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Abstract

The prediction of human shifts of attention is a widely-
studied question in both behavioral and computer vision,
especially in the context of a free viewing task. However,
search behavior, where the fixation scanpaths are highly de-
pendent on the viewer’s goals, has received far less atten-
tion, even though visual search constitutes much of a per-
son’s everyday behavior. One reason for this is the absence
of real-world image datasets on which search models can
be trained. In this paper we present a carefully created
dataset for two target categories, microwaves and clocks,
curated from the COCO2014 dataset. A total of 2183 im-
ages were presented to multiple participants, who were
tasked to search for one of the two categories. This yields
a total of 16184 validated fixations used for training, mak-
ing our microwave-clock dataset currently one of the largest
datasets of eye fixations in categorical search. We also
present a 40-image testing dataset, where images depict
both a microwave and a clock target. Distinct fixation pat-
terns emerged depending on whether participants searched
for a microwave (n=30) or a clock (n=30) in the same im-
ages, meaning that models need to predict different search
scanpaths from the same pixel inputs. We report the results
of several state-of-the-art deep network models that were
trained and evaluated on these datasets. Collectively, these
datasets and our protocol for evaluation provide what we
hope will be a useful test-bed for the development of new
methods for predicting category-specific visual search be-
havior.

1. Introduction

How humans allocate their spatial attention, overtly mea-
sured by changes in eye gaze, is a question having clear
benefits to both computer and behavioral vision. For behav-
ioral vision, a model that can predict the sequence of gaze

Figure 1: A viewer’s scanpath while searching for a mi-
crowave. Note the clear preference for fixating locations
on the kitchen countertop, a behavior that would not be re-
liably captured by saliency maps from bottom-up models.
Can computational models predict the priority maps under-
lying such search scanpaths? In this paper, we propose a
behavioral dataset that provides a useful test-bed for quali-
tative and quantitative evaluation of this important task.

fixations made in response to an image would be a source
of innumerable hypotheses for behavioral testing that would
accelerate our understanding of human attention. For com-
puter vision, an ability to predict fixation locations would
similarly drive the development of next-generation systems
that could intelligently anticipate a user’s needs or desires.
In one sense this mutual benefit has already been realized.
The goal of predicting fixation behavior in a free-viewing
task has fueled the development of saliency models, so
much so that there is an active competition for best per-
formance1, and these methods are increasingly being used
in computer vision applications ranging from object detec-
tion [27] to intelligent image editing/re-targeting [10]

However, it is important to realize the distinction be-

1http://saliency.mit.edu/results_mit300.html

4321

http://saliency.mit.edu/results_mit300.html


tween “saliency” and “priority”. Priority, as the term is used
in the fixation prediction literature [38], refers to a general
prioritization of image locations for the purpose of predict-
ing gaze, with the term “saliency” referring to a specific
type of prioritization–one based on information solely in
the image input (e.g., feature contrast, as in the saliency
model by Itti et al. [15]). For this reason, saliency mod-
els are often described as “bottom up”; they will produce
the same output for an image regardless of the goals of the
person. Bottom-up saliency models have historically been
contrasted with “top-down” models of attention control, al-
though this dichotomy has become strained both in theory
[29] and by recent saliency models explicitly or implicitly
incorporating limited top-down information in their predic-
tions [17, 18]. In general, “top-down” models of attention
control recognize that the vast majority of meaningful gaze
behavior is made in the service of specific tasks and goals.
Moreover, these tasks or goals can be entirely arbitrary. If
a person walks into an unfamiliar kitchen with the task of
warming a cup of tea, their goal might be to find a mi-
crowave oven. To mediate this goal, priority should there-
fore be assigned to the locations in the kitchen input having
features offering the most information about microwaves.
But if this person’s task was to check the time, their goal
would be to find a clock and these features should be prior-
itized in the input instead. These different microwave and
clock prioritizations would both be considered top-down,
and different from bottom-up prioritization in that the same
visual input would lead to potentially very different fixation
behavior. Perhaps more useful than a bottom-up/top-down
dichotomy would be to consider a set of possible priority
maps equalling a set of tasks that might be engaged given
an image input, with the prioritization output by a saliency
model being specific to the relatively minimal task of free-
viewing.

