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ABSTRACT

We present a deep learning-based method for super-resolving coarse (low-
resolution) labels assigned to groups of image pixels into pixel-level (high-
resolution) labels, given the joint distribution between those low- and high-
resolution labels. This method involves a novel loss function that minimizes the
distance between a distribution determined by a set of model outputs and the cor-
responding distribution given by low-resolution labels over the same set of out-
puts. This setup does not require that the high-resolution classes match the low-
resolution classes and can be used in high-resolution semantic segmentation tasks
where high-resolution labeled data is not available. Furthermore, our proposed
method is able to utilize both data with low-resolution labels and any available
high-resolution labels, which we show improves performance compared to a net-
work trained only with the same amount of high-resolution data. We test our
proposed algorithm in a challenging land cover mapping task to super-resolve la-
bels at a 30m resolution to a separate set of labels at a 1m resolution. We compare
our algorithm with models that are trained on high-resolution data and show that
1) we can achieve similar performance using only low-resolution data; and 2)
we can achieve better performance when we incorporate a small amount of high-
resolution data in our training. We also test our approach on a medical imaging
problem, resolving low-resolution probability maps into high-resolution segmen-
tation of lymphocytes with accuracy equal to that of fully supervised models.

1 INTRODUCTION

Semantic image segmentation is the task of labeling each pixel in an input image X = {xij} as
belonging to one of L fine-scale application classes, Y = {yij}, y ∈ {1, . . . , L}. In weakly super-
vised segmentation, instances in the training set only contain partial observations of the target ground
truth labels, e.g., summary of class labels instead of pixel-level labels. We aim to solve a variant
of this problem where coarse-scale, low-resolution accessory classes, Z = {zk}; z ∈ {1, . . . , N},
are defined for sets of pixels in the input images, where we are given the joint distribution P (Y,Z)
between the accessory class labels and the application labels. Specifically, a training image X is
divided into K sets Bk, each with an accessory class label zk, and our models are trained to pro-
duce the high-resolution application labels yij . For example, in Figure 1, a high-resolution aerial
image is shown alongside the low-resolution ground truth land cover map (defined over accessory
classes) and the target high-resolution version (defined over application classes). We aim to derive
the high-resolution land cover map based on the aerial image and low-resolution ground truth.

Compared to other weakly supervised image segmentation techniques, the formulation of the prob-
lem we aim to solve is more general: it applies both to existing weakly supervised image segmen-
tation problems, as well as to other problems with different characteristics of weak labels. The
more general formulation is necessary for tasks such as land cover mapping from aerial imagery
and lymphocyte segmentation from pathology imagery. In these applications, coarse labels do not
necessarily match the fine-scale labels, as shown in Figure 1. The distinction between the fine-scale
application and coarse-scale accessory classes is necessary for situations in which the ground-truth
information that is known about an image does not match with the application classes that we aim to
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Figure 1: An Illustration of land cover data and label super-resolution. Our method takes an input
image (x) with low-resolution labels (z) and outputs a set of super-resolved label predictions (y),
utilizing the statistical descriptions between low-resolution and high-resolution labels (Appendix B)
e.g., one low-resolution class designates areas of low-intensity development, with 20% to 49% of
impervious surfaces (such as houses or roads).

label the image with, but instead suggests a distribution over the application labels. State-of-the-art
methods for weakly supervised semantic segmentation exploit the structure of weak labels in ways
that are not applicable in our examples: we cannot create bounding boxes around land cover object
instances (Dai et al. (2015); Papandreou et al. (2015)) – we consider data that is generally given
at scales much larger than the objects being segmented and does not carry foreground-background
morphology – nor use coarse approximations of ground-truth segmentation (Krähenbühl & Koltun
(2011); Hong et al. (2015)). Other work attempts to match a class “density function” to weak la-
bels (Lempitsky & Zisserman (2010)), but it mainly targets localization and enumeration of small
foreground objects with known sizes. Existing Weak supervision approaches also often involve
expensive steps in inference, such as CRFs or iterative evaluation (Chen et al. (2015)), which are
impractical on large datasets. At the same time, thorough analyses of training algorithms only exist
for models that are not sufficiently expressive for the applications we consider (Yu et al. (2013)).
While our formulation of the problem allows us to specifically address the previously mentioned
land cover mapping and lymphocyte segmentation, it can also be applied to more traditional seg-
mentation tasks such as foreground/background segmentation as we explore in Appendix. F.

Our proposed method is illustrated in Figure 2. Briefly, a standard segmentation network will output
probabilistic estimates of the application labels. Our methodology summarizes these estimates over
the sets Bk, which results in an estimated distribution of application labels for each set. These
distributions can then be compared to the expected distribution from the accessory (low-resolution)
labels using standard distribution distance metrics. This extension is fully differentiable and can
thus be used to train image segmentation neural networks end-to-end from pairs of images and
coarse labels.

Land cover mapping from aerial imagery is an important application in need of such methodology.
Land cover maps are essential in many sustainability-related applications such as conservation plan-
ning, monitoring habitat loss, and informing land management. In Section 3.1 we describe land
cover mapping in detail and show how our method creates high-resolution land cover maps solely
from high-resolution imagery low-resolution labels, at an accuracy similar to that of models trained
on high-resolution labels. We further show how to train models with a combination of low- and high-
resolution labels that outperform the high-res models in transfer learning tasks. As low-resolution
labels are much easier to collect, and indeed exist over a much wider geographic area in our land
cover mapping application, the ability to combine low- and high-resolution labels is an important
feature of our proposed methods.

In a second example (Section 3.2), we segment tumor infiltrating lymphocytes from high-resolution
(gigapixel) pathology images. Understanding the spatial distribution of immune cells, such as lym-
phocytes in pathology images, is fundamental for immunology and the treatment of cancer (Finn
(2008); Thorsson et al. (2018)). Here, coarse labels are probabilities of lymphocyte infiltration (hav-
ing two or more lymphocytes) on 100×100 pixel regions, given by an automatic classifier (Saltz
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Figure 2: Proposed statistical matching loss function for label super-resolution shown with example
images from our land cover labeling application. The model’s high-resolution predictions in each
low-resolution block are summarized by a label counting layer and matched with the distributions
dictated by the low-resolution labels.

et al. (2018)). Our super-resolution model trained on coarse labels performs the same as a lympho-
cyte classifier trained with high-resolution (cell-level) supervision (Hou et al. (2018)).

To summarize, as our first contribution, we propose a label super-resolution network which utilizes
the distribution of high-resolution labels suggested by given low-resolution labels, based on visual
cues in the input images, to derive high-resolution label predictions consistent to the input image.
Our second contribution is that we evaluate our method extensively on the application of land cover
segmentation and conclude that when there are not enough representative high-resolution training
data, our method is much more robust than a model trained on high-resolution training data only,
since our method utilizes more training data with weak labels. We show the generality of our method
on the lymphocyte segmentation task and the task of segmenting foreground given object bounding
boxes (in Appendix F).

