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Abstract. We present a fully abstract, denotational model for mobile,
timed, nondeterministic data-
ow networks whose components commu-
nicate in a point-to-point fashion. In this model components and net-
works of components are represented by sets of stream processing func-
tions. Each stream processing function is required to be strongly guarded,
generic and point-to-point. A stream processing function is strongly
guarded if it is contractive with respect to the metric on streams. This
property guarantees the existence of unique �x-points. Genericity is a
privacy requirement speci�c to mobile systems. It guarantees that a func-
tion never accesses, depends on or sends a port whose name it does not
already know. The point-to-point property guarantees that no port is
known to more than two components: the sender and the receiver. Our
model allows the description of a wide variety of networks | in particu-
lar, the description of mobile, unbounded nondeterministic networks. We
demonstrate some features of our model by specifying a communication
central.

1 Introduction

One of the most prominent theories for interactive computation is the theory
of data-
ow networks. In this theory, an interactive system is represented by
a network of autonomous components communicating solely by asynchronous
transmission of messages via directed channels.

A very elegant model for static, deterministic data-
ow networks, whose com-
ponents communicate in a point-to-point fashion, was given by Kahn in [Kah74].
Despite of its elegant foundation, this class of networks is, however, too restric-
tive for many practical applications. In this paper we extend Kahn's model in
two directions.

Firstly, contrary to [Kah74], we model nondeterministic behavior. Like Park
[Par83], Broy [Bro87] and Russell [Rus90], we represent nondeterministic data-

ow networks by sets of stream processing functions. However, in contrast with
[Par83] and [Bro87], our model is fully abstract. This is achieved by considering
only sets of functions which are closed with respect to the external observations.
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The closure idea was used by [Rus90] for the same purpose. However, contrary
to [Rus90], we use a timed model and a di�erent notion of observation. This
allows us to describe a considerably greater class of networks which includes all
the fair merge components described in [PS92]. In fact, we can describe any live-
ness property that can be expressed in standard property-oriented speci�cation
languages for distributed systems [CM88, Lam91, BDD+93]. Moreover, since our
model is fully abstract, we obviously avoid the expressiveness problem known as
the Brock/Ackermann anomaly [BA81].

Secondly, contrary to [Kah74], and also contrary to [Par83], [Bro87] and
[Rus90], we describe dynamically recon�gurable or mobile networks. The formal
modeling of mobility has been a very popular research direction in recent years.
However, most models published so far have been formalized mainly in oper-
ational terms. Examples of such models are the Actor Model [HBS73], the �{
Calculus [EN86, MPW92], the Chemical Abstract Machine [BB90], the Rewrit-
ing Logic [Mes91] and the Higher Order CCS [Tho89]. On the contrary, our
model gives a denotational formalization of mobility. As in the above models,
this formalization is based on two assumptions. Firstly, ports are allowed to be
passed between network components. Secondly, the components preserve pri-
vacy: their behavior cannot depend on ports they do not know. Although it is
well understood how to express privacy operationally, there is less denotational
understanding. Our solution is to require each stream processing function to be
generic. This requirement can be thought of as an invariant satis�ed by any
mobile system. Informally speaking, the genericity property makes sure that a
function never receives on, sends along or sends a port whose name \it does not
already know". By \the ports it does not already know" we basically mean any
port which is not in its initial interface, it has not already received, and it has
not already created itself. Any port created by the function itself is assigned a
\new" name taken from a set that is \private" to the component in question.

Our semantic framework is powerful enough to allow the modeling of both
point-to-point and many-to-many communication. In [GS96a] we model many-
to-many communication. In this paper we concentrate on point-to-point com-
munication. By point-to-point communication we mean that no port is known
to more than two components: the sender and the receiver. Some readers may
wonder why we at all �nd point-to-point communication interesting. After all,
point-to-point communication is only a special case of many-to-many commu-
nication. The main reason is that point-to-point communication allows a tight
control of channel interference. In a point-to-point model the default situation is
no interference at all or a very restricted form of interference. Unrestricted inter-
ference is only simulated by introducing explicit fair merge components for those
channels where this is desirable. In a many-to-many model there is unrestricted
interference by default. The tight control of interference in a point-to-point set-
ting simpli�es both speci�cation (programming) and formal reasoning. Thus, our
interest in point-to-point communication is methodological: we want to combine
the power of nondeterminism and mobility with the simplicity of point-to-point
communication.



