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Abstract
Observable reading behavior, the act of moving the eyes over lines
of text, is highly stereotyped among the users of a language, and
this has led to the development of reading detectors–methods that
input windows of sequential fixations and output predictions of the
fixation behavior during those windows being reading or skimming.
The present study introduces a newmethod for reading detection us-
ing Region Ranking SVM (RRSVM). An SVM-based classifier learns
the local oculomotor features that are important for real-time read-
ing detection while it is optimizing for the global reading/skimming
classification, making it unnecessary to hand-label local fixation
windows for model training. This RRSVM reading detector was
trained and evaluated using eye movement data collected in a lab-
oratory context, where participants viewed modified web news
articles and had to either read them carefully for comprehension or
skim them quickly for the selection of keywords (separate groups).
Ground truth labels were known at the global level (the instructed
reading or skimming task), and obtained at the local level in a sepa-
rate rating task. The RRSVM reading detector accurately predicted
82.5% of the global (article-level) reading/skimming behavior, with
accuracy in predicting local window labels ranging from 72-95%, de-
pending on how tuned the RRSVM was for local and global weights.
With this RRSVM reading detector, a method now exists for near
real-time reading detection without the need for hand-labeling of
local fixation windows. With real-time reading detection capability
comes the potential for applications ranging from education and
training to intelligent interfaces that learn what a user is likely to
know based on previous detection of their reading behavior.
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(a) reading (b) skimming

Figure 1: Scanpaths from two subjects tasked with a) read-
ing and b) skimming an article from cnn.com/health. Read-
ing behavior is characterized by horizontal saccades with a
small vertical return movement. Skimming is characterized
by less organized rightward saccades and occasional large
vertical leaps throughout the document.
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1 Introduction
Despite the importance of reading behavior in our everyday lives,
and the many applications that might benefit from accurate and
robust reading detection, existing solutions are limited to only two
types of methods. One approach is to build a reading detector that
globally mines information from entire eyemovement scanpaths for
the purpose of classifying an extended period of behavior as reading.
More specifically, these global methods work by labeling all the
eye movement reading behavior occurring over an approximately
one-minute period, then use these labeled data, along with several
oculomotor features, to train a classifier to predict reading versus
non-reading behavior [Ishimaru et al. 2017].

The second approach is more local in space and time and at-
tempts to classify reading behavior using information from only
small temporal windows of sequential fixations. Local methods
work by having reading “experts” label the fixations occurring
within a narrow window of time as indicating either reading or
skimming behavior, then using these labels and either saccade
length features [Kollmorgen and Holmqvist 2007] or features cap-
turing the forward progress and vertical angle of the eye [Biedert
et al. 2012] to train a reading classifier. These methods are local
in that they make predictions based on information from fixations
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within a narrow temporal window rather than from an extended
scanpath– a prerequisite to real-time reading detection.

Both global and local methods have drawbacks. Global methods
derive their predictive power from access to a longer reading con-
text, but this coarser timescale means that these methods are poorly
suited to applications requiring real-time and spatially-constrained
reading detection. Relatedly, because normal reading behavior may
involve periods of skimming, and vice versa, global methods would
fail to capture this finer-grained structure. Local methods allow for
(near) real-time reading detection at the fixation level, but are like-
wise limited. These methods require the assignment of ground truth
labels to local segments of reading behavior for model training, but
the collection of these labels is tedious, noisy, and impractical.

In the present study, we introduce a new method for building a
reading detector, which we also evaluate in the context of reading
versus skimming classification. This method uses Region Ranking
SVM (RRSVM) [Wei et al. 2016; Wei and Hoai 2016], which enables
the incorporation of both global and local sources of information to
performmore accurate reading detection. Details about this method
are provided in Sec. 3.3. Briefly, the method uses an SVM classifier
to learn a weighting of oculomotor features over narrow fixation
windows to predict local reading detection. But critically, as the
classifier is optimizing the global reading/skimming classification
it is simultaneously learning which of the local windows are most
important in the global detection. The RRSVM method, therefore,
integrates global and local methods in a single reading detector.
Moreover, because the local fixation windows that are important
for classifying reading behavior are learned, it also eliminates the
need for humans to explicitly label each local fixation window as
ground truth for training– the human rater is taken out of the loop.
This RRSVM reading detector was trained and evaluated using eye
movement data collected from participants reading or skimming
modified web news articles. Details regarding this user evaluation
study are described next.