2 CONVERTING A SEMANTIC SEGMENTATION NETWORK INTO A LABEL
SUPER-RESOLUTION NETWORK

A semantic segmentation network takes pixels X = {xij} as input and produces a distribution over
labels Y = {yij} as output. If φ are learned network parameters, this distribution is factorized as:

p(Y |X;φ) =
∏
i,j

p(yij |X;φ), (1)

Each p(yij |X;φ) is a distribution over the possible labels, y ∈ {1, . . . , L}. Typically, a network
would be trained on pairs of observed training images and label images, (Xt, Y t), to maximize:

φ̂ = argmax
φ

log
∏
t

p(Y t|Xt;φ) = argmax
φ

∑
t

∑
i,j

log p(ytij |Xt;φ). (2)

In this paper, we assume that we do not have pixel-level supervision, Y t, but only coarse accessory
(low-resolution) labels zk ∈ {1, . . . , N} given on sets (blocks) of input pixels, Bk. We also assume
a statistical joint distribution over the number of pixels c` of each application label ` ∈ {1, . . . , L}
occurring in a block labeled with an accessory (low-resolution) label z, pcoarse(c1, c2, . . . , cL|z). Our
extension of semantic segmentation networks is described in the following three sections.
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Using coarse labels as statistical descriptors. In computer vision applications, pixel-level labeled
data is typically expensive to produce, as is the case of high resolution land cover mapping where
high-resolution labels only exist for limited geographic regions. On the other hand, coarse low-
resolution labels are often easy to acquire and are readily available for larger quantities of data.
Coarse labels can provide weak supervision by dividing blocks of pixels into categories that are
statistically different from each other. To exploit this we must formally represent the distribution of
high-resolution pixel counds in these blocks, pcoarse(c|z).
For example, in the case of land cover mapping with four types of high-resolution land cover
classes1, the descriptions of labels from the National Land Cover Database (NLCD) – at 30 times
lower resolution than available aerial imagery (Homer et al. (2015)) – suggest distributions over the
high-resolution labels. For instance, the “Developed, Medium Intensity” class – see Table 3 in the
appendix – is described as “Areas with a mixture of constructed materials and vegetation. Imper-
vious surfaces account for 50% to 79% of the total cover”. While such a designation does not tell
us the precise composition or arrangement of high-resolution labels within a particular “Developed,
Medium Intensity” label , it does describe a distribution. One mathematical interpretation of this
particular example is

cimperv ∼ unif(0.5, 0.8), cforest + cfield = 1− cimperv, cwater ≈ 0.

In practice these descriptions should be interpreted in a softer manner (e.g., with Gaussian distribu-
tions) that can account for variance in real-world instances of the coarse classes2.

Label counting. Assume pcoarse(c|z), a connection between the coarse and fine labels, has been
represented. Suppose we have a model that outputs distributions over high-resolution labels, p(Y |X)
given inputsX . We must summarize the model’s output over the low-resolution blocksBk. Namely,
a label counting layer computes a statistical representation θk of the label counts in each block Bk.

If we sampled the model’s predictions yij at each pixel, the count of predicted labels of class ` in
block Bk would be

c` =
1

|Bk|
∑

(i,j)∈Bk

δ(yij = `). (3)

By averaging many random variables, these counts c` will follow an approximately Gaussian distri-
bution,

pnet(c`,k = c|X) = N (c;µ`,k, σ
2
`,k),

where

µ`,k =
1

|Bk|
∑

(i,j)∈Bj

p(yij = `|X,φ), σ2
`,k =

1

|Bk|2
∑

(i,j)∈Bk

p(yij = `|X,φ)(1−p(yij = `|X,φ)).

(4)
These two parameters for each label ` constitute the output of each block’s label counting layer
θk = {µ`,k, σ2

`,k}L`=1. Note that treating each count c` as an independent Gaussian variable (given
the input X) ignores the constraint

∑
` c` = 1, and more exact choices exist for modeling joint

distributions pnet({c`}|X); however, we do have
∑
µ` = 1 and thus E [

∑
` c`] = 1. In practice,

this approximation works well.

Statistics matching loss. The coarse labels z provide statistical descriptions for each block
pcoarse({c`}|z), while the label counting modules produce distributions over what the segmentation
network sees in the block given the high-res input image X , pnet({c`}|X). The statistics matching
module computes the amount of mismatch between these two distributions, D(pnet, pcoarse), which
we then use as an optimization criterion for the core segmentation model. Namely, we set

C` = argmax
c`

[∑
log pnet(c`|X) log pcoarse(c`|z)

]
1Water, forest, field, and impervious surfaces.
2For example, the label “water” is in fact found in the “Developed (medium intensity)” in around 1% of

such pixels in Maryland, and the frequency of impervious surfaces may not lie between 50% and 79% due to
occasional misclassification and misalignment in the dataset.
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Figure 3: Our model is useful detecting land cover change over years, at the same geographical
location, which cannot be achieved effectively by directly comparing satellite images. For a detailed
description of how we detect land cover change, see Appendix D.

and seek to maximize D(pnet, pcoarse) =
∑
l log pnet(C`|X), that is, the likelihood of the distribution

of labels C that represents the optimal compromise between what the segmentation network expects
(given the image X) and what the joint distribution dictates (given the coarse label z). In particular,
if the distributions pcoarse(c`|z) are also represented as products of Gaussians, i.e.,

pcoarse({c`}|z) =
∏
`

N (c`; η`,z, ρ
2
`,z), (5)

then

C` =
ρ2`,zµ` + σ2

` η`,z

σ2
` + ρ2`,z

, (6)

D(pnet, pcoarse) = log pnet(C`|X) ∼ const−1

2

(µ` − η`,z)2

σ2
` + ρ2`,z

− 1

2
log 2πσ2

` , (7)

a function that is differentiable in the output of the label counting layer θ = {µ`, σ2
`}. In turn, these

are differentiable functions of the input image X . Thus, the network can be trained to minimize the
sum of the expressions (7) over all blocks k in the input image3.

