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Abstract

Recent shadow detection algorithms have shown ini-
tial success on small datasets of images from specific do-
mains. However, shadow detection on broader image do-
mains is still challenging due to the lack of annotated train-
ing data. This is due to the intense manual labor in an-
notating shadow data. In this paper we propose “lazy an-
notation”, an efficient annotation method where an anno-
tator only needs to mark the important shadow areas and
some non-shadow areas. This yields data with noisy la-
bels that are not yet useful for training a shadow detector.
We address the problem of label noise by jointly learning
a shadow region classifier and recovering the labels in the
training set. We consider the training labels as unknowns
and formulate the label recovery problem as the minimiza-
tion of the sum of squared leave-one-out errors of a Least
Squares SVM, which can be efficiently optimized. Exper-
imental results show that a classifier trained with recov-
ered labels achieves comparable performance to a classi-
fier trained on the properly annotated data. These results
suggest a feasible approach to address the task of detecting
shadows in an unfamiliar domain: collecting and lazily an-
notating some images from the new domain for training. As
will be demonstrated, this approach outperforms methods
that rely on precisely annotated but less relevant datasets.
Initial results suggest more general applicability.

1. Introduction
The problem of single image shadow detection has been

widely studied. Early work such as the illumination invari-
ant approaches [5, 6] are based on physical modeling of the
illumination and shadowing phenomena [20, 21]. These
physics-based methods only work well with high quality
images. In contrast, statistical learning approaches (e.g.,
[9, 15, 23, 29, 31]) have shown significant success in detect-
ing shadows in consumer-grade photos and web quality im-
ages. The performance of these methods, however, depend
on the quality and quantity of training images. Guo et al.
[9], Zhu et al. [31] were the firsts to collect sizable datasets
of images with annotated shadows, which are referred to as

the UCF and UIUC datasets respectively. These two pub-
licly available datasets have been used to develop several
shadow detection methods [13, 14, 17, 28, 29], and stag-
gering progress has been made in the past few years. How-
ever, these two datasets are small, and the methods trained
on them do not generalize well to new domains (e.g., see
[10] for poor cross-dataset performance analysis). Unfor-
tunately, there is no larger and publicly available shadow
datasets; this is perhaps due to the huge effort required to
properly annotate shadows in images.

In this paper we propose “lazy annotation”, a method
that allows a human annotator to quickly label images to
create shadow datasets. The annotator needs to focus only
on the most relevant shadows in an image and draw several
strokes on the perceived important shadow and non-shadow
areas of the image. We process the input strokes to segment
shadow areas based on image features using the geodesic
convexity image segmentation [8]. Figure 1 shows an ex-
ample of this process, from the annotator’s strokes to the
generated binary shadow mask.

With lazy annotation, it is possible to quickly collect
shadow annotation. The annotation, however, is imper-
fect. Due to the nature of the task, some shadow areas
may be ignored, or imperfectly segmented, as shown in Fig-
ure 1.The resulting annotated data presents noticeable class
label noise; we refer to shadow and non-shadow regions as
positive and negative classes respectively. Label noise is
asymmetric. The negative class contains “dirty negatives”,
corresponding to missed shadows, or poorly segmented re-
gions that contain both shadow and non-shadow pixels. The
positive class is significantly cleaner and more reliable, be-
cause the annotator is asked to label some shadows, so the
shadow regions obtained are generally well segmented.

The presence of label noise in training data has huge im-
pact on the performance of classifiers trained on the data
(e.g., see [7, 32]). To address the problem of noisy labels,
we propose to jointly learn a shadow region classifier and
recover the labels in the training set. Our objective is to re-
duce the level of label noise in the training set so as to min-
imize the generalization error of the learned classifier. Our
framework is based on Least-Squares Support Vector Ma-
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(a) Annotator’s strokes (b) Segmented shadows (c) Binary shadow mask

Figure 1. Lazy annotation pipeline for efficient labeling of shadow images. a) An annotator is asked to draw some strokes on some (not
all) shadow areas (white strokes) and non-shadow ares (red strokes). b) Automatically segmented shadow regions. c) Obtained shadow
mask, mostly good with a few exceptions where some shadow regions are mis-labeled as non-shadow. Subsequently, the noisy labels are
corrected using the label recovery method proposed in this paper.

chines (LSSVM). LSSVM has a closed-form solution, and
the leave-one-out error of LSSVM is a linear function of the
training labels. To jointly learn the classifier and recover the
labels, we consider the training labels as unknowns and for-
mulate the problem as the minimization of the leave-one-
out error. This leads to a binary quadratic programming
problem where we can constrain the fraction of originally
labeled positive and negative instances that are flipped.