2 Reading-Skimming User Study
Thirty-two undergraduate student participants, all native English
speakers, were randomly assigned to either a skimming (n = 16) or
reading for comprehension (n = 16) task. No users were removed
as outliers for our analyses. Reading and skimming are distinct
behaviors [Biedert et al. 2012; Duggan and Payne 2011; Strukelj
and Niehorster 2018]. The aim of reading is comprehension and the
aim of skimming is to get a general idea of a text’s content [Rayner
et al. 2016]. Thus, for the skimming task, participants were given 10
seconds to quickly skim through each news article under instruction
to select 3 keywords best summarizing the content of the article.
For the reading task, participants were given an unlimited amount
of time to read carefully through the same news articles, with each
reading measure followed by a single question aimed at evaluating
comprehension. These general procedures were iterated over 10
trials, each using a different news article. Training and test sets were
constructed by randomly selecting 80% of the articles for training,
and the remaining 20% for testing.

2.1 Stimuli, Apparatus, and Procedure
Stimuli were 10 articles selected and modified from cnn.com/health.
Each article was presented on a single page Story highlights were

Table 1: Means and standard deviations for measures in the
reading and skimming tasks.

Measures Reading (n=16) Skimming (n=16)
M SD M SD

Total Reading Time (sec) 77.94 20.38 9.96 0.28
Fixation Count 288.65 71.56 39.01 5.46

Average Fixation Duration (ms) 226.68 21.49 225.39 37.23
Average Saccade Amplitude (◦) 3.05 0.36 3.19 0.45

Leftward Saccades (%) 32.06 6.16 32.92 4.22
Accuracy (%) 88.7 11.47 N/A N/A

replaced with CNN/Health logos, and pictures in the article were
removed to avoid distraction. Figure 1 shows a typical stimulus,
with superimposed scanpaths from users tasked with reading or
skimming. News article images subtended 31◦ x 24◦, with this
viewing angle enforced by chin and forehead rest. Eye position
was measured using an EyeLink 1000 (SR Research) eye-tracker
sampling at 1000 Hz, and was parsed into fixations using EyeLink
On-Line Parser with default settings. The time taken to complete
the experiment was 5 minutes for skimming and 20 minutes for
reading, including 9-point calibration, and the order of presentation
of the news articles was randomized. There was no significant effect
of the trial order in any of the eye-movement measures reported in
Table 1 (all ps >.05)

2.2 Descriptive Results
The accuracy rates for reading were higher than 70% across all par-
ticipants, with mean accuracy rates of 88.7% (SD = 11.47). Given this
high accuracy, we were convinced that users were indeed reading
for comprehension and therefore did not exclude articles where the
comprehension questionwas answered incorrectly. Three keywords
generated during skimming task was recorded, but not analyzed.
Descriptive statistics for some conventional reading/skimming mea-
sures are provided in Table 1. Although, as expected, the total read-
ing time and the number of fixations made during reading were
both greater than the corresponding skimming measures (t(30) =
13.34, p<.05; t(30) = 13.91, p<.05, respectively), the eye-movement
measures did not significantly differ across tasks (p>.05). This sug-
gests that there is much skimming behavior in normal reading, and
vice versa, highlighting the difficulty of the detection task at hand.

3 Reading-Skimming Classification
We design a reading-skimming classifier that learns gaze patterns
when reading versus skimming. More relevant to our study is how
similar gaze movements are when reading versus skimming. To
answer this question we need a reading-skimming classifier. We
design a Region Ranking SVM (RRSVM) classifier [Wei and Hoai
2016] that exchanges information between global and local labels
to build an accurate reading detector.