3 APPLICATIONS AND EXPERIMENTS

3.1 LAND COVER SUPER-RESOLUTION

We use our proposed methods in the land cover classification task. Land cover mapping is typically
a part automatic, part manual process through which governmental agencies and private compa-
nies segment aerial or satellite imagery into different land cover classes (Demir et al. (2018); Kuo
et al. (2018); Davydow et al. (2018); Tian et al. (2018)). Land cover data is useful in many set-
tings: government agencies - local, state and federal - use this data to inform programs ranging
from land stewardship and environment protection to city planning and disaster response, however
this data is difficult and expensive to acquire at the high-resolutions where it is most useful. The
Chesapeake Conservancy, for example, spent 10 months and $1.3 million to generate the first large

3 We could alternatively use the KL divergence, D(pnet, ptarget) = DKL(pnet‖ptarget), as a measure of
matching. Then

D(pnet, pcoarse) = KL(pnet‖pcoarse) = const−1

2

(µ` − η`,z)2

ρ2`,z
− 1

2
log 2πσ2

` .

In practice, for large block size, σ` is small in comparison to ρ`,z (cf. (4)), so our criterion is close to the KL
distance, especially late in training.
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Figure 4: Land cover segmentation examples. The SR model, while never shown pixel-level data in
training, finds sharper edges of buildings than the high-res model and even identifies some features
along the shoreline that the high-res model misses. For more qualitative examples, see Appendix E.

high-resolution (1m) land cover map for over 160,000 km2 of land in the Chesapeake Bay area
(Chesapeake Bay Conservancy (2016; 2017)). Deep learning models that can automate the creation
of land cover maps have a large practical value. As an example application, we create a method
for automated land cover change detection using our models, described in Appendix D (with results
in Figure 3). Furthermore, we create an interactive web application that lets users query our best
performing models and “paint” land cover maps throughout the US, described in Appendix E.

Datasets and training. To demonstrate the effectiveness of our label super-resolution method
we have three goals: (1) show how models trained solely with low-resolution data and label
super-resolution compare to segmentation models that have access to enough representative high-
resolution training data; (2) show how models trained using label super-resolution are able to iden-
tify details in heterogeneous land cover settings (i.e., in urban areas) more effectively than baseline
weakly-supervised models; and (3) show how models trained using a combination of low- and high-
resolution data, using our method, are able to generalize more effectively than models which rely on
low- or high-resolution labels alone.

We use three datasets: 4-channel high-resolution (1m) aerial imagery from the US Department of
Agriculture, expensive high-resolution (1m) land cover data covering the Chesapeake Bay watershed
in the north eastern United States (Chesapeake Bay Conservancy (2016; 2017)), and much more
widely available low-resolution (30m) NLCD land cover data (see Fig. 1 for examples of the data,
and Appendix B). We divide these datasets into four geographical regions: Maryland 2013 training
region with high-resolution training labels, Maryland 2013 test region, Chesapeake 2013 test
region, and Chesapeake 2014 test region. We make the distinction between years the data was
collected as weather, time of day, time of year, and photography conditions greatly change the
quality of the imagery from year to year – see Fig. 3.

With these datasets we train and test four groups of models: HR models which will only have
access to high-resolution data in the Maryland 2013 training region, SR models, trained with our
label-super resolution technique, that only have access to low-resolution labels from the region in
which they are tested, baseline weakly-supervised models, described in the next section, which
will also only have access to low-resolution labels from region in which they are tested, and HR
+ SR models which will have access to the high-resolution labels from Maryland 2013, and low-
resolution labels from the region in which they are tested. Given this setup, our experiments will
vary two factors:

• The dataset on which low-resolution data is used, and on which the model is tested. As low-
resolution labeled data is commonly available, we can train models with high-resolution data from
the region in which we have it, as well as with low-resolution data from the area that we want our
model to generalize to but where high-resolution data isn’t available. We simulate this scenario with
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high-res data from Maryland and low-res data from the entire Chesapeake, even though the high-res
labels are available – and used for our accuracy evaluation – in the rest of Chesapeake as well. This
addresses our first two goals.

• The amount of high-resolution data seen in training. In practical settings it is often the case
that a small amount of high-resolution labels exist, as is the case with the land cover data from the
Chesapeake Conservancy. To test how well our models will perform under this relaxation, we vary
the amount of high-resolution data available from the Maryland 2013 training set from none (i.e.,
only trained with low-resolution data using our SR models) to all data in the training set. Here,
if both low-res and high-res data are used, we jointly optimize the core model on high-res data
(using pixelwise cross-entropy loss) and on the low-res data (using our super-res criterion), using a
weighted linear combination of the two losses. This addresses our third goal.

We use a U-Net architecture as our core segmentation model, and derive the parameters of the joint
distributions between accessory (low-resolution) and application labels (η`,z, ρ2`,z) used in super-res
model training from (low-res, high-res) pairs from the Maryland 2013 training set as the true means
and variances of the frequencies of high-res label ` in blocks of low-res class z. See Appendices
A and B for details on the model architecture/training and joint distribution parameters between
low-resolution and high-resolution classes.

Baseline models. Our main high resolution baseline model is the U-Net core trained to minimize
pixelwise cross-entropy loss using the respective high-resolution labels. U-Net was chosen after
experimentation with other standard neural segmentation models: SegNet (Badrinarayanan et al.
(2017)), ResNet, and full-resolution ResNet (Pohlen et al. (2017)), all of which achieved overall
accuracies from 80 to 83%.

In addition to the high-resolution model, we consider three baseline approaches to weakly supervised
segmentation, which we compare to our SR models:

• “Soft naı̈ve”: naı̈vely assigning the NLCD mean frequencies η`,c as target labels for every pixel
in a low-res block and training the core using cross-entropy loss as above.

• “Hard naı̈ve”: Doing the same, but using a one-hot vector corresponding to the most frequent
label in a given NLCD class (argmax` η`,z) as the target.

• An EM approach as in Papandreou et al. (2015): (1) M-step: train the super-res model only; (2)
E-step: perform inference of high-res labels on the training set, followed by superpixel denoising
(average predictions in each block); finally, assign labels in each block according to this smoothed
prediction; (3) Repeat the EM iteration. Note that we use superpixel denoising instead of dense-CRF
proposed by Papandreou et al. (2015), due to large computational overhead on the land cover dataset
of over 10 billion pixels.

We also attempted directly comparing output label frequencies (µ`) to the NLCD class means η`,z
using L2 loss, as well as using an L1 criterion (Lempitsky & Zisserman (2010)). In each case,
the model converged to one that either predicted near-uniform class distributions at every pixel or
always predicted the same class, giving accuracies below 30%. Interestingly, this occurred even
when training was initialized with a well-performing trained model. These results indicate that the
log-variance term in our criterion (7) is essential. (In these experiments, we used the same sample
reweighting as in our super-res training and did a search through learning rates within a factor of
1000 of our baseline model learning rate.) Other approaches are discussed in Appendix C.