The present study focuses on goal-directed behavior, and
specifically on a visual search task. Visual search, the hu-
man analog to object detection in computer vision, is ar-
guably the simplest of goal-directed behaviors—there is an
object goal, called the “target”, and the task is to determine
the location of this target goal in an image (or to conclude
that it is absent). This goal-specific prioritization is mea-
sured behaviorally by an increase in the probability of fixat-
ing image locations having target features, with this pref-
erential direction of attention referred to as “target guid-
ance”. Target guidance during search was first quantified
using very simple targets having simple features that were
known to the searcher (e.g., [34]). This work was followed
by computational models that used more complex images
as inputs, but still assumed perfect knowledge of the tar-
get’s features (e.g., [37]). Most recently, search guidance
has been shown to targets defined only by their object class
[21, 22, 28, 31, 32, 35, 36, 39, 40], making the question

more aligned with efforts in computer vision. The study
presented in this paper used a categorical search task, and
specifically asked people to search for either microwave or
clock categorical targets in kitchen scenes, as in the exam-
ple shown in Figure 1.

A model’s success in predicting fixation behavior de-
pends on the availability of data that can be used for train-
ing. Saliency models are again an excellent example of this,
with the currently best performing models all being deep
neural networks trained on the fixations of people viewing
large image datasets [2, 16, 17, 33]. Here we attempt to
do the same for visual search. The prediction of fixation
behavior during categorical search is currently limited by
the availability of training data. The few datasets that could
be used to train a search model are either relatively small
and limited to people [8] or large and including more tar-
get categories (six classes of animals) but from a task in
which participants were instructed to ”find all animals in
the scene” [11] rather than a more standard search task hav-
ing target-present and target-absent trials. There is also the
POET dataset [24], which contains fixation data from 28
people viewing 6270 images from VOC2012 [9] depicting
ten target classes (cat, dog, boat, aeroplane, horse, cow, bi-
cycle, motorbike, sofa and dining table), but the task was
two-alternative forced-choice object discrimination and not
visual search. Our microwave-clock-search dataset (MCS)
was collected using a categorical visual search task with in-
terleaved target-present and target-absent trials. It contains
high-quality fixations obtained under well controlled labo-
ratory conditions, and is large enough to train deep network
models. Additional effort was expended in collecting a test
set of images that depicted both microwaves and clocks, and
in the use of these images to evaluate the success of state-of-
the-art deep learning models in predicting search scanpaths
for these two target categories.

2. Behavioral Methods and Data
Two behavioral data collection efforts were conducted

for this study. The first involved collecting eye move-
ment data from people searching for targets from either
the microwave or clock categories (not both). This was
done for a large number of images with the goal be-
ing to create a dataset of fixation-labeled images large
enough for model training. The second effort again in-
volved collecting gaze fixation data for the same target
categories, but this time for a smaller and more con-
trolled dataset and using a larger number of participants.
Here our goal was to obtain a valid ground truth for
search behavior against which models could be evaluated.
Both the training and testing images were selected from
COCO2014 [20]. The training and testing datasets are
available at https://www3.cs.stonybrook.edu/
˜cvl/projects/coco_search/index.html, and
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Figure 2: Representative images and scanpaths from our dataset for viewers searching for a clock. Each image was seen by
multiple viewers, and their gaze scanpaths were collected. Note the clear difference in behavior relative to the scanpath in
Figure 1.

some example images and scanpaths are shown in Figure 2.

2.1. Training data

Given the practical costs and limits associated with the
collection of high-quality fixation behavior (200 search im-
ages ≈ 1 hour of a participant’s time in the laboratory),
our current effort was restricted to just two target cate-
gories: microwaves and clocks. The microwave category
in COCO2014 [20] has 1089 images in their training set
and 512 images for validation. The clock category has 3159
training images and 1704 validation images. However, sev-
eral criteria were imposed on the selection of training im-
ages: (1) images were selected only from the training sets
for the microwave and clock categories and images overlap-
ping with the testing data were excluded. (2) Images were
excluded if they were labeled as containing people or ani-
mals. This was done to avoid the known strong biases to
these categories that might skew our predictions of atten-
tion control [3, 17]. (3) Only images of analog clocks were
selected. This latter constraint, which was implemented by
manual exclusion of images having digital clocks, was in-
troduced because the features of analog and digital clocks
are very different and this would be expected to create vari-
ability in the search behavior and reduce data quality. As

a result of these exclusion criteria, the microwave-clock
dataset used for training in this study consisted of 689 im-
ages containing microwaves and 1494 images containing
clocks.

