditions (initial number of superpixels, size of the sub-volume processing,
and with or without motion), for Segtrack V2 dataset: +/-M means with or without motion feature, vol stands for the sub-volume’s size as
a portion of the original video. These plots suggest that there is no clear indication of the benefit in using the motion feature (dotted lines)
within the PGP framework, and that sub-volume processing performs approximately the same as processing the full volume.

Figure 5. The plots show the effects of varying different conditions for Chen’s dataset. Sub-volume processing seems to slightly outperform
full video mode, and better performance tends to be associated with the exclusion of motion feature.

pared to the Uniform Entropy Slice (UES) method [29].
Like our method, UES also aims to produce just one single
segmentation output, by automatically selecting and com-
bining the appropriate supervoxels from the multiple lay-
ers of segmentations using SWA [7] or GBH [10]. We test
several variants of our method: MLE+ for MLE optimized
results, NLS+ and NLS- for optimization done using NLS,
where +/- refers to the inclusion of motion feature or not,
respectively. Due to space constraints, we report only one
variant of MLE, since in our experiments MLE performed
slightly but consistently worse than NLS optimization. The
table shows that all the variants of our method outperform
considerably both UES variants in all categories other than
3D BP in Chen’s dataset. Their higher 3D BP is likely due
to the significant overall under-segmentation of UES-GBH
which heavily raises precision values.

Motion feature. When the motion feature is used, our
algorithm uses the optical flow vectors for a more refined
search of the temporal neighbors. Similar to the other fea-
tures, we model a WMM over the similarity distance statis-
tics based on motion feature histograms, and find the crit-
ical point γ that indicates the point of dissimilarity, which
defines the inter-cluster values. In particular, motion feature
similarity is considered only by spatial neighbors. The tem-
poral neighbors just use motion vectors to specify the loca-
tion of the search window. If the motion feature is not used,
we search for temporal neighbors within a pre-defined win-

dow. We extract the motion feature using [22], but any opti-
cal flow extraction algorithm can be used. As both tables 1
and 2, and Figures 4 and 5 show, the results of using motion
features within our framework are mixed, as motion seems
to have improved the results for the SegTrack v2 dataset but
not for Chen’s dataset. Furthermore, not using motion low-
ers run time because optical flow extraction methods can be
time consuming. Furthermore, Figure 6 shows that exam-
ple results with (2nd row) and without (3rd row) motion are
qualitatively similar.

Initial superpixel resolution. While our method pro-
duces a single segmentation result, the effects of varying
the initial superpixel resolution are worth investigating. We
evaluate our method with 100, 200, 300, and 400 initial
superpixels per frame. Figures 4 and 5 show that a low
number of superpixels tends to cause under-segmented
results, most likely because the initial segmentation is less
precise. The plots in Figures 4 and 5 also indicate that, after
a point, increasing the superpixel resolution does not further
improve results. Our method is robust to different initial
superpixel resolutions as long as the number of superpixels
is enough to produce a good initial over-segmentation (i.e.
300 per frame for the tested datasets). Figure 6 shows
examples of the results that started with 300 (2nd and 3rd
row) and 100 (4th row, somewhat under-segmented result)
initial superpixels per frame.



Sub-volume processing. So far, we have been describ-
ing how our method processes the edge weights from the
entire video. However, it can also be used to fit WMMs over
sub-volumes and find the ‘local critical values’ that best de-
scribe the feature similarities at certain shots. The stream-
ing GBH method [30] processes videos in chunks for effi-
ciency, but loses information when optimizing only a group
of frames at a time. In contrast, our PGP framework ben-
efits from making the right divisions into sub-volumes for
the WMM to optimize locally, as the feature similarities are
more specific within a shot boundary. An example would
be a change in activity: a triathlete is bike riding for the first
10 seconds of the video, followed by the swimming part
of the contest for the next 10 seconds. Optimizing the en-
tire video would effectively scramble the similarity distance
values from both shots and result in a γ that is non-specific.
However, if the video is processed at the two shots sepa-
rately, the PGP method would obtain more specific, shot-
appropriate γ’s. Figures 4 and 5 show that optimizing at
the entire video (vol = 1) is not always optimal, and better
performance is achived when sub-dividing the volume for
processing. Although we used a fixed set of subdivisions:
1, 1/4, and 1/8, processing smaller, appropriate sub-volumes
is still beneficial. This would also allow for parallel video
processing, where the sub-volumes can be optimized sepa-
rately without performance cost.

Method parameter τ . Our proposed PGP video seg-
mentation method has only one parameter value τ , used
when a single Weibull model is selected by the model selec-
tion, to obtain the critical value γ at the τ percentile of the
fitted Weibull. We have observed that the two-component
WMM were selected by AIC in the vast majority of the
cases; hence the selection of τ has a minimal effect on the
overall accuracy. Indeed we varied τ from 0.5 to 0.9 and the
resulting accuracies did not vary more than 1%. We have
uniformly set τ at 0.6 throughout the presented evaluations.

Run time analysis. We conducted our experiments on
a Xeon X3470 at 2.93Ghz with 32 Gb of memory. All ex-
periments used a single core. Superpixels take roughly 1
second per frame, and our method on average takes about
170 seconds for an 85-frame video after superpixel extrac-
tion for the results of Table 2. This is more than 20 times
faster than [29]’s processing time of around 4000 seconds;
our combined end-to-end run time of 250 seconds on aver-
age is again 20 times faster than the total run time of 4700
- 6600 seconds of [29], which include the expensive GBH
and SWA methods. Furthermore, our run time is on par
with the leading streaming video segmentation method [30]
although our current implementation is offline and not opti-
mized for parallel processing.

Figure 6. Example outputs for video BMX from SegTrack v2.
From left to right: frame 1, 10, 20, and 30; Top to bottom: orig-
inal frame, our results of 300 superpixels with motion (NLS+M
in Table 1, 300 superixels without motion (NLS-M), and 100 su-
perpixels without motion. Additional results can be found in the
supplementary material.

4. Conclusion
We have proposed a fast and robust video segmenta-

tion method under PGP, a novel parametric graph parti-
tioning framework. Our framework groups superpixels by
modeling two-component mixtures of Weibull distributions
over the edge weights, that permit low computational cost
and robust inference on the parametric model (theoreti-
cally known to be the underlying structure of the Lp-norm
based similarity distance statistics). We conducted exten-
sive quantitative evaluations on the recently proposed Seg-
Track v2 and the well-known Chen Xiph.org dataset, and
shown that our method significantly outperforms the re-
lated state-of-the-art method in most 3D metrics. We have
also shown that our run time is on par with the state-of-
the-art streaming methods, with the potential of paralleliz-
ing the bulk of the processing. Our framework is versa-
tile and can be further improved with our sub-volume pro-
cessing scheme. As a next step, we plan to investigate the
application of shot-boundary techniques to explore the op-
timal sub-volume division that would further improve our
method’s performance.
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