To validate our approach, we “lazily annotated” the
UIUC and UCF training sets. Experimental results show
that a classifier trained with recovered labels achieved com-
parable performance to a classifier trained on the original,
properly annotated datasets. Our label recovery method im-
proves the accuracy of classifiers trained on “lazy” labels by
10% and 3%, in the UIUC and UCF datasets respectively.
We show experimentally that label recovery is robust up to
significant levels of label noise in the training set.

We also present here a new test set with carefully anno-
tated shadow labels. We collected images from a wide va-
riety of scene types, some of which, such as snow or beach,
significantly differ from UCF and UIUC contents. As ex-
pected, cross dataset performance of models trained in UCF
or UIUC is reduced in comparison to their respective test
sets. We also collected a new training set that had some
(but not all) similar scenes to the test set and obtained lazy
labels for it. Experimental results show that the classifier
trained on the lazily annotated set performs better than the
models trained on UCF and UIUC datasets with more accu-
rate labels. Using the recovered lazy labels further boosts
the classifier performance by an extra 3.3%. We show some
initial promising results that suggest that our method gener-
alizes to other domains that suffer from label noise.

In summary, we make the following contributions:
1) Propose a new method for fast collection of reasonably
good shadow annotations.
2) Propose a new framework that jointly recovers the true
labels of imperfect annotations and learns a classifier.

3) Demonstrate that efficiently labeling a new training
dataset is better than using models trained on accurately la-
beled datasets with different scene characteristics.

2. Previous Work

2.1. Annotated shadow datasets

Annotated shadow datasets fostered work on shadow de-
tection. However, there are only a few shadow datasets
due to the cumbersome nature of the annotation process.
Shadow annotation is painstaking: the human annotator has
to first identify all the shadows in the image, and then prop-
erly delineate each shadow contour. It takes much time and
attention for the many mouse clicks to create a polyline for
each shadow. Free drawing to trace a shadow contour also
takes considerable effort.

Guo et al. [9] generated a shadow annotation mask by
taking two photographs of the same scene: a photo is taken
with an occluder blocking the light source and casting a
shadow in the scene, then a photo is taken when the oc-
cluder is removed. The shadow mask is generated by com-
paring the two images. Alternatively, they take a second
photo blocking the direct light source. The first approach
is only applicable when the occluder is out of view and re-
movable, whereas the second approach is limited to indoor
environments with sufficient ambient light. Physically set-
ting up the scene and taking the two shots is cumbersome,
and this approach is not applicable to many scenes.

Existing publicly available shadow datasets are small,
and the methods trained on them do not perform well on
other datasets. Guo et al. [9, 10] report the cross-dataset
performance of their model for UIUC and UCF datasets.
The results are alarming but not surprising: a model trained
on UCF training set performs well on the UCF test set, but
not on the UIUC test set (90.2% versus 81.5% accuracy),
and a model for UIUC dataset has much less accuracy when
tested on the UCF test set (10.7% reduction in accuracy).



2.2. Noisy label recovery

The presence of label noise lowers the performance of
classification tasks [7, 32]. Recent methods that address the
problem of label noise in the data [2, 19, 24, 25] aim to
be robust to noisy labels, and focus on asymptotic behav-
ior with unlimited training data. In contrast, as the training
data is very limited for the shadow detection problem, we
aim to make effective use of noisy labels. Furthermore, our
method obviates the need of assumptions on the nature of
the noise such as constant[24], class-dependent with fixed
probablity [2], limited noise ratios[19].

2.3. Review of Least Squares SVM

Our framework for recovering noisy annotation and
training a classifier is based on Least-Squares Support Vec-
tor Machines (LSSVM) [26], which is also known as ridge
regression [22]. LSSVM has a closed-form solution, which
is a computational advantage over SVM. Furthermore, once
the LSSVM solution has been computed, the solution for
a reduced training set, obtained by removing any training
data point, can be found efficiently. This enables reusing
training data for further calibration, e.g., [11, 12, 29, 30].
This also enables using the training data for correcting the
noisy labels, as proposed in Section 4. This section reviews
LSSVM and the leave-one-out formula.