Results. The results for the baseline weakly supervised models and our SR models are shown in
the first half of Table 1. We separately report overall results and results in NLCD blocks labeled with
“Developed” (urban) low-resolution classes, which are the main source of errors for all models. Sec-
ond, the Jaccard score is a more telling measure of classification quality than overall accuracy, which
is dominated by large, easy-to-classify homogeneous areas (e.g., forests) and gives little weight to
accuracy on impervious surfaces. Thus the most important single metric is Jaccard score in de-
veloped classes (in italics in Table 1). In these areas, our SR-only model tends to outperform the
baselines (see second goal below).

First goal: In the second half of the table, the HR only model serves as an upper bound for what
is achievable by models that use only low-res data. Unsurprisingly, models trained only on low-

7



Published as a conference paper at ICLR 2019

Maryland 2013 test region Chesapeake 2013 test region Chesapeake 2014 test region

all developed all developed all developed
acc% iou% acc% iou% acc% iou% acc% iou% acc% iou% acc% iou%

Models trained on test geographical regions, without using high-resolution labels

Hard naı̈ve 83.5 70.1 58.2 38.5 87.7 68.0 63.4 40.2 88.1 63.6 68.2 46.4
Soft naı̈ve 85.5 71.4 65.1 45.6 87.9 66.7 65.6 42.7 88.6 62.9 70.2 48.3
EM 73.9 40.0 59.9 32.2 82.3 42.1 60.0 32.0 81.7 40.4 61.9 33.0
SR 82.6 71.7 74.3 49.7 87.0 68.2 73.4 47.4 82.0 57.4 73.4 48.2

Models using high-resolution labels in Maryland 2013 training set (more than 1010 labeled pixels)

HR only 91.1 82.4 80.7 64.9 87.9 71.8 71.8 54.4 67.2 40.4 71.7 48.7
HR + SR 90.8 81.9 79.9 63.4 89.0 73.3 78.2 55.5 82.4 56.7 77.2 57.5

Table 1: Accuracies and Jaccard, or average intersection over union (IOU), scores on several data
sets and models. Note that we train models with high-resolution data from only the Maryland 2013
training region and low-resolution data from the region on which they are tested. We give both
overall metrics and those on areas labeled with NLCD “Developed, {Open, Low, Medium, High}
Intensity” classes.

Maryland 2013 Chesapeake 2013 Chesapeake 2014

Figure 5: The effect of adding high-resolution data in training of super-resolution models. We show
the baseline (HR only and SR only) and the results of HR+SR models with varying number of high-
res label data seen in training, both overall and in developed classes (as in Table 1). All results
presented are average of 5 experiments with different random samples of high-res data.

res data only are less accurate than those trained on high-res on the same region (Maryland 2013).
Using low-res data together with high-res data adds uncertainty in training and slightly worsens
results in Maryland, where high-res training data was used. However, adding low-res data from the
test area allows our model to adapt to new geographies, with performance in developed areas in the
two Chesapeake sets comparable to that in the original (Maryland) set. Furthermore, the SR-only
model, not given high-res guidance, often produces segmentation that better match the true color
segments and fine features of the images – see Fig. 4, an example from Maryland 2013).

Second goal: Overall, our super-res model performs better than the weakly supervised baselines.
The “naı̈ve” training criteria and the EM method perform especially poorly in developed classes.
Indeed, while in classes such as “Open Water” or “Deciduous Forest”, most pixels are labeled with
the majority class label, in developed areas, the mean distributions are rather flat – “forest”, “field”,
and “impervious” occur with nearly equal frequency in the “Developed, Low Intensity” class (see
Table 4 in the appendix). Thus a model would prefer to make a highly uncertain prediction at every
pixel in such a patch, rather than classify each pixel with confidence.
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Figure 6: Our method is able to super-resolve the low-resolution probabilities of lymphocyte infil-
tration into pixel-level lymphocyte segmentation. Lymphocytes are dark, rounded small cells. Our
method gives reasonable lymphocyte segmentation results (in green contours).

Third goal: Figure 5 shows how results of a model trained with our super-resolution technique im-
prove when high-resolution labels are added in training. Performance gradually increases over the
super-res baseline as more high-resolution data is seen. Models trained on both high-resolution
and low-resolution data outperform HR-only models in all test sets even when a small number
(106 pixels = 1 km2) of high-resolution pixels is seen in training. In the Chesapeake 2014 dataset,
HR+SR continues to far outperform HR-only even when all high-res data is used, and the metrics of
HR+SR in developed classes even exceed those of HR-only overall. This demonstrates that super-
resolution models can readily be used to create fine-scale labels in new geographies with only a
small amount of strong supervision.

The full HR+SR accuracy of 89% on the Chesapeake 2013 dataset is in fact close to the estimated
accuracy (90%) of the ”ground truth” labels over the entire Chesapeake region (Chesapeake Bay
Conservancy (2017)) based on the same aerial imagery, which were themselves produced by a much
more labor-intensive semiautomatic process (Chesapeake Bay Conservancy (2016)).

3.2 LYMPHOCYTE SEGMENTATION

We apply our method for lymphocyte segmentation in pathology images. Lymphocytes are a type of
white blood cell that play an important role in human immune systems. Quantitative characterization
of tumor infiltrating lymphocytes (TILs) is of rapidly increasing importance in precision medicine
(Barnes et al. (2018); Finn (2008); Thorsson et al. (2018)). With the growth of cancer immunother-
apy, these characterizations are likely to be of increasing clinical significance, as understanding each
patient’s immune response becomes more important. However, due to the heterogeneity of pathol-
ogy images, the existing state-of-the-art approach only classifies relatively large tumor regions as
lymphocyte-infiltrated or not. We show that our method is able to super-resolve the low-resolution
probabilities of lymphocyte infiltration, given by the existing method (Saltz et al. (2018)), into pixel-
level lymphocyte segmentation results. We illustrate this application in Figure 6.

Datasets and training. A typical resolution of pathology whole slide images is 50k×50k pixels
with 0.5 microns per pixel. An existing method (Saltz et al. (2018)) generated a probability heatmap
for each of the 5000 studied whole slide images: every 100×100 pixel region was assigned a prob-
ability of being lymphocyte infiltrated. We use these probability heatmaps as low-resolution ground
truth labels and super-resolve them into high-resolution (pixel-level) lymphocyte segmentation. To
evaluate the segmentation performance, we use the lymphocyte classification dataset introduced in
Hou et al. (2018). This dataset contains 1786 image patches. Each patch has a label indicating if the
cell in the center of the image is a lymphocyte or not.

Baseline models. In addition to the Hard naı̈ve and Soft naı̈ve methods, we compare with the
published models (Hou et al. (2018)) which are trained for lymphocyte classification in a supervised
fashion. In particular:
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• HR SVM: The authors first segment the object in the center of pathology patch with a level-set
based method (Zhou et al. (2017)). Then they extract hand-crafted features such as the area, average
color, roundness of the object (Zhou et al. (2017)). Finally they train an SVM (Chang & Lin (2011))
using these features.