There are basically two di�erent variants of point-to-point communication.
In the �rst case, the sender and the receiver of a channel remain the same during
the whole lifetime of the channel. In the second case, the sender and the receiver
of a channel may change. However, at any point in time a channel has not more
than one sender and one receiver. In the �rst case there is no interference at all
| two di�erent components cannot send along the same channel. In the second
case only a restricted type of interference may occur | two di�erent compo-
nents may send on the same channel, but never simultaneously. The advantage
of the �rst alternative is its simplicity with respect to formal reasoning and un-
derstanding. The advantage of the second alternative is that many things can be
expressed more directly. However, the price to pay is a more complicated model.
In this paper we concentrate on the �rst alternative. The second alternative is
investigated in [GS96b].

To keep the model simple components are not allowed to forward ports they
receive on their input channels. Thus, we cannot change the communication
partners of a component. However, we can build up new connections between
components that are already connected. These new connections can be in the
opposite directions of the already existing ones. In our opinion, this facility of
building up new connections is the basic building block of mobility. It allows us
to dynamically change the interfaces of components.

Although we could have formulated our semantics in a cpo context, we de-
cided to base it on the topological tradition of metric spaces [dBZ82]. Firstly,
we wanted to understand the exact relationship between our approach and those
based on metric spaces. Secondly, the use of metric spaces seems more natural
since our approach is based on in�nite streams, and since our strong guarded-
ness constraint, guaranteeing the existence of a unique �x-point, corresponds
straightforwardly to contractivity.

Because of the space limitations, we assume basic knowledge of metric spaces.
For more details on metric spaces we refer to the full version of the paper [GS95].
The full version also provides detailed proofs.

The rest of the paper is organized as follows. Section 2 introduces basic
notions like communication histories and stream processing functions. Section
3 formalizes the privacy invariants of mobile point-to-point systems. Section
4 introduces mobile components. Section 5 is devoted to composition. Section
6 gives an example. Section 7 contains a discussion. Finally, there is a short
appendix containing a metric formalization of streams and named stream tuples.

2 Basic Notions

We model interactive systems by networks of autonomous components commu-
nicating via directed channels in a time-synchronous and message-asynchronous

way. Time-synchrony is achieved by using a global clock splitting the time axis
into discrete, equidistant time units. Message-asynchrony is achieved by allowing
arbitrary, but �nitely many messages to be sent along a channel in each time
unit.



2.1 Communication Histories

We model the communication histories of directed channels by in�nite streams
of �nite streams of messages. Each �nite stream represents the communication
history within a time unit. The �rst �nite stream contains the messages trans-
mitted within the �rst time unit, the second the messages transmitted within the
second time unit, and so on. Since time never halts, any complete communication
history is in�nite.

A message is either a port or a data element . A port is a channel name

together with an access right, which is either a receive right, represented by ?,
or a send right, represented by !. Let N be the set of all channel names and let
C � N . Then ?C = f?c j c 2 Cg is the corresponding set of receive ports and
!C = f!c j c 2 Cg is the corresponding set of send ports. We also write ?!C for
?C [ !C. A data element is any message not contained in ?!N . Let D be the
set of all data elements. The set of all complete2, and partial communication
histories for a channel are then characterized by [(D[ ?!C)�] and ((D[ ?!C)�)�,
respectively. When no ambiguity occurs we use [C�] and (C�)� as short-hands.
This is justi�ed by the convention that D is �xed.

Since ports are exchanged dynamically between network components, each
component can in principle access any channel in N . For that reason we model
the complete and partial input and output histories of a component by named
stream tuples contained in N ! [C�] and N ! (C�)�, respectively. In the sequel
we refer to named stream tuples of these signatures as named communication

histories . Thus, each named communication history assigns a communication
history to each channel name in N . The use of named communication histories
is inspired by [BD92].