Given a training set of n data points {xi}ni=1
∗ and as-

sociated labels {yi|yi ∈ {0, 1}}ni=1, LSSVM optimizes the
following:

minimize
w,b

λ||w||2 +

n∑
i=1

si(w
Txi + b− yi)2. (1)

Here si is the instance weight, allowing the assignment
of different weights to different training instances. Let
X = [X;1T

n ],w = [w, b], Ī = [In×n,0n;0T
n , 0]. Eq. (1)

is equivalent to:

minimize
w

λwT Īw +

n∑
i=1

si(w
Txi − yi)2. (2)

This is an unconstrained convex quadratic problem, and the
optimal solution is attained where the gradient is zero. The
gradient of Eq. (2) with respect to w is:

2λIw +

n∑
i=1

2si(w
Txi − yi)xi (3)

=2(Xdiag(s)X
T

+ λI)w − 2Xdiag(s)y (4)

∗Bold uppercase letters denote matrices (e.g. K), bold lowercase letters
denote column vectors (e.g. k). ki represents the ith column of the matrix
K. kij denotes the scalar in the row jth and column ith of the matrix K
and the jth element of the column vector ki. Non-bold letters represent
scalar variables. 1n ∈ <n×1 is a column vector of ones, and 0n ∈ <n×1

is a column vector of zeros.

Let C = (Xdiag(s)X
T

+λĪ) and d = Xdiag(s)y, the op-
timal solution can be found by setting the gradient to zero,
leading to the close-form solution: w = C−1d.

Now, suppose we remove the training instance xi, let
C(i),d(i),w(i) be the corresponding values for removing
xi. We have: w(i) = C−1(i)d(i), where C(i) = C− si.xix

T
i

and d(i) = d − yisixi. Using the Sherman–Morrison for-
mula, we have:

C−1(i) = (C− si.xix
T
i )−1 = C−1 +

C−1sixix
T
i C
−1

1− sixT
i C
−1xi

.

Substituting the above equation to w(i) = C−1(i)d(i) and de-
veloping the derivation, we get:

w(i) = w + si(C
−1xi)

−yi + xT
i w

1− sixT
i C
−1xi

. (5)

Therefore, the LOO error is:

wT
(i)xi − yi = wTxi − yi + six

T
i C
−1xi

−yi + xT
i w

1− sixT
i C
−1xi

=
wTxi − yi

1− sixT
i C
−1xi

(6)

In summary, let M = C−1X and H = MTX, then:

The weight vector : w = Mdiag(s)y (7)

LOO weight vector: w(i) = w +
(wTxi − yi)si

1− sihii
mi (8)

LOO error = wT
(i)xi − yi =

wTxi − yi
1− sihii

(9)

3. Lazy Annotation
Our objective is to obtain ground truth shadow annota-

tion with minimal effort and time. Generating good annota-
tion typically requires manually segmenting all the shadows
in an image. This task is a painstaking process with a heavy
burden on the annotator. We simplify the annotation task
by redefining its goal. Rather than aiming to segment all
shadows, we instruct the annotator to focus on at least one
shadow area of the image. This typically corresponds to
the most prominent shadow area. We use a semi-automatic
shadow segmentation scheme requiring minimal annotator
input. The annotator only has to draw a few strokes on
shadow areas and a few additional strokes on non shadow
areas. The annotator strokes are processed with the seg-
mentation method of Gulshan et al. [8] to generate a binary
mask.