• HR: Hou et al. (2018) directly train a CNN to classify each object in the center of image patches.
This can be viewed as a CNN trained using high-resolution labels, although only the label of the
center pixel is given.

• HR semi-supervised: Hou et al. (2018) initialize a HR CNN using a trained sparse convolutional
autoencoder. Then the authors train the CNN to classify each object in the center of image patches.

Because all baseline CNNs require supervised data, they are all evaluated using four-fold cross-
validation on the aforementioned dataset of 1786 image patches.

Label super-resolution. To use the low-resolution probability map as labels, we quantize the
probability values into 10 classes with ranges [0.0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0]. In each low-
resolution class, we sampled 5 regions labeled with this class and visually assessed the average
number of lymphocytes, based on which we set the expected ratio of lymphocyte pixels in a given
region ranging from 0% to 40%. With this joint distribution between low-resolution and high-
resolution labels, we train our super-resolution network on 150 slides with low-resolution labels
randomly selected from the 5000 slides. To guide our algorithm to focus on lymphocyte and non-
lymphocyte cells instead of tissue background, we assign labels to 20% of the pixels in each input
patch as non-lymphocyte, based on color only – pathology images are typically stained with Hema-
toxylin and Eosin, which act differently on nuclei of cells and cytoplasm (background), resulting in
different colors. In terms of the network architecture, we apply the same U-Net as in the land cover
experiment.

Results. We present quantitative results, obtained using the lymphocyte classification dataset, in
Table 2. A testing image patch is classified as lymphocyte/non-lymphocyte by our method if its
center pixel is segmented as lymphocyte/non-lymphocyte respectively. Our method performs as
well as the best-performing baseline method with cell-level supervision.

HR SVM HR HR semi-supervised Hard naı̈ve Soft naı̈ve SR

AUC 0.7132 0.4936 0.7856 0.5000† 0.6254 0.7833

Table 2: Area Under receiver operating characteristic Curve (AUC) results of super-resolving low-
resolution lymphocyte infiltration probability maps to individual lymphocyte segmentation, on the
lymphocyte classification dataset from Hou et al. (2018). A testing image patch is classified as
lymphocyte/non-lymphocyte by our method if its center pixel is segmented as lymphocyte/non-
lymphocyte respectively. All HR baseline methods are directly evaluated on the classification dataset
by four-fold cross-validation and reported by Hou et al. (2018). Our weakly supervised method
performs effectively as well as the best-performing baseline method with cell-level supervision. †:
Hard naı̈ve achieves 0.50 AUC because there is no positive HR label, due to hard label assignment.

4 CONCLUSIONS

We proposed a label super-resolution network which is capable of deriving high-resolution labels,
given low-resolution labels that do not necessarily match the targeting high-resolution labels in a
one-to-one manner – we only assume that the joint distribution between the low-resolution and high-
resolution classes is known. In particular, we train a network to predict high-resolution labels, min-
imizing the distance/divergence between two distributions: distribution of predicted high-resolution
labels and expected distribution suggested by the low-resolution labels. We applied our method in
two real-world applications where high res labels are very expensive to obtain compared to low res
labels, and achieved similar or better results compared to the conventional fully supervised methods
trained on high-resolution labels. We also show how combining low and high res labels leads to
better generalization to out-of-sample test sets.
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Although the main assumption of the model is that the joint distribution over coarse and fine labels
is known, the model is in fact robust to errors in estimates of these distributions, as we discuss in
Appendix F. There we show that these joint distributions can be acquired or inferred in a variety of
ways, thus making label super-resolution widely applicable, including beyond computer vision.
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Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs with gaussian
edge potentials. In Advances in neural information processing systems, pp. 109–117, 2011.

Tzu-Sheng Kuo, Keng-Sen Tseng, Jia-Wei Yan, Yen-Cheng Liu, and Yu-Chiang Frank Wang. Deep
aggregation net for land cover classification. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2018.

Victor Lempitsky and Andrew Zisserman. Learning to count objects in images. In Advances in
neural information processing systems, pp. 1324–1332, 2010.

George Papandreou, Liang-Chieh Chen, Kevin P Murphy, and Alan L Yuille. Weakly-and semi-
supervised learning of a deep convolutional network for semantic image segmentation. In Pro-
ceedings of the IEEE international conference on computer vision, pp. 1742–1750, 2015.

Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained convolutional neural networks
for weakly supervised segmentation. In Proceedings of the IEEE international conference on
computer vision, pp. 1796–1804, 2015.

Tobias Pohlen, Alexander Hermans, Markus Mathias, and Bastian Leibe. Full-resolution residual
networks for semantic segmentation in street scenes. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3309–3318. IEEE, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Joel Saltz, Rajarsi Gupta, Le Hou, Tahsin Kurc, Pankaj Singh, Vu Nguyen, Dimitris Samaras, Ken-
neth R Shroyer, Tianhao Zhao, Rebecca Batiste, et al. Spatial organization and molecular corre-
lation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell reports,
23(1):181, 2018.

Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-learning toolkit. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 2135–2135. ACM, 2016.

Shashank Srivastava, Igor Labutov, and Tom Mitchell. Zero-shot learning of classifiers from nat-
ural language quantification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 306–316, 2018.
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APPENDICES

A MODEL ARCHITECTURE AND TRAINING DETAILS

The model cores and label counting modules were implemented in the CNTK (Seide & Agarwal
(2016)) framework and trained using RMSProp (Hinton et al.) with an initial learning rate of 10−3
decaying to 10−6 by a factor of 10 per 6000 minibatches. Each minibatch contained 20 patches of
240×240 pixels each. Patches were sampled inversely to the frequency of occurrence of their NLCD
(low-resolution) classes. The training loss converges after 14k minibatch iterations. As the network
architecture, we use a U-Net (Ronneberger et al. (2015)) with 4 down-sampling and 4 up-sampling
layers. After each down-sample or up-sample, we apply three convolutional layers with 32 to 64
filters. We apply batch normalization (Ioffe & Szegedy (2015)) before every activation function,
except for the final (pre-softmax) output.

Results from some iterations of training appear in Figure 7.

Figure 7: Left: the assignment to all pixels of the distribution over labels that corresponds to the
NLCD patches containing them. Next: the inferred land cover map y for an location near Richmond,
Virginia, at 1m resolution at three different stages of training. As the learning progresses (on the
entire state of Maryland), the labels get refined. Interestingly, the model flips the interpretations of
the land use multiple times until it converges to the approximately correct mix of labels. Our model
allows for this as the constraints on assignments for each input image are soft, as opposed to the
models that enforce the constraints in each iteration of learning, e.g., (Papandreou et al. (2015)).