2.2 Guarded Functions

A mobile, deterministic component is modeled by a stream processing function

f 2 (N ! [C1
�])! (N ! [C2

�])

mapping complete named communication histories for its input channels to com-
plete named communication histories for its output channels. Note that if no
message is communicated along an input channel within a time unit then the
empty stream, represented by �, occurs in the communication history for that
channel. The lack of this information causes the fair merge anomaly [Kel78].

The functions process their input incrementally | at any point in the time,
their output is not allowed to depend on future input. Functions satisfying this
constraint are called weakly guarded. If the output they produce in time unit t,
is not only independent of future input, i.e., the input received during time unit
t + 1 or later, but also of the input received during time unit t, then they are
called strongly guarded. Intuitively, the strongly guarded functions introduce a

2 For an arbitrary set S, S� denotes the set of all �nite streams over S, and [S] denotes
the set of all in�nite streams over S. See also the appendix.



delay of at least one time unit between input and output. The weakly guarded
functions allow in addition zero-delay behavior.

For any named communication history �, let �#j represent the pre�x of � of
length j, i.e., the result of cutting � after the jth time unit. Then weak and
strong guardedness can be formalized as below.

De�nition 1. (Guarded functions) A function f 2 (N ! [C1
�])! (N ! [C2

�])
is weakly guarded if

8�; ' 2 (N ! [C1
�]); j 2 N : �#j = '#j ) f(�)#j = f(')#j

and strongly guarded if

8�; ' 2 (N ! [C1
�]); j 2 N : �#j = '#j ) f(�)#j+1 = f(')#j+1

We use the arrow + to characterize sets of strongly guarded functions. The
actual formulation of guardedness has been taken from [Bro95a].

A weakly guarded function is non-expansive and a strongly guarded function
is contractive with respect to the metric on stream-tuples. This metric is de-
�ned in the appendix. As a consequence, by Banach's �x-point theorem, strong
guardedness not only replaces the usual monotonicity and continuity constraints
of domain theory but also guarantees unique �x-points of feedback loops.

In the following sections we introduce two important operators on named
communication histories.

2.3 Sum

A sum operator takes two named communication histories as input and delivers
their \sum" as output. We de�ne both a partial \disjoint" sum and a total sum.
For any ' 2 (N ! [C�]), let

act(') = fi 2 N j '(i) 6= �1g

be the set of active channels of '. The partial sum '+  is de�ned if act(') is
disjoint from act( ).

De�nition 2. (Partial sum) Given two named stream tuples ' 2 (N ! [C1
�])

and  2 (N ! [C2
�]) such that act(')\ act( ) = ;. We de�ne their partial sum

'+  to be the element of N ! [(C1 [ C2)
�] such that for all i 2 N

('+  )(i) =

�
 (i) if i 62 act(')
'(i) if i 2 act(')

Note that the partial sum has no syntactic conditions assuring its well-de�nedness.
We therefore also de�ne a total version '$+ . This simpli�es the use of Banach's
�x-point theorem. Totalisation is achieved by de�ning ('$+  )(i) to consist of
only �'s from the �rst moment in which both '#n and  #n are active, i.e., di�er-
ent from �n, the stream consisting of n �'s. For any stream s, by s(n) we denote
its nth element.



De�nition 3. (Total sum) Given two named stream tuples ' 2 (N ! [C1
�])

and  2 (N ! [C2
�]). We de�ne their total sum '$+  to be the element of

N ! [(C1 [ C2)
�] such that for all i 2 N , n 2 N

('$+  )(i)(n) =

8<
:
 (i)(n) if '(i)#n = �n

'(i)(n) if '(i)#n 6= �n ^  (i)#n = �n

� if '(i)#n 6= �n ^  (i)#n 6= �n

Note that '$+ has a hiding e�ect if act(')\act( ) 6= ;, and that '$+ is equal
to '+  , otherwise.

Theorem4. The total sum operator is weakly guarded.

Proof. The sum ('$+  )(i)(n) depends only on '#n and  #n.