3.1. Lazy annotation pipeline

We illustrate our lazy annotation pipeline with an exam-
ple image in Figure 2. First, the annotator is instructed to



(a) Input image (b) Adding shadow strokes

(c) Adding non shadow strokes (d) Initial shadow segmentation

(e) Refined shadow segmentation (f) Output binary mask

Figure 2. Lazy annotation pipeline. a) Input image. b) Annota-
tor’s shadow strokes in white. c) Annotator’s non shadow strokes
in red. d) Initial shadow segmentation in green (outer side) and red
(inner side). e) Refined shadow segmentation with a final shadow
stroke in the lower center of the image. f) Resulting binary mask.

draw a few strokes (2-3) on areas of the image she con-
siders relevant shadows, see Figure 2.b. Then, the anno-
tator draws a few strokes (2-3) on non shadow areas sur-
rounding the shadow, see Figure 2.c. After that, a shadow
segmentation based on the strokes is presented to the an-
notator, see Figure 2.d. Then, the annotator is able to add
a few additional strokes to refine the shadow segmentation
interactively. In Figure 2.e, the additional shadow stroke on
the concrete ground grows the shadow region and even seg-
ments an extra shadow on the brick wall. The shadow mask
resulting from the user annotation is depicted in Figure 2.f.

3.2. Annotation tool

We interactively segment the images using the method of
Gulshan et al. [8]. The method combines geodesic star con-
vexity shape constraints with the Boykov-Jolly [3] energy
formulation for image segmentation based on user strokes
denoting foreground and background. In our case, shad-
ows correspond to foreground. We modify the publicly
available tool [8] to render a more streamlined user inter-
face tailored for our task. Mouse interaction is only re-
quired for brush strokes. The remainder of the interface is
commanded by keystrokes: Switching brush type (shadow
or non shadow stroke), advancing to refinement interactive
stage, and signaling completion. Furthermore, a batch of

images is loaded consecutively one after the next. With this
tool, an annotator is typically able to label an average of 3
images a minute.

3.3. Postprocessing

In this work, we frame shadow detection as a region clas-
sification problem. Hence, we need to generate region la-
bels from the binary mask resulting from the lazy anno-
tation. We followed the region segmentation process pre-
sented by Vicente et al. [28] for shadow detection. First, we
oversegment the image into SLIC [1] superpixels (see Fig-
ure 3.a). Then, we apply Mean-shift clustering in Lab space
and merge connected superpixels in the same cluster into a
larger region, see Figure 3.b.

(a) SLIC superpixels (b) Merged regions

(c) Region over mask (d) Final region ground truth

Figure 3. From lazy shadow mask to region labels. a) Initial
SLIC superpixels. b) Regions obtained by merging superpixels. c)
Lazy mask overlaid on regions. d) Final region ground-truth.

We overlay the binary mask on the segmented regions
(Figure 3.c). If a region contains a majority of shadow pix-
els it is labeled positive, otherwise it is labeled negative.
Overall, the proposed annotation approach is able to gen-
erate reasonably good region labels. Regions labeled as
shadows are generally reliable whereas negatively labeled
regions may contain missed shadows. For example in Fig-
ure 3, a few small shadow regions on the brick wall in the
top left corner of the image are labeled non shadow.

4. Noisy Label Recovery
We pose noisy label recovery as an optimization problem

where the labels of some training examples can be flipped
to minimize the sum of squared leave-one-out errors. Our
formulation exploits the fact that the leave-out-out error of
LSSVM (Sec. 2.3) is a linear function of the labels.

4.1. Formulation

Reconsider the formula for the leave-one-out error given
in Eq. (9), substituting the formula for w given in Eq. (7),



the leave-one-out error is:

wT
(i)xi − yi =

xT
i Mdiag(s)y − yi

1− sihii
(10)

Let P = diag(s)H and recall H = MTX (Section 2.3).
The leave-one-out error can be shown to be:

wT
(i)xi − yi =

pT
i y − yi
1− pii

(11)

Let ei be the ith column of the identity matrix of size n, and
let ai = pi−ei

1−pii
, the leave-one-out error becomes: .

wT
(i)xi − yi =

pT
i y − yi
1− pii

= aTi y. (12)

Because the vector ai only depends on the data, the leave-
one-out error is a linear function of the label vector y.

Let P,N be the indexes of (noisy) positive and negative
training instances respectively, i.e., P = {i|yi = 1} and
N = {i|yi = 0}. Our noisy label recovery minimizes the
sum of squared leave-one-out errors:

minimize
y

n∑
i=1

(aTi y)2 (13)

s.t.
∑
i∈P

yi ≥ α|P|, (14)∑
i∈N

yi ≤ (1− β)|N |, (15)

yi ∈ {0, 1}. (16)

In the above |P|, |N | are the original number of positive and
negative training instances respectively, and α, β are param-
eters of the formulation (0 ≤ α, β ≤ 1). Constraint (14) re-
quires the proportion of original positive training instances
that remain positive must be greater than or equal α. If
α = 1 none of the positive instances can become negative.
Similarly, Constraint (14) limits the proportion of flipped
negative data points to be at most 1− β.