B NLCD DATA DESCRIPTION

The National Land Cover Database (Homer et al. (2015)), is the result of a joint effort of several US
Governmental Agencies, and provides low-resolution (30 meter) land cover data covering the entire
United States every 5 years. In this dataset land cover is represented by 16 classes, 15 of which are
present in the Chesapeake Bay watershed for which we also have high-resolution land cover data
(Chesapeake Bay Conservancy (2016)). Table 3 gives a description of each of the 15 NLCD classes
we consider. Our proposed label super-resolution method relies on a joint distribution between the
coarse NLCD classes, and the high-resolution land cover classes. As we show in Section 2, this type
of distribution can be estimated from the descriptions of each NLCD class, but it can also be derived
based on ground truth high resolution data. Table 4 shows this joint distribution calculated from the
high-resolution data from the state of Maryland.

Joint distribution between NLCD classes and 4 high-resolution land cover classes. In Table 4,
we show that for each low-resolution region (30×30 pixels) with a given class (open water, etc.), the
expected percentage (µ) of each land cover class (water, forest, field, impervious), and the related
standard deviation (σ). For example, regions with NLCD class ”Developed, Open Space” in average
have 42% of the pixels that are forest, and 46% of the pixels that are field.

C ADDITIONAL EXPERIMENTS ON LAND COVER SEGMENTATION

The (ρ, σ) in Table 4 can be viewed as interval constraints, similar to the ones used in (Pathak et al.
(2015)) and the EM-adapt version of (Papandreou et al. (2015)). That is, we expect the frequency of
high-res label ` in a block of low-res label z to fall in an interval (η`,z − ρ`,z, η`,z + ρ`,z), where the
η and ρ are either derived from aligned (high-res, low-res) data, as in our experiments or manually

14



Published as a conference paper at ICLR 2019

NLCD Class Description

Open Water open water, generally with less than 25% cover of vegetation or soil.

Developed, Open Space mixture of some constructed materials, but mostly vegetation in the form of lawn
grasses. Impervious surfaces account for less than 20% of total cover. These areas
most commonly include large-lot single-family housing units, parks, golf courses,
and vegetation planted in developed settings for recreation, erosion control, or
aesthetic purposes.

Developed, Low Intensity mixture of constructed materials and vegetation. Impervious surfaces account for
20% to 49% percent of total cover. These areas most commonly include single-
family housing units.

Developed, Medium Intensity mixture of constructed materials and vegetation. Impervious surfaces account for
50% to 79% of the total cover. These areas most commonly include single-family
housing units.

Developed, High Intensity highly developed areas where people reside or work in high numbers. Examples
include apartment complexes, row houses and commercial/industrial. Impervious
surfaces account for 80% to 100% of the total cover.

Barren Land bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris,
sand dunes, strip mines, gravel pits and other accumulations of earthen material.
Generally, vegetation accounts for less than 15% of total cover.

Deciduous Forest dominated by trees generally greater than 5 meters tall, and greater than 20% of
total vegetation cover. More than 75% of the tree species shed foliage simultane-
ously in response to seasonal change.

Evergreen Forest dominated by trees generally greater than 5 meters tall, and greater than 20% of
total vegetation cover. More than 75% of the tree species maintain their leaves all
year. Canopy is never without green foliage.

Mixed Forest dominated by trees generally greater than 5 meters tall, and greater than 20% of
total vegetation cover. Neither deciduous nor evergreen species are greater than
75% of total tree cover.

Shrub/Scrub dominated by shrubs; less than 5 meters tall with shrub canopy typically greater
than 20% of total vegetation. This class includes true shrubs, young trees in an
early successional stage or trees stunted from environmental conditions.

Grassland/Herbaceous dominated by gramanoid or herbaceous vegetation, generally greater than 80%
of total vegetation. These areas are not subject to intensive management such as
tilling, but can be utilized for grazing.

Pasture/Hay grasses, legumes, or grass-legume mixtures planted for livestock grazing or the
production of seed or hay crops, typically on a perennial cycle. Pasture/hay vege-
tation accounts for greater than 20% of total vegetation.

Cultivated Crops used for the production of annual crops, such as corn, soybeans, vegetables, to-
bacco, and cotton, and also perennial woody crops such as orchards and vineyards.
Crop vegetation accounts for greater than 20% of total vegetation. This class also
includes all land being actively tilled.

Woody Wetlands forest or shrubland vegetation accounts for greater than 20% of vegetative cover
and the soil or substrate is periodically saturated with or covered with water.

Emergent Herbaceous Wetlands perennial herbaceous vegetation accounts for greater than 80% of vegetative cover
and the soil or substrate is periodically saturated with or covered with water.

Table 3: Descriptions of NLCD classes occurring in the Chesapeake Bay region, from Homer et al.
(2015).
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NLCD class freq. water forest field imperv.
η ρ η ρ η ρ η ρ

Open water 17.8% .97 .15 .01 .06 .01 .06 .02 .13

Developed, Open Space 7.1% .00 .05 .42 .34 .46 .33 .11 .13
Developed, Low Intensity 3.1% .01 .06 .31 .24 .34 .21 .35 .18

Developed, Medium Intensity 1.5% .01 .07 .14 .17 .21 .19 .63 .22
Developed, High Intensity .7% .01 .07 .03 .07 .07 .14 .89 .17

Barren Land (Rock/Sand/Clay) .4% .09 .26 .13 .26 .45 .41 .32 .40

Deciduous Forest 26.2% .00 .03 .92 .19 .06 .16 .01 .07
Evergreen Forest 2.3% .00 .03 .94 .18 .05 .16 .01 .05

Mixed Forest 1.3% .01 .05 .92 .18 .06 .15 .02 .06

Shrub/Scrub 1.1% .00 .05 .71 .35 .26 .33 .03 .09
Grassland/Herbaceous .3% .01 .09 .38 .40 .54 .39 .07 .18

Pasture/Hay 1.7% .00 .02 .11 .21 .86 .23 .03 .09
Cultivated Crops 16.9% .00 .03 .11 .22 .86 .24 .03 .09

Woody Wetlands 7.8% .01 .07 .90 .22 .08 .21 .00 .03
Emergent Herbaceous Wetlands 2.7% .11 .21 .07 .22 .81 .29 .01 .05

Table 4: Means and standard deviations of high-resolution land cover class frequencies within blocks
labeled with each NLCD class, computed on the state of Maryland.

set. One option, which we take in our experiments below, is to manually extract these parameters
from the NLCD class specifications.