3.1 Features
Our data consists of scanpaths from user study participants. The
task given to the participants are to either read or skim a news
article (see Sec. 2).

For the features of each window in our dataset, we utilized the in-
tuitive features for reading detection from scanpaths highlighted by
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past ETRAwork on reading detectors, i.e. fromBiedert et. al [Biedert
et al. 2012]. Each window is described by its average forward (left
to right) progress, and overall saccade angle. Reading behavior
should be shorter in forward progress and lesser in angle, and vice
versa. We also used additional features including average fixation
duration, document area covered, and average backward progress
of the windows. However we saw no quantitative change to our
results using these additional features. We thus leave the continued
construction of descriptive feature sets to future work.

3.2 Problem Formulation
We now discuss the formulation of our RRSVM detector. Our task
here is to have a classifier Fθ with learning parameters θ that

(1) Accurately predicts global (document) level reading or skim-
ming

(2) Determines the most likely windows that suggest reading
or skimming behavior

More specifically, the RRSVM sees the reading detection task
as a multiple instance learning problem where the windows in a
document are considered jointly to decide if the document is being
read or skimmed.

One way to approach the problem of global and local detection
would be to simply take a classifier that works reasonably well on a
local level, and have the local classes vote on a global class. However
past works who predict global knowledge using local information
have shown this to be inadequate [Wei et al. 2016; Wei and Hoai
2016]. RRSVM instead learns learns a distribution for the weighted
importance of windows, which we will show also outperforms the
naive method for our task.

3.3 Region Ranking SVM Optimization
We now formally define the objective function that RRSVM opti-
mizes to perform our reading detection task. Our RRSVM assumes
documents contain windows {Xi }ni=1 and associated binary labels
{yi }ni=1 indicating whether this document is representative of read-
ing behavior or not. To account for the uncertainty of individual
local windows, RRSVM considers multiple of them, and without
loss of generality, and for brevity, we assume each page has N
windows. Letm be the number of windows for each page, and d
the dimension of the window features. RRSVM represents each
page as a matrix Xi ∈ ℜd×m , but the order of the columns can be
arbitrary. RRSVM jointly learns a window evaluation function w
and a window selection function s for the following:

minimize
w,s,b

λ | |w| |2 +
n∑
i=1

(wT Γ(Bi ;w)s + b − yi )2 (1)

s.t. s1 ≥ s2 ≥ · · · ≥ sm ≥ 0, (2)
h(Γ(Bi ;w)s) ≤ 1. (3)

Here h(·) is the function that measures the spread of the column
vectors of a matrix: h([x1, · · · ,xn ]) =

∑n
i=1 | |xi −

1
n
∑n
i=1 xi | |2. w

and b are the weight vector and the bias term of an SVM classi-
fier, which are the parameters of the window evaluation function.
Γ(B;w) denotes a matrix that can be obtained by rearranging the
columns of the matrix B so that wT Γ(B;w) is a sequence of non-
increasing values. The vector s is the weight vector for combining
the SVM window scores for each document; this vector is common

to all documents of a class. In this case, there will be two sets of s
vectors, one for reading, one for skimming.

The above objective function consists of the regularization term
λ | |w| |2 and the sum of squared losses. Note that the classification
decision is based on both the window evaluation function (i.e.,w,b)
and thewindow selection function (i.e., s), which are simultaneously
learned using the above formulation. The learning formulation can
be iteratively optimized with block coordinate descent, alternating
between the following two procedures:

(1) Fix w, optimize Eq. (1) w.r.t. s and b,
(2) Fix s, optimize Eq. (1) w.r.t. w and b.
More details about the optimization process can be found in prior

work [Wei and Hoai 2016], that uses a similar idea in the context
of image prediction.

3.4 Benefits and Extensions
In summary, the main benefits of using RRSVM are the following:

• RRSVM has been shown to outperform related methods,
which use alternatives such as average pooling, for classifi-
cation tasks that feature global and local labels [Sermanet
et al. 2013; Szegedy et al. 2014].