4.2. Optimization

The optimization problem in Eq. (13) is a quadratic pro-
gram with linear constraints and binary variables, that can
be optimized in two steps. First, we relax the binary con-
straints to find a relaxed solution for y where the entries
are between 0 and 1 instead of being either 0 or 1. Second,
starting from the relaxed solution, we perform block coor-
dinate descent to find an optimal binary solution. In fact,
even though the first step is a quadratic program with linear
constraints, we also optimize it by block coordinate descent,
as this is more efficient than solving the entire problem at
once.

For the optimization problem in either Step 1 or Step 2
(with and without binary constraints), block coordinate de-
scent works as follows. We run the optimization with multi-
ple epochs, each epoch is a complete pass through all train-
ing data. For each epoch, we randomly divide the training
data into multiple batches of a desired batch size. Consider-
ing each batch in turn, we optimize a sub problem that is ob-
tained by fixing all the variables not in the batch. Once we
have visited all batches, we recalculate the objective value
and compare it with the objective obtained from the last
epoch. If the objective value is not significantly reduced,
we terminate the optimization procedure.

Block coordinate descent is guaranteed to converge, be-
cause each step of the optimization does not increase the
objective value. The optimization problem in Step 1 is con-
vex, and so block coordinate descent will converge to the
global solution. The optimization problem in Step 2 is not
convex, but the initial starting position is relatively good so
it will likely converge to a reasonable solution.

5. Experiments and Results
We conducted experiments on the UCF [31] and the

UIUC [9] datasets. We also compiled a new dataset from
publicly available images, which will we refer to as the
SBU dataset. About half of the images come from the
Microsoft COCO [18] dataset, and the other half from the
Web. The SBU dataset consists of 210 images depicting a
wide variety of scenes such as: urban, roads, beach, snowy,
horses, planes, people playing tennis, parks. We created
a dataset for testing cross-dataset performance for multiple
scene types. We split the dataset evenly into training and
testing sets. The training set is labeled using the proposed
lazy annotation approach, whereas the test set is carefully
annotated. The dataset is available at http://www3.cs.
stonybrook.edu/˜cvl/dataset.html.

On all of our experiments, the region classifier is a Least
Squares SVM with a linear kernel. We use texture, color
and intensity features. For each region, we compute a tex-
ton histogram (using full MR8 filters [27]), and a histogram
on each component of the CIELAB color space. We mea-
sure the performance of the classification task in terms of
Average Precision (AP). Since each data point corresponds
to a region, we weight each region by its area in pixels to
approximate pixel AP.

5.1. Shadow detection on a new domain

To study shadow detection on a new domain, we train
a shadow region classifier on the UCF and UIUC training
sets. Notice that these sets contain carefully annotated la-
bels. We then test the classifier on the newly collected SBU
test set. In Table 1, we present the testing performance mea-
sured by AP. The model trained on UIUC achieves a modest
55.1% AP. The model trained on UCF improves to 68.8%.

http://www3.cs.stonybrook.edu/~cvl/dataset.html
http://www3.cs.stonybrook.edu/~cvl/dataset.html


This is expected as the training set of UCF is larger (120
images versus 32) and more diverse than UIUC’s.

Train data Test data AP

UIUC SBU 55.1
UCF SBU 68.8
SBU-Lazy SBU 77.5
SBU-Recovered SBU 80.1

Table 1. Average precision on the SBU test set. Different training
data and annotations are experimented with.

Shadow detection on this new domain of images is chal-
lenging for models trained on existing datasets. However,
a model trained on lazy labels from images of a similar
domain, achieves AP of 77.5%, which is higher than the
APs obtained by models trained on the UCF and UIUC
datasets. Furthermore, if we apply the proposed label recov-
ery method, and train with recovered labels, performance
increases to 80.1%. Qualitative results shown in Figure 5.

Figure 4 shows some examples of recovered labels. Ini-
tial shadow masks from lazy annotation are overlaid in blue.
They correspond to the main image shadows. Recovered
shadow regions are shown with yellow contours. These
shadows were missed by the annotator. Missed shadows are
often less prominent, e.g., the shadow of the smaller brown
column in the top right corner of the top-row image.