Because a search task requires participants to judge for
each image whether the target is present or absent, the
target-present (TP) images were balanced against an equal
number of target-absent images (TA). TA images were se-
lected randomly from the COCO2014 training images2 such
that: (1) none depicted an instance of the target, and (2) all
depicted at least two instances of the target’s siblings, where
a microwave sibling was defined as an oven, a toaster, a re-
frigerator, or a sink object under the parent category of ap-
pliance, and a clock sibling was defined as a book, a vase,
scissors, a hairdryer, a toothbrush, and a teddy bear under
the parent category of indoor. This was done to discourage
TA responses from being based on scene type (e.g., a city
street scene would be unlikely to depict a microwave).

The large size of the dataset required that the search im-
ages for each target category be distributed over groups of
searchers. For the microwave dataset, images were divided
into 8 sub-groups and each sub-group was viewed by a sin-

2In the released dataset, there are more TA images than TP due to ad-
ditional criteria being imposed on the selection of TP images for analysis.
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Figure 3: Example images from the training (top row) and testing (bottom row) datasets. From left to right: a hard-to-find
microwave, an easy-to-find microwave, a hard-to-find clock, an easy-to-find clock.

gle participant. Eight participants, at minimum, were there-
fore needed to view the entire microwave dataset. Given a
final total of 27 participants in the microwave search task,
each TP/TA image was searched by 3-4 different partici-
pants. For the clock dataset, images were divided into 20
sub-groups, resulting in each of the TP/TA images being
searched by 1-2 different viewers based on a total of 26 par-
ticipants.

Participants were verbally instructed to search for the
designated target category and to make a target present
or absent judgment for each image. Specifically, they
pressed the “yes” button to indicate that they found the
target, and the “no” button to indicate their judgment that
the target does not appear in the image. Sound feed-
back was provided after incorrect responses. Participants
viewed the images at a distance of 47cm from the monitor
(resolution:1280×800), fixed by chin rest, and they were
asked to fixate a central point before the display of each
search image. The location of this fixation point corre-
sponded to the center of the following search image, thereby
forcing each search to begin near the image’s center. The
range of the search display visual angles were 12◦-28.3◦ in
width and 8◦-28.3◦ in height. Eye position was sampled
during the entire experiment at a rate of 1000 Hz using an
EyeLink 1000 eye tracker (SR Research) in tower-mount
configuration. Average tracker spatial error was less than
0.5◦ and maximum spatial error was less than 1.9◦, based
on calibration. Viewing was binocular, but movements of
only the right eye were recorded. After removing incor-
rect trials and target-present trials in which the target was
not fixated, 16184 search fixations remain for the images in
the training dataset. Table 1 provides descriptive statistics
for average number of fixations, grouped by target type and
TP/TA condition. Figure 3 shows examples of easy-to-find
and hard-to-find microwave and clock targets.

2.2. Testing data

A total of 40 images from COCO2014 were selected for
testing, none of which overlapped with the set of training
images. In addition to the criteria imposed on the selection
of the training images, three more criteria were used in se-
lecting the test set: (1) each of these images contained both
a single instance of a microwave and an analog clock, (2)
the size of the target was less than 10% of the image, and
(3) the target could not appear at the image’s center, as im-
plemented by selecting images to avoid the center of a 5x5
grid. In our own subjective opinion, these additional criteria
created what we consider to be a set of moderately-difficult
images requiring active searches for the target goals, with
an exemplar of each goal being in each image. Among the
40 TP test images, 27 images were from the COCO2014
training set and 13 were from the COCO2014 validation
set. Similar to the TA images described for training, 40 TA
images were selected from the COCO2014 validation set
using the same selection criteria already described for the
training dataset.