However, direct use of interval constraints in the statistics matching module of our network fails to
produce the label super-resolution results described in the main text. While the bounds may satisfied,
the true distributions of high-res classes given NLCD labels is obscured. For example, the “Open
water” class denotes anywhere between 75% and 100% of water in the 30× 30 block (see Table 3).
But all values in this range are not equally likely, as Table 2 shows: In fact, on average 97% of the
1m×1m pixels are water. This is because the majority of the blocks labeled “Open water” are in the
middle of a lake, river, or ocean, and only a small fraction has a smaller percentage of water. Thus
it is undesirable to enforce them strictly in each image as (Papandreou et al. (2015))’s EM-Adapt.
Similar observations hold for most classes – both those with a single frequent high-res label (Open
Water, Evergeen Forest) and not (Developed) – so a Gaussian model fits the data better.4

The other problem with direct use of models in (Pathak et al. (2015); Papandreou et al. (2015)) is
that all NLCD classes c overlap with others in one or more 1m land use labels y, especially in case of
urban classes, and the differences are slight. In particular, learning of the (fine) impervious surface
label is based on very slight variation in the four (coarse) developed classes, which often contain
more field and tree pixels than impervious pixels.

In Table 5 we show our Gaussian models for statistics matching lead to dramatically better label
super-resolution results than direct use of interval constraints, where overall loss is represented as
minimum L2 distance from the output distributions to the target interval (and no penalty is given
when label counts fall within the target interval).

D LAND COVER CHANGE DETECTION

Given two signals (raw images or land cover predictions) in the same geographical location obtained
from two different years, we scan through 240 × 240-meter windows and compare the two signals
in the following way to detect land cover change:

1. To reduce color shift in each channel, we calibrate signals from one year to another. In par-
ticular, we apply a least square linear regression model, taking each pixel from the source

4In fact, a multi-modal distribution might be even more appropriate, and could be accommodated in our
approach that separates the label counting and statistics matching modules.
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all developed
acc% iou% acc% iou%

HR only 90.5 78.1 78.1 62.2
SR only 80.5 64.3 71.4 51.2
interval 72.7 48.1 54.2 32.9

Table 5: Comparison of super-resolution results using our approach and modifying our approach to
use interval constraints, trained on evaluated on a variant of the Maryland 2013 dataset.

signal as input (multi-channeled, ignoring spatial information), to predict the correspond-
ing pixel value in the target signal. Then we use the predicted pixel values as calibrated
signals.

2. After calibration, we compute the mean absolution difference across all pixels, between
two signals. If the resulting value is above a certain threshold, we report this detected
change.

Figure 3 shows detected land cover change. We conclude that using the raw NAIP satellite images
as signals yields poor results, whereas using land cover predictions by our model as signals yields
reasonable land cover change detection results.

E LAND COVER WEB APPLICATION

We created a web application - shown in Figure 8 and accessible online at http://
landcovermap.eastus.cloudapp.azure.com:4040/ - that lets users interactively
query our best models by clicking in a map interface. This tool lets us easily test the qualitative
performance of our models in a variety of settings (e.g., in urban vs. rural areas), compare the out-
puts of different models side-by-side, and communicate our results with domain experts that will
ultimately use this landcover data. We summarize the functionality of the tool as follows:

1. Users can “paint” land cover predictions onto an ESRI World Imagery basemap and adjust
the opacity of the predictions to see how the predictions match up with the underlying
imagery (note that the predictions are not made with the ESRI World Imagery but with
NAIP images shown in the right sidebar).

2. After selecting an area for prediction on the map, users can switch between which model
output is displayed by clicking on the different predictions under the “Land Cover Pre-
dictions” heading in the right sidebar. Our tool currently shows predictions from our best
performing HR+SR model described in Section 3.1 on the left, and predictions from a
model trained with US wide data not described in this paper on the right.

3. Users can manually set a weighting scheme used to modify the model’s predictions by
adjusting the sliders shown in the sidebar. These weights will be applied to all predictions
(clicks) after they are set.

F ON OTHER APPLICATIONS:
FOREGROUND-BACKGROUND SEGMENTATION IN A BOUNDING BOX

It may seem that having available a joint distribution over coarse and fine labels is a rare situation.
However, we can put ourselves into that situation in multiple ways, because the learning is often
robust to errors in estimates of these distributions. In neither one of our two main applications was
the estimate of the distribution exactly right, and the results were fairly robust to variation in the
distribution models.

For example, for land cover classification, we could set the target distributions based on the descrip-
tions in the NLCD specification (Table 3). Indeed, we found that this gave similar results, although
more noise was seen in classes like ”Water” and Evergreen Forest” where the specification allows
for a wide interval (e.g., [0.75,1], translated into µ = 0.875 and σ = 0.25/

√
(12)) but the true
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Figure 8: Web application that lets you interactively query our best HR+SR model for any area
in the United States. The application shows the NAIP input imagery which the model is run on,
the corresponding low-resolution NLCD labels for that area, and our high-resolution model out-
put. Users can click on the map which will run model inference on-the-fly and “paint” the re-
sulting land cover predictions over the ESRI basemap. This tool can be found online at http:
//landcovermap.eastus.cloudapp.azure.com:4040/.

mean is much closer to 1 (cf. Table 4). Furthermore, this distribution can be tuned by hand (forcing
the “Water” class to have higher proportion of water than what was in the NLCD description, for
example). If there are only a handful of coarse and fine-grained labels, then such experimentation is
not unreasonable. This means that many application scenarios can benefit from our approach.

As a way of an example, consider segmentation of cropped pedestrians. We show here that by
providing our algorithm with a very rough block guidance, we can get results close to what we can
achieve using fine-grained hand segmentation as training labels. For example, in one experiment
below, the labels in each block of a 6 × 10 grid over the image is simply assumed to follow one
of three uniform distributions (more than 2

3 background, more than 2
3 foreground, and between 1

3

and 2
3 foreground). Such labeling is less expensive for crowd-sourcing as it leads to faster and more

consistent labeling across workers.

This problem then falls squarely into weakly supervised segmentation methods widely studied in
computer vision. These methods excel when there is some spatial structure of the task that can be
exploited. Our problem formulation can capture these cases, although in the main text we focus
on the cases where traditional weakly supervised models are ill-suited. We briefly demonstrate
this by performing foreground-background segmentation of pedestrians taken from the Cityscapes
and CityPersons datasets (Cordts et al. (2016); Zhang et al. (2017)). We extract images from the
bounding boxes in the “pedestrian” class, and use 5700 images of a standardized size of 82× 200 in
training.