(a) Input image (b) Lazy anno. (c) Recovered anno.

Figure 4. Example of label recovery. a) Input image b) Lazy
annotation shadow mask overlaid in blue, outer contour in green,
inner contour in red. c) Recovered regions with flipped shadow
label are shown with yellow contours.

5.2. Noisy labels and benefits of label recovery

For the set of controlled experiments that follow, we re-
labeled the UCF and UIUC training sets using lazy anno-
tation. We train a classifier using the lazy labels and mea-
sure classification performance in the respective test sets.
Table 2 shows the classification performance in terms of
AP. For UIUC, the performance of the model trained on
lazy labels deteriorates by 10% compared to training with
the original labels (79.5% vs 88.5%). However, the model
trained on recovered lazy labels achieves comparable AP of
87.2%. Qualitive results shown in Figure 6. For UCF, train-

ing with lazy labels is slightly worse than training with orig-
inal labels, 73.5% versus 74.5%. Interestingly, label recov-
ery improves the classification performance to 75.6%, out-
performing the model trained on the original labels. These
experiments suggest that we can achieve similar results with
recovered lazy labels as with carefully annotated labels, at
a small fraction of the annotation effort.

Train data Test data AP

UIUC-Original UIUC 88.5
UIUC-Lazy UIUC 79.5
UIUC-Recovered UIUC 87.2

UCF-Original UCF 74.5
UCF-Lazy UCF 73.5
UCF-Recovered UCF 75.6

Table 2. Classification performance on UIUC and UCF test
sets. Comparison of AP achieved by the region classifier trained
with original carefully annotated labels (Original), lazily anno-
tated labels (Lazy), and recovered lazy labels (Recovered).

5.3. Analysis of label noise

It is well established that label noise degrades classifi-
cation performance. To gain more insight on the effects of
label noise in the shadow detection task we perform a se-
ries of controlled experiments and deliberately corrupt the
labels of the training data of UIUC and UCF. We train the
classifier with different levels of label noise and then test
the resulting models. Hereafter, we refer to shadow labels
as positives and non shadow labels as negatives.

We first focus on corrupted positive labels. We randomly
flip negative training samples to positive thus polluting the
positive label class (dirty positives). In these experiments,
we fix the ratio of dirty negatives and then increasingly pol-
lute the positive class. We measure the classification perfor-
mance for: (i) A completely clean negative class, (ii) a class
with 10% dirty negatives and (iii) a class with 20% dirty
negatives. In each of the 3 experiments, we progressively
increase the level of label noise for the positive class (“dirty
positives”). Results are in Figure 7. We then perform the
same analysis for noise in the negative labels, with a set of
3 symmetric experiments where the positive and negative
sets are reversed. Results are in Figure 8.

The classifier performance is more sensitive to the
amount of dirty negatives than dirty positives. This is due
to the smaller size of the positive class, so the effect of er-
roneously flipping positives is more pronounced. We ob-
serve that the effect of dirty negatives is more pronounced in
the UIUC dataset. This explains why performance dropped
so much when using “lazy” annotation and had a large im-
provement after label recovery.

In Figure 9, we show the performance of our label re-
covery approach as the levels of dirty positives and dirty



(a) Input image (b) Ground truth (c) UCF detection (d) Lazy Recovered detection

Figure 5. Shadow detection on a new domain. Qualitative comparison of detection results for a model trained on UCF with good labels
and a model trained on SBU training set with lazy labels that have been recovered. a) Input image. b) Ground truth mask. c) Detection
results from classifier trained on UCF overlaid in yellow. d) Detection results from classifier trained with lazy recovered labels overlaid in
yellow.

(a) Input image (b) Ground truth (c) Lazy detection (d) Lazy Recovered detection

Figure 6. Shadow detection comparison between models trained with lazy labels and recovered labels on UIUC. a) Input image. b)
Provided manual shadow mask. c) Detection results from model trained on lazy labels overlaid in yellow. d) Detection results from model
trained on recovered lazy labels overlaid in yellow.