The apparatus used for behavioral data collection (Eye-
Link 1000), the experimental paradigm (microwave and
clock categorical search tasks), and the procedural details,
were all identical to what was described for the training
dataset, with two exceptions: an ”analog clock” was specif-
ically mentioned in the instructions to participants tasked
with searching for a clock, and there was no accuracy feed-
back following an incorrect response. The image stimuli
were padded and resized to best fill a 1680 × 1050 pixel
monitor (without changing image orientation), resulting in
a visual angle of 54◦×35◦. A group of 30 participants
searched for a microwave target and another group of 30
participants searched for a analog clock target. None of
these people participated in data collection for the training
dataset.
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Figure 4: Example of cumulative foveated images. Top row: the locations of three fixations (columns) in a behavioral
scanpath. Bottom row: the corresponding cumulative foveated images input to a model. Note that the bottom-left image
shows the eccentricity-dependent blurring from a single foveated image, one based on the center fixation shown in the top-left
panel. Although not intended to be an account of human information gain and retention over multiple fixations, the illustrated
technique of cumulative foveated images reflects information accumulation over fixations by progressively (bottom-left to
bottom-right) de-blurring a blurred foveated image based on high-resolution information obtained at each new fixation.

3. Models

Predicting the fixation scanpaths made during categori-
cal search is extremely difficult, and in this sense our dataset
is challenging because it reflects the difficulty of this task.
In this context, and as a first pass, we developed several
models for predicting this gaze behavior using state-of-the-
art computer vision techniques. Our approach is to treat
scanpath prediction as a multi-class classification problem
by discretizing the image into a 10×16 grid. Each model
considered here was trained as a classifier that predicts one
location from among 160 possible locations, where each lo-
cation corresponds to an image patch of 32×32 pixels.

The aim of these models is to predict the next fixation lo-
cation conditioned on the search target and the information
accumulated from previous fixations. We considered two
approaches for representing this accumulated information,
using either a cumulative foveated image (see Figure 4) or
a recurrent neural network (RNN). The following sections
detail these two approaches.

3.1. Integrating information across foveated images

Humans have a foveated retina, meaning that we have
high visual acuity only at the 1◦ region surrounding our
central vision (corresponding to our foveas), and that our
vision becomes progressively more blurred with distance
away from the currently fixated image location. To ap-

proximate the fact that people have high-resolution visual
information centrally and lower-resolution visual informa-
tion everywhere else, we obtain for each search fixation
from each participant what we call a ”foveated image”.
The bottom-left panel in Figure 4 shows one such foveated
image based on the central fixation location shown in the
upper-left panel. Specifically, in the current implementa-
tion each high-resolution foveal region corresponded to a
16 × 16 pixel image patch (about 1◦ of visual angle), with
pixels outside this 16× 16 region blurred using the method
from [25].

Information maximization theories of fixation predic-
tion [23, 26] suggest that attention control follows a greedy
extraction of information from an image, which in the cur-
rent context is evidence for the target goal. One way to rep-
resent this information integration in a model is to assume
a build-up of high-resolution foveal images over the course
of the multiple fixations made during search. We refer to
this as a cumulative foveated image (Figure 4), where the
high-resolution information accumulated with each fixation
is a form of scanpath of reduced uncertainty (or depleted
information) about whether the fixated locations contained
the target. The more fixations that are made the clearer
the image becomes, with ”clarity” referring to a progres-
sive reduction in the uncertainty introduced by the foveated
retina [37]. This can be seen in Figure 4 by looking left
to right across the bottom row; the middle and rightmost
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Dataset Category Mean (SD) Error (prop)