2.4 Projection

The domain of any named communication history � 2 N ! [C�] is N , the set of
all channel names. However, in connection with generic functions and network
composition, we often need to restrict the visible messages in � with respect to
a history of known channel names O 2 [P(N)]. To achieve this we introduce a
projection operation �jO which, for each time unit k, replaces the �nite stream
of messages received during time unit k on each channel contained in N n O(k)
by �.

De�nition 5. (Projection) For any named communication history � 2 (N !
[C�]), we de�ne its projection �jO on O 2 [P(N)] to be the element of N ! [C�]
such that for all i 2 N; k 2 N

�jO(i)(k) =

�
�(i)(k) if i 2 O(k)
� otherwise

Theorem6. The projection operator is weakly guarded.

Proof. �jO(i)(k) depends only on �#k and O#k.

3 Privacy Invariants

A stream processing function f 2 (N ! [C1
�])! (N ! [C2

�]) used to model a
component is not only required to be strongly guarded, but also to be generic

and point-to-point . In this section we formalize these additional properties. As
already explained, they can be thought of as privacy invariants satis�ed by any
mobile point-to-point system.



3.1 Genericity

The genericity constraint requires a function to access only ports contained in the
function's initial, static interface; ports already created by the function itself or
ports already received by the function. Genericity can be described with respect
to Figure 1, as follows.

rngI,O (θ,f (θ)) f (θ))I,O (θ,domf

P

!j

I

i

j
O
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o
!o

?p

?i

...
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Fig. 1. Generic Stream Processing Function

Initially, each generic function receives on a designated set of input channels I
and sends along a designated set of output channels O, disjoint from I . These two
sets name the static channels or the initial wiring. To make sure that the dynamic

channels created by the di�erent components in a network have di�erent names,
each generic function is assigned a set of private names P . Obviously, this set
should be disjoint from the static interface. Thus, we require that (I[O)\P = ;.

During computation the sets of accessible ports gradually grow. For example,
if the function receives a receive port ?i then it may receive on the channel i,
and if it receives a send port !o then it may send along the channel o. Simi-
larly, whenever the function sends a send port !j, whose channel j 2 P it has
created itself, it may later receive what is sent along j, and whenever it sends
a receive port ?p, whose channel p 2 P it has created itself, it may itself send
messages along p which eventually are received by the component which receives
the receive port.

For a given point in time n and a named input history �, the sets of accessible
input and output channels are represented by respectively domI;O(�; f(�))(n)
and rngI;O(�; f(�))(n). The functions domI;O and rngI;O are formally de�ned at
the end of the next section.

3.2 Point-to-Point Communication

To ensure the form of point-to-point communication investigated in this paper,
the networks have to maintain the following invariant: each channel is used
by at most two components, the sender and the receiver. As a consequence,
the sender and the receiver of a channel cannot change during the lifetime of
channel. This type of point-to-point communication can be captured by a few



simple constraints given that we do not allow forwarding of ports. Firstly, the
creator of a channel is allowed to send only one of the channel's ports. If it sends
a receive port then it keeps the send port, and the other way around. Secondly,
we also insist that the same port is not sent more than once. Since we also restrict
received ports from being forwarded, and di�erent components to have disjoint
sets of private channels, there is no way in which more than two components
can gain access to the same channel.

BB

A C A C

!i !i !i

B

i

i j !j

Fig. 2. Forwarding and Point-to-Point Privacy

To explain why we do not allow forwarding, let us have a careful look at a small
example. Given a mobile system consisting of three components A, B and C.
Assume there is a channel connecting A to B and a channel connecting B to
C, but no channel connecting C to A. Now, suppose the component A creates a
channel i; it keeps the receive port and sends the send port !i to the component
B, which again forwards !i to C. We then obtain the network on the left-hand
side of Figure 2. In [GS96b], where we model the more general form of point-
to-point communication, we allow forwarding by constraining the functions to
\forget" ports as soon as they are sent. A similar technique could have been used
here. However, this would make the model more complicated. In fact, the whole
advantage gained through the very restrictive communication paradigm would
be lost. Since the emphasis in this paper is on a simple model we have chosen
not to include forwarding. Nevertheless, we are able to express a nontrivial class
of mobile networks.