As in the rest of the experiments, we first use a spatially invariant small U-Net model with 4 up-
sampling and down-sampling layers and 16 filters in each layer. In training, we divide each 82×100
image into eight 41 × 50 blocks and give the counts of foreground pixels in each block as input to
the statistics matching layer. For the coarse target distributions, we use the true label frequencies
as means, with a fixed variance (σ2 = 0.1). (Alternatively, we could quantize the frequencies into
buckets [0.1, 0.2), [0.2, 0.3), etc., as in the lymphocyte application – see Section 3.2 – but we found
that this does not affect the results.)
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We train three models: using our super-resolution technique, using L2 distance between frequencies
as the loss, and using an interval constraint with a radius of 0.2 (see Appendix C). We compare the
results with baseline models trained on high-resolution data with pixelwise cross-entropy and L2

losses.

Because our main applications’ focus on spatially invariant segmentation of large images, we again
use the core U-Net architecture, which applies the same convolutional filters uniformly across im-
ages. The core segmentation network could simply be replaced with any other model. In particular,
for bounding box segmentation, a better suited core network would have different weights going to
different pixel labels at the output because spatial invariance is violated in this application: Pixels
close to the edges, and especially corners of the box, are more likely to be background pixels.

The results are shown in the first five rows of Table 6; some example segmentations can be seen in
Figure 9.

Figure 9: Segmentations of pedestrians from the Cityscapes dataset, small U-Net model. Rows top
to bottom: input image, ground-truth segmentation, super-res model output, high-res model output.

In an extension to these experiments, we used a larger U-Net variant (24 filters in each layer and a
fully connected bottleneck layer) to train pedestrian segmentation models given quantized finer data.
Each training image was divided into a 6 × 10 grid of 13 × 20 blocks, each of which was reduced
to one of three labels depending on the frequency of foreground (pedestrian pixels): [0, 13 ), [

1
3 ,

2
3 ),

[ 23 , 1] – roughly, “background”, “boundary”, and “foreground”. The super-resolution model was
trained as above, yielding the example segmentations in Fig. 10. The results are in the last two rows
of Table 6. Although the super-res model sees no low-resolution data in training and thus appears
to be more sensitive to fine features, it locates object boundaries comparably to the high-resolution
model.

While pedestrian segmentation is no longer considered too challenging a problem due to the size of
the existing labeled data, this example illustrates that our technique can be used to reduce the costs
of crowdsourcing to acquire such labels for new object classes. Furthermore, it is possible to ac-
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core criterion training label dim. acc% iou%
small super-res 2× 4 68.5 49.4
small interval 2× 4 67.4 46.1
small L2 distance 2× 4 66.4 48.4
small high-res (L2) 82× 200 75.8 58.0
small high-res (cross-ent) 82× 200 74.4 59.2
large super-res 6× 10 76.3 59.8
large high-res (L2) 82× 200 80.3 65.2

Table 6: Results of Cityscapes segmentation models.

Figure 10: Segmentations of pedestrians from the Cityscapes dataset, large U-Net model. Rows top
to bottom: input image, ground-truth segmentation, quantized frequencies of “pedestrian” pixels in
13×20 blocks (label data seen in super-res training), super-res model output, high-res model output.

quire such labeling automatically without crowdsourcing. For example, one of the co-segmentation
techniques or class activation mapping techniques (Zhou et al. (2016)) can be used to gain an ap-
proximate segmentation from which these coarse labels can be derived.

Possibly the very first and the simplest unsupervised co-segmentation technique is the probabilistic
index map model (PIM) of Jojic & Caspi (2004), later extended in various ways, e.g., (Winn &
Jojic (2005); Jojic et al. (2009)). The basic probabilistic index map model can be implemented
in less than a dozen lines of code. It analyzes a collection of approximately registered images
(such as object crops) using simple Gaussian color models. The model assumes that while the
prior over class correspondences for image pixels is shared across the collection, the color palette
(the means and variances of the Gaussian components only apply to a single image, so that each
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Figure 11: Probabilistic index map with 8 indices (segments) learned using (Jojic & Caspi (2004))
is shown on the left. The map is a prior for segmentation of individual images, each following
a different palette: a different image-specific Gaussian mixture with 8 components. On the right,
we show inferred grouping of the 8 segments into two – foreground and background, based on the
assumption that the left edge and the right edge are most likely background.

image has its own palette). This model then discovers groupings of pixels (such as the torso area
of the pedestrian images) that are consistently grouped into segments of uniform color across the
image collection, even if that color can vary drastically from one image to another. Once the images
are jointly (over)segmented like this into a fixed number segments (in our case, 8, as shown in
Fig. 11), we can assume that the left and right edge of the crops are more likely to be background
than foreground and assign these segments to the background and the rest to foreground (Fig. 11).
This foreground/background assignment is performed probabilistically, i.e., based on the statistics
of segment uses along the crop edges. In addition, the consistency of segmentation is controlled
though clipping the variances of the Gaussian models from below, as this encourages collection-
generalizing over image-specific segmentations. Some examples of image segmentations are shown
in Fig. 12, where we also demonstrate that such automatic segmentation can be used to estimate
the 13 × 20 block distributions in the 6 × 10 grid and use them as such, or sort them into the
three categories as in Fig. 10. While the PIM model on its own does not produce excellent fine-
grained segmentation of individual images, as it cannot reason about texture features, it can produce
reasonable approximations to the block segmentation that would allow our label super-resolution
network to yield segmentations as discussed above.

Another application idea is to simply use positive and negative examples of pedestrians cropped from
the Cityscapes dataset and assume that in positive examples at least 60% of pixels are pedestrians,
while in negative crops of urban scenes, that percentage is less than 5%.

The intent of this toy example is to demonstrate that the label count constraints are abundant in
computer vision, and show that label super-resolution models can be fairly robust to approximations
of these constraints.

In fact, count constraints are not uncommon in applications beyond computer vision. A recent
natural language processing paper (Srivastava et al. (2018)) addresses the problem of learning the
features of important emails through soft guidance on groups of emails (emails from this person are
usually important; emails from this domain are rarely important, emails sent between 9-10am are
important 60% of the time, etc.). Similar situations arise in public health, when different studies
provide different statistical summaries for groups of patients and the causes are not separated (e.g.,
prevalence of certain tumors in patients of certain age, association with certain lifestyle choices,
etc.). Analysis of individual detailed medical records could lead to learning to make fine-grained
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Figure 12: Unsupervised segmentation maps obtained using the probabilistic index map model
from Fig. 11 are shown in the first row for images in the second row. The third row shows fore-
ground/background segmentation based on the segment grouping in Fig. 11, and the final row shows
block estimates of statistics on foreground pixel counts, which can then be used as coarse labels in
Fig. 10. This is just one example in which coarse labels can be created in an unsupervised manner.

predictions for individual patients without having these labels in training. Our technique can be
adapted to these applications as well.
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