TP Training Microwave 5.46 (2.55) .18
Clock 4.52 (3.50) .15

TP Testing Microwave 6.76 (2.12) .09
Clock 5.33 (1.84) .06

TA Training Microwave 7.95 (4.05) .08
Clock 11.14 (6.82) .10

TA Testing Microwave 14.36 (2.45) .04
Clock 15.85 (2.31) .05

Table 1: The average number of fixations made before the
button press for the target-present and target-absent im-
ages from both the training and testing datasets. Note that
this value includes the starting fixation at the image’s cen-
ter. The proportion of button-press errors are also reported.
Consistent with the search literature, more fixations were
made in target-absent search compared to target-present.
For the target-present data, microwave search took an aver-
age of one additional fixation compared to clock search re-
gardless of dataset. Note, however, that the variability in the
number of fixations was greater for the training dataset than
the testing dataset. One potential reason for this is that tar-
get location and size, and the depicted number of instances
of the target, were all uncontrolled variables in the training
dataset (so as to have a large number of images). A con-
sequence of this is that search task difficulty varied more
for images in the training set, meaning that some training
search images were very easy and others were very difficult.
For the testing dataset, additional restrictions were imposed
on target size and location (distance from the center) so as
to sharpen the behavioral ground truth (at the expense of a
far smaller number of images), with an unintended conse-
quence of this being less variability in the number of fix-
ations. Another potential reason for the greater variability
in the training dataset is because each image in the training
dataset was viewed by very few participants (1-4), whereas
each testing image was viewed by 30 participants. This
smaller number of viewers for each image also likely con-
tributed to greater variability in the number of fixations.

image contains less blur than the one to its immediate left.
To model this behavior, we trained a CNN [19] to input

a cumulative foveated image based on a given fixation in a
scanpath and output the location of the next fixation. The
architecture of our CNN was based on ResNet-50 [13] with
the last average-pooling layer and fully-connected layer re-
moved. We added two 1×1 convolutional layers and a soft-
max layer that maps the feature maps from ResNet-50 to a
location probability map (from which we make fixation lo-
cation predictions). We trained the network on the images
from our training dataset, starting from a ResNet-50 [13]
that was pre-trained on ImageNet [6]. We used a Winner-

ResNet-50

RNN
ℎ" ℎ#
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𝑎"
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training testing

Figure 5: The general pipeline of the RNN-based methods.
A pre-trained ResNet-50 is used to obtain the feature maps
from an image, and at each step i we extract the feature vec-
tor xi at the human ground-truth fixation location ai. This is
done both during training (shown by solid red arrows) and
during testing for fixation location prediction âi (shown by
dashed green arrows). xi and hi are then fed into the RNN
to predict the next fixation.

Take-All (WTA) strategy [4] on the location probability
map, and output the location with the highest probability
as the predicted fixation location.

3.2. Information integration using RNNs

An alternative approach to address the integration of in-
formation obtained over multiple search fixations is to use
a Recurrent Neural Network (RNN). Figure 5 shows the
pipeline of our RNN models. We use a ResNet-50, pre-
trained on ImageNet, to extract feature maps from each im-
age. At step i, a 2048-dimensional feature vector, xi, is
extracted from the feature maps at the attended location, ai,
with xi then linearly embedded to 512 dimensions and used
as input to the RNN-cell at this step. The hidden state hi+1

is updated based on the current input xi and the previous
hidden state hi. The resulting new hidden state hi+1 is then
used to predict the next action âi+1. The first fixation a0 is
always assumed to be at the image’s center, per each par-
ticipant’s instruction. Treating the selection of actions as a
categorical classification problem, we train the RNNs using
cross-entropy loss between the behaviorally-observed fixa-
tions ai and the predicted fixations âi. During training the
human fixation ai is used to select the feature vector xi,
whereas at testing the predicted fixation âi is used to gen-
erate xi. We consider three types of RNN models in our
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Method Shape Direction Length Position

Behavioral
Agreement

0.956 0.714 0.958 0.927

CNN 0.941 0.621 0.930 0.895
RNN 0.917 0.677 0.883 0.876
LSTM 0.916 0.684 0.879 0.876
GRU 0.925 0.664 0.902 0.877

Table 2: Scanpath prediction performance for microwave
search.

Method Shape Direction Length Position

Behavioral
Agreement

0.950 0.701 0.950 0.933

CNN 0.913 0.633 0.888 0.893
RNN 0.915 0.673 0.894 0.864
LSTM 0.907 0.669 0.879 0.863
GRU 0.918 0.659 0.900 0.883

Table 3: Scanpath prediction performance for clock search.

benchmarking, including a basic RNN [12], an LSTM [14],
and a GRU [5].

3.3. Incorporating Inhibition of Return

The primate oculomotor system uses Inhibition-of-
Return (IOR) to spatially tag previously attended locations
for the purpose of discouraging attention from returning to
regions where information has already been depleted [30].
To capture this mechanism, we incorporate IOR into all the
benchmark methods by preventing gaze from attending to a
visited region. We do this my masking out a 3 × 3 neigh-
borhood of locations in the location probability map around
each fixated location.