Forwarding can be simulated straightforwardly, as indicated by the network
on the right-hand side of Figure 2. The component B does not forward !i, but
a send port !j for a new channel j created by B. Thereafter, any data element
B receives on j is forwarded along i. Hence, B \does not receive or send on i
itself" | it only forwards the data elements sent by C along j. The component
B in the network to the right simulates the \forget-constraint" required for the
component B in the network to the left.

One may ask, how do we impose the point-to-point requirement in our model?
We do that by imposing an invariant on the named communication histories.
The important point to realize is that in a network, where all components have
disjoint sets of private names, and where all components behave in accordance
with the communication constraints imposed above, we may restrict ourselves



to named communication histories in which the same port occurs only once
and where two di�erent ports are assigned di�erent channel names. We use the
arrow

u
! to distinguish named communication histories satisfying these two

port uniqueness constraints from other named communication histories.
Port uniqueness is preserved by projection and summation on stream tuples

whose sets of channel names are disjoint. More precisely, for � 2 N
u
! [C�]; ' 2

N
u
! [C�1 ] and  2 N

u
! [C�2 ] such that C1 \ C2 = ;, we have that �jO 2

N
u
! [C�] and that '$+  2 N

u
! [(C1 [ C2)

�].
As a consequence of the forwarding restriction, any port sent by a function has

to belong to a channel created by the function. Moreover, since static channels
are used for the initial wiring, their corresponding ports cannot be transmitted.
For simplicity we split the set of names N into two disjoint sets | a set of static
channel names S and a set of dynamic channel names A. Because of the above
restrictions, it is enough to consider functions of the following signature

(N
u
! [P

�
])+ (N

u
! [P �])

where P � A and P = A n P .
We are now ready to give the formal de�nitions of domI;O and rngI;O. In this

de�nition, the operator 2 is overloaded to test for containment in a list

De�nition 7. (Domain and range) Given (I; O) � S�S; P � A; I \O = ;; � 2

(N
u
! [P

�
]) and � 2 (N

u
! [P �]). We de�ne

D1 = I

R1 = O

Dn+1 = Dn [
S
i2Dn

fp 2 A j ?p 2 �(i)(n)g [
S
i2Rn

fp 2 A j !p 2 �(i)(n)g
Rn+1 = Rn [

S
i2Dn

fp 2 A j !p 2 �(i)(n)g [
S
i2Rn

fp 2 A j ?p 2 �(i)(n)g

The de�nitions of domI;O(�; �) and rngI;O(�; �) follow immediately

domI;O(�; �)(n) = Dn; rngI;O(�; �)(n) = Rn

Theorem8. The functions domI;O and rngI;O are strongly guarded.

Proof. domI;O(�; �)(n), rngI;O(�; �)(n) depend only on �#n�1 and �#n�1.

Theorem9. The functions domI;O and rngI;O have the following properties

domI;O(�; �) = domI;O(�jdomI;O(�;�); �) = domI;O(�; �jrngI;O(�;�))

rngI;O(�; �) = rngI;O(�jdomI;O(�;�); �) = rngI;O(�; �jrngI;O(�;�))

Proof. By induction on the recursive de�nitions of domI;O and rngI;O.

Genericity can then be formalized as below.

De�nition 10. (Generic functions) A function f 2 (N
u
! [P

�
]) ! (N

u
! [P �])

is generic with respect to the initial wiring (I; O) i�

8� : f(�) = f(�jdomI;O(�;f(�))) = f(�)jrngI;O(�;f(�))



We use the decorated arrow
I;O
+ to denote sets of strongly guarded functions that

are generic with respect to the initial wiring (I; O). In the following we refer to
such functions as mobile.

4 Mobile Components

We model a mobile, nondeterministic component by a set of mobile functions
F . Any pair (�; f(�)), where f 2 F , is a possible behavior of the component.
Intuitively, for any input history each mobile function f 2 F represents one
possible nondeterministic behavior. For any set of functions F we de�ne O(F )
to be the set of all behaviors of F , i.e., O(F ) = f(x; f(x)) j f 2 Fg.