• It works without labeled window data as it frames the prob-
lem into a weakly supervised learning framework. As we
will show, RRSVM helps localize which windows contribute
to the final decision.

Further, we briefly discuss how our RRSVM can extend to com-
mon scenarios, such as incremental learning, or if some trusted
local labels are already available. To operate incrementally, RRSVM
can use a classifier trained on partial data as a good initialization
for a classifier of the complete data, thus reducing the number of it-
erations to converge to optimal values of w and s. Similarly, RRSVM
can use available local labels to learn a better w for initialization,
which would presumably converge more quickly on s. This would
save the need to iteratively learn both w and s.

4 Evaluation
In this section we formally evaluate the performance of our RRSVM
reading detector, which is able to distinguish both global and local
signals of reading and skimming detection using only global labels.
In our analysis, we compare the performance and describe the
trade-offs between tuning our method for the global vs. local task.
We also provide some intuition as to why the problem of reading
detection is difficult to scale with only global information.

4.1 Global Evaluation
We first evaluate how our model performs on our global article
labels. For the labels of each document, we simply used the task
given to the user, as discussed in Sec. 2. Our methodology uses a
”one against all” approach to document classification, and we thus
we have a separate set of weights and predictions for each class.
We thus consolidate into one final label, yi ,

yi = arдmax{wsXss + bs + δ ,wrXsr + br } (4)

where the subscripts r and s denote the parameters learned for
reading and skimming respectively.We tune the parameter δ , for the
optimal value of our evaluation metric, the balanced classification
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Table 2: Balanced Classification Rate (BCR) for different
variants of our RRSVM reading detector across global and
local tasks.

Method Performance (BCR)
Global Local

RRSVM Default (BCR) .751 .951
RRSVM Converged (BCR) .825 .720
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Figure 2: Scatter plots of (a) globally annotated windows
from our test data and (b) locally annotated windows where
raters agreed. We can observe a difference in separability
when using global vs. local

rate, BCR, (i.e. the average between the model’s sensitivity and
specificity), over our training set.

Table 2 shows the performance of our method on our global
labels. We compare two variants of our RRSVM detector. The first,
labeled default, is simply the RRSVM trained for a single iteration to
optimize w with s initialized to the default 1/n where n is the num-
ber of windows in the document. The second is our RRSVM after
full optimization of w and s until convergence. A fully convergent
RRSVM is able to capture the reading detection with greatest accu-
racy at 82%. A fixation window size of 13 was used for computing
all features for the documents.

In this regard, we also measured the reading detection task
across window sizes. Here, there is a trade-off between captur-
ing more information with larger windows to improve accuracy vs
the increased time/spacial lag for real-time prediction. We noticed
that both methods decreased in accuracy by about 3% when using
smaller windows, confirming this trade off.

4.2 Understanding the Problem Difficulty
In order to further understand the jump in task difficulty resultant
from performing reading detection with only globally annotated
ground truth, we provide visualizations using the intuitive features
from Biedert et. al. Figure 2 a) shows the globally labeled reading
(yellow) and skimming (purple) windows against their two dimen-
sional features, whereas b) shows the smaller set of locally labeled
windows against the same feature types.

We can observe that the separability of the dataset varies drasti-
cally when utilizing global ground truth as opposed to local ground
truth. As stated in Sec. 2, this is due to the existence of skimming
behavior when reading and vice versa. This is why the the ranking
of the windows by importance by RRSVM helps significantly to
pick the appropriate windows for the global classification task.

4.3 Local Verification
We nowmove on the performance of the second task of our detector,
fixation level reading detection. As the task of labeling individual
fixations for their class is quite arduous, we perform local labeling
and analysis on only a subset of the total windows offered in our
dataset. For the local analysis, we asked two participants, affiliated
with the department of cognitive science at the authors’ institution,
to label windows from our test set, overlaid on top of our stimuli,
as reading or skimming. The total number of windows labeled was
120, made up from 2 distinct and non-overlapping windows chosen
from the 31 reading and 29 skimming articles in our test set. The
labeling was done via a Web interface. For the local ground truth,
we only utilized labels for windows in which the raters agreed,
which was 75% of all windows labeled.