4. Predictions and Performance
We evaluate the predictive success of the benchmark

models in two steps. First, for each model we generate a
6-fixation scanpath (using WTA and IOR) for every image
in the testing dataset. The fixation length is fixed at 6 for
computational convenience, but also because 6 is the ap-
proximate average length of the behavioral scanpaths in the
TP testing data. Second, the search scanpaths predicted by
each model are compared to the behavioral scanpaths from
each participant. This scanpath comparison was done using
MultiMatch [1, 7], which represents scanpath similarity in
terms of five dimensions: shape, direction, length, position,
and duration (see the original sources for details). However,
here we exclude the duration dimension from MultiMatch
because the models tested did not attempt to predict fixa-

tion duration.
Tables 2 and 3 show how well each of the benchmark

models predicted the behavioral scanpaths in the microwave
and clock search tasks. We also report a measure of scan-
path agreement among participants (behavioral agreement),
which was obtained by computing the MultiMatch scan-
path similarity between each participant and all the others.
This can be considered as an upper-bound for the bench-
mark models. As expected, scanpath similarity is highest
among participants, meaning that people agree with each
other more in their search behavior compared to predic-
tions from any of the tested models. That said, bench-
mark model performance was overall quite good (given the
performance ceiling in behavioral agreement). RNN-based
models generally outperform the CNN model, suggesting
that the RNN-based approaches may better capture sequen-
tial decision making in human gaze behavior.

Figure 6 shows scanpaths and action probability maps
from the GRU model searching a single image for either
a clock or a microwave target goal. The action probabil-
ity map predicts the fixation location following the par-
ticipant’s next eye movement. The scanpaths are deter-
mined through peak-picking from this probability distribu-
tion, with IOR. Figure 6a shows a clock search and Figure
6b shows a microwave search, and it is this contrast that
is the most interesting. While the action probability maps
start the same, during the course of search they diverge to
focus on image regions that are specific to the target cate-
gory, namely vertical surfaces in the upper part of the im-
age in the case of clocks and counter-top surfaces stretched
horizontally across the center in the case of microwaves.
So in addition to the benchmark models showing good (but
not perfect) prediction of behavioral scanpaths, future work
may therefore show that they are also able to capture some
effects of scene context on the control of categorical search.

Finally, what is also clear from Figure 6 is that much
work remains to be done on the modeling of goal-directed
attention control. None of the benchmark models managed
to find (fixate) the target on this test trial, regardless of
whether the target was a microwave or a clock. Of course
all of the models would eventually fixate the target if we
have them keep making eye movements, but each of these
additional eye movements lessens the model’s success as
a method of predicting attention control, with a very large
number of fixations being tantamount to complete model
failure The availability of large-scale datasets of fixations
made during categorical search will finally allow deep net-
work methods to be applied to these basic questions in goal-
directed attention control.

5. Conclusions
Here we introduce the Microwave-Clock-Search (MCS)

dataset, a set of images annotated with the fixations of peo-
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(a) Clock (b) Microwave

Figure 6: Scanpath and action probability maps generated by the GRU model during its search for a clock (a) or microwave
(b) target in the same test image. Maps are for shown for each of the fixations, ordered from left to right and top to bottom,
but are limited to only the first six fixations in the scanpath. Even rows: The unfolding 6-fixation scanpath. Odd rows:
Corresponding action probability maps, where a redder color indicates a higher probability of a location being fixated next.

ple searching for either microwaves or clocks. The number
of these fixations depend on a number of factors (microwave
or clock, training dataset or testing dataset, target present or
absent), but the means range from 4.5 fixations to 15.8 fix-
ations and we consider this to be reasonable for revealing
evidence of goal-directed attention control, to the extent it
exists. We used a training dataset and state-of-the-art deep
network models to benchmark performance in predicting
fixations in a separate testing dataset. Early qualitative and
quantitative analyses suggest a promising prediction of be-
havioral scanpaths, but far more work is needed. Our hope
is that these models will form useful baselines against which
novel methods of predicting goal-directed attention control
can be compared.
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[16] Tilke Judd, Frédo Durand, and Antonio Torralba. A bench-
mark of computational models of saliency to predict human
fixations. 2012.

[17] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Tor-
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