Di�erent sets of mobile functions may have the same set of behaviors. The
reason is that for some sets of mobile functions we may �nd additional mobile
functions which can be understood as combinations of the functions already in
the set. For example, we may �nd a mobile function g which for one input his-
tory behaves as the function f 2 F and for another input history behaves as
the function f 0 2 F , and so on. This means, a model in which a nondetermin-
istic component is represented by an arbitrary set of mobile functions, is too
distinguishing and, consequently, not fully abstract. To achieve full abstraction

we consider only closed sets, i.e., sets F , where each combination of functions in
F , which gives a mobile function, is also in F .

De�nition 11. (Mobile components) A mobile component, with initial wiring
(I; O) � S � S and private names P � A, where I \ O = ;, is a nonempty set
of mobile functions

F � (N
u
! [P

�
])
I;O
+ (N

u
! [P �])

that is closed in the sense that for any mobile function f 2 (N
u
! [P

�
])

I;O
+

(N
u
! [P �])

(8� 2 N
u
! [P

�
] : 9f 0 2 F : f(�) = f 0(�))) f 2 F

It follows straightforwardly that if F1 and F2 are mobile components then
F1 = F2 i� O(F1) = O(F2). Thus, our notion of a component is fully ab-
stract with respect to the corresponding set of behaviors. Note the relationship
to [Rus90]. That our semantics is fully abstract with respect to O is of course
trivial. Nevertheless, this notion of observation characterizes the expectations
we have to a semantics dealing with time.

5 Point-to-Point Composition

We now introduce a composition operator 
 which allows us to compose mo-
bile components into networks of mobile components. When observed from the
outside these networks can themselves be understood as mobile components.
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Fig. 3. Point-to-Point Composition

In the formal de�nition given below we use the operator for total sum. This
operator allows us to exploit Banach's �x-point theorem. We later show that
this operator can be replaced by the operator for partial sum.

De�nition 12. (Point-to-point composition) Given two mobile components

F1 � (N
u
! [P1

�
])
I1;O1

+ (N
u
! [P �1 ]); F2 � (N

u
! [P2

�
])
I2;O2

+ (N
u
! [P �2 ])

such that I1 \ I2 = O1 \ O2 = P1 \ P2 = ;. Let

I = (I1 nO2) [ (I2 nO1); O = (O1 n I2) [ (O2 n I1); P = P1 [ P2

The point-to-point composition of F1 and F2 is de�ned as follows

F1 
 F2 = ff 2 (N
u
! [P

�
])
I;O
+ (N

u
! [P �]) j 8� : 9f1 2 F1; f2 2 F2 :

f(�) = ('$+  )jrngI;O(�;'$+  ) where

' = f1(�$+  );  = f2(�$+ '); � = �jdomI;O(�;'$+  )g

Note the close correspondence between this de�nition and Figure 3. Any input
channel of F1 which is also an output channel of F2, and any input channel of
F2 which is also an output channel of F1, are connected and hidden.

Note also the role of domI;O and rngI;O in maintaining privacy. If F1 sends a
private port !p on a feedback channel, then only F2 should send along p and only
F1 should receive on p. F1 can receive on p because domI1;O1

is automatically
enlarged with p. Only F1 can receive on p because rngI;O automatically hides
from the environment what F2 sends along p. F2 can send along p because
rngI2;O2

is automatically enlarged with p. Only F2 can in
uence F1 via p because
domI;O automatically hides what the environment sends along p.



Similarly, if F1 sends a private port ?p on a feedback channel, then only
F2 should receive on p and only F1 should send along p. F2 can receive on p

because domI2;O2
is automatically enlarged with p. Only F2 can receive on p

because rngI;O automatically hides from the environment what F1 sends along
p. F1 can send along p because rngI1;O1

is automatically enlarged with p. Only F1
can in
uence F2 via p because domI;O automatically hides what the environment
sends along p.

Theorem13. F1 
 F2 is a mobile component.

Proof. That F1 
 F2 6= ; follows from Banach's �x-point theorem and Theorem
9. Closedness follows straightforwardly.