Similar to the global labels, we can calculate local labels as

y′i j = arдmax{wsjXj + bs + δ
′,wr jXj + br } (5)

where this y′i j represents the jth local window predictions for the
ith document. Here δ ′ was tuned subjectively based on the model’s
perceived performance on local windows in the training set.

The results of the local labels are also shown in Table 2. We
can see that in the best case, the RRSVM is able to detect ≈ 95% of
the local labels given by the raters. Further, we can see that while
the fully converged RRSVM increases the accuracy on the global
labels by about 7.5%, there is a noticeable drop in accuracy for the
converged model when predicting locally. Thus we can see the trade
off for local versus global prediction. As the RRSVM converges, it
gives more priority in predicting the global labels. We thus note
that the RRSVM detector can be tuned depending on the priority
of the task for reading detection, whether it be global or local.

Lastly, we trained exclusively on the local labels to find an upper
bound for the local classfication performance using an SVM. We
find the BCR, generated via a 5-fold cross validation, to be 96.2%.
This implies that at its best, the RRSVM performs close to the
optimal local classification, even just using global labels, which can
be obtained at a small fraction of the annotation cost.

5 Conclusion
Real-time reading detection requires the detection of reading be-
havior in narrow spatio-temporal windows of fixations. Previous
methods required for training a human-labeling of these scanpath
snip-its as either reading or skimming. Our work is important be-
cause it does not require this hand-labeled training data, thereby
extending the reach of reading detection to the many applications
for which extensive local window labeling would be impractical.
Our work is also novel in that it is the first to apply the RRSVM
method to the problem of reading detection. RRSVM breaks the
dependency on hand-labeled training data by iteratively selecting
(learning) local features while optimizing for global classification, a
dynamic that was inspired by how attention locally biases features
that were selected based on a parallel (global) analysis of visual
input. In the current context, the RRSVM-based reading detector
learns labels for local windows as part of its optimization for global
(article level) reading/skimming classification, making it well suited
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to applications requiring real-time reading detection in the absence
of human-labeled local windows for training.

6 Discussion and Future Directions
The learned RRSVM parameters w and b require global information
to train, during testing for local labeling no global information is
required. This involves obtaining the features for a given fixation
window, X, and performing the matrix multiplication to obtain the
label. The computation delay for matrix multiplication is negligible.
In terms of obtaining features,we obtain δ fixations preceding and
following i . Given that the average fixation duration in our data
was ≈225ms, these past and future δ -fixation windows would each
require δ ∗ 225 ms. For δ = 6, we would add1.35 second delay
between when a fixation is made, and when it is labeled.

Recent works have delved into the task of determining cognitive
performance in real-time [Katsini et al. 2018; Raptis et al. 2017;
Toker et al. 2017]. Our work aims to determine reading/skimming
in general across subjects; related work focus on predicting individ-
ual subjects. Related works also use of conventional classification
techniques, while we use a state-of-the-art RRSVM motivated to
our reading-skimming task.

As part of future work, we will be to explore the performance of
the reading detector in more naturalistic contexts, such as normal
Web usage.In everyday practice, reading behavior is likely to be
continuously interspersed with periods of skimming, glances to
pictures and their captions, video viewing, etc., and the specific
composition of these behaviors will certainly depend on the web
content and task (e.g., a news article versus a shopping site). With
our reading detector we will be able to quantify when reading
behavior occurs during the course of normal web usage, thereby
better understanding a key component in a users web engagement.
Previous studies have shown that a better understanding of web
engagement leads to tangible benefits, ranging from targeted per-
formance improvements to better content personalization [Buscher
et al. 2009; Eraslan et al. 2016; Kelton et al. 2017].
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