Figure 7. Effects of positive pollution. Classification perfor-
mance at fixed levels of negative noise. Curves show the perfor-
mance as a function of the proportion of dirty positives, at a fixed
level of dirty negatives, either 0%, 10%, or 20%.

negatives vary. The subfigure on the left shows the results
of label recovery for increasingly higher levels of positive
noise (at fixed 10% negative label noise). The label recov-
ery method improves classification performance when there
is up to 30% of positive label noise. Similarly, the right
plot shows the results of our label recovery for increasingly
higher levels of negative noise (at fixed 10% positive label
noise). The label recovery method improves classification
performance when the level of noise in negative labels is
50% or less. In both cases label recovery is robust up to
significant levels of label noise in the training set.

Figure 8. Effects of negative pollution. Classification perfor-
mance at fixed levels of positive noise. Curves show the classifica-
tion performance as a function of the proportion of dirty negatives,
at a fixed level of dirty positives, either 0%, 10%, or 20%.

Figure 9. Label recovery on polluted labels. Left: Classification
performance at fixed 10% of dirty negatives and increasing levels
of positive pollution (x-axis). The dash black line is performance
without label recovery. The solid red line shows the performance
of label recovery. The label recovery improves the performance
when the level of positive noise is 30% or less. Right: Symmetric
analysis as the left subfigure. Classification performance at fixed
10% of dirty positives. The label recovery improves the perfor-
mance when the level of negative noise is 50% or less.

5.4. Comparison to other noise-tolerant methods

We implemented the noise-tolerant C-SVM method
[19]. On the noisy UIUC and UCF datasets, it achieved

an average precision of 81.5 and 74.3, respectively. These
are significantly worse than results of our method (87.2 and
75.6 respectively). We also tested our method for noisy la-
bels on the UCI datasets used in [19], and found that it is
effective in leveraging noisy labels, as reported in Table 3,
suggesting a more general applicability of our method.

Data ρ+ ρ− llog[19] svm[19] [16] [4] [24] Ours
.2 .2 70.1 67.9 69.3 64.9 69.4 74.5

Brea. .3 .1 70.1 67.8 67.8 65.7 66.3 74.0
.4 .4 67.8 67.8 67.1 56.5 54.2 72.3
.2 .2 76.0 66.4 69.5 73.2 75.0 76.8

Diab. .3 .1 75.5 66.4 65.9 74.7 67.7 75.1
.4 .4 65.9 65.9 65.4 71.1 62.8 67.3
.2 .2 87.8 94.3 96.2 78.5 84.0 93.8

Thyr. .3 .1 80.3 92.5 86.9 87.8 83.1 95.6
.4 .4 83.1 66.3 71.0 86.0 58.0 88.9
.2 .2 71.8 68.4 63.8 67.8 62.8 75.8

Germ. .3 .1 71.4 68.4 67.8 67.8 67.4 77.7
.4 .4 67.2 68.4 67.8 54.8 59.8 72.6
.2 .2 83.0 61.5 69.6 83.0 72.9 80.7

Heart .3 .1 84.4 57.0 62.2 81.5 79.3 79.7
.4 .4 57.0 54.8 53.3 52.6 68.2 70.3
.2 .2 82.5 92.0 92.9 77.8 65.3 91.3

Image .3 .1 82.6 89.3 89.6 79.4 70.7 83.9
.4 .4 63.5 63.5 73.2 69.6 64.7 81.9

Table 3. Classification accuracy of our method and several oth-
ers on noisy UCI datasets. ρ+, ρ− are the portions of noisy posi-
tive and negative labels, respectively. Our method achieves highest
or close to the highest accuracy for most datasets and noise levels.
Entries within 1% from the best in each row are printed in bold.

6. Conclusions

We have introduced lazy annotation, a framework for ef-
ficient collection of annotated shadow datasets. We have
shown how to leverage the noisy labels through a label re-
covery process. This process is efficient as it is based on
minimizing the leave-one-out error of Least Squares SVM.
Our experiments show that when training with recovered
labels, the performance penalty is small. We have also
shown the advantage of quickly annotating an appropriate
dataset when faced with the task of detecting shadows in
a new image domain. We will create large scale shadow
datasets with relatively good annotation. We can also adapt
the method to combine datasets collected under different
annotation methodologies. Such datasets would contribute
to the progress of shadow detection and scene understand-
ing. We will explore generalizing label recovery to other
domains.
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