The de�nition of 
 depends on the operator for total sum. This operator
is a bit strange since it results in hiding when the arguments are active on the
same channels. Our composition operator 
, on the other hand, should only
hide the feedback channels. This means that all messages sent or received by
the components along the external channels should be visible also after the
composition. As a consequence, in the de�nition of 
 it should be possible to
replace the operator for total sum by the partial one.

Theorem14. The operator $+ can be replaced by + in the de�nition of 
.

Proof. With respect to De�nition 12, we have to show that

act(') \ act( ) = act(') \ act(�) = act( ) \ act(�) = ;

Since the genericity of f1 and f2 implies that

' = 'jrngI1;O1
(�$+  ;');  =  jrngI2;O2

(�$+ '; )

it is enough to show that the sets rngI1;O1
(�$+ ; ')(n); rngI2;O2

(�$+';  )(n) and
domI;O(�; '$+  )(n) are mutually disjoint, for all n 2 N. The proof is by induc-
tion on the recursive de�nition of domI;O and rngI;O. The induction hypothesis
requires both the above disjointness condition and the mutual disjointness of
domI1;O1

(�$+  ; ')(n); domI2;O2
(�$+ ';  )(n) and rngI;O(�; '$+  )(n).

6 Communication Central

As an example we specify a communication central (see Figure 4). Its task is to
build up connections between station1 and station2. The initial \wires" are a1
and a2. Station1 can send ports to be connected (both receive and send) along
a1; station2 can send ports to be connected (both receive and send) along a2.
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2aa1

central
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mn n’m’
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Fig. 4. Communication Central

Let ?n be the jth receive port sent along a1 by station1. The central is allowed
to receive on n as soon as this port is received. Moreover, let !n0 be the jth
send port sent along a2 by station2. The central is allowed to send along n0

as soon as this port is received. The central \connects" these two channels by
forwarding each data element in D it receives on the channel n along the channel
n0. Symmetrically, if ?m0 is the kth receive port sent along a2 by station2, and
!m is the kth send port sent along a1 by station1, then the data elements in D
received on m0 are forwarded along m.

In order to model this component, we introduce three basic operators. The
�rst one is a �lter operator: for any set of messages M and stream of messages
s, M c
s denotes the stream we obtain by removing any message in s that is not
contained inM . The second one is a length operator: for any stream s, #s yields
its length. This means that #s = 1 if s is in�nite. Finally, we need a time ab-

straction operator: for any named communication history �, b� denotes the result
of removing all time information in �. For any i, this is achieved by concate-
nating all the �nite streams in �(i) into one stream. Thus, each communication
history consisting of in�nitely many �nite streams of messages is replaced by
the result of concatenating its �nite streams into one stream of messages. The
timing information is thereby abstracted away.

Central = ff 2 (N
u
! [A�])

fa1;a2g;;
+ (N

u
! [;�]) j

8� : f(�) = � where

8(n; n0) 2 acon : b�(n0) = D c
b�(n) �� the forwarding mechanism
acon = con(a1; a2) [ con(a2; a1) �� the set of all connections
con(a; b) = f(n; n0) j � � the connections from \a to b"
9k 2 [1::minf#rr(a);#wr(b)g] :
rr(a)(k) =?n ^ wr(b)(k) =!n0g

rr(a) = ?N c
 b�(a) �� the set of receive ports from a

wr(b) = !N c
 b�(b) �� the set of send ports from b

g



Note that this expression does not say anything about the timing of the output.
It may be argued that the same behavior could have been obtained in a static
network, where an in�nite number of channels connect the stations with the
central. However, in that case both the central and the stations would be allowed
to observe anything that is sent along the channels. This should be contrasted
with our model, where the components are allowed to access only the channels
whose ports they have received or created themselves. In our opinion, it is exactly
this privacy that, not only captures the essence of mobility, but also simpli�es
the conceptual reasoning about mobile recon�guration.

7 Discussion

The main contribution of this paper is that we have extended a denotational
model for timed, point-to-point, nondeterministic data-
ow networks to handle
a notion of mobility. Our model is fully compositional. It allows us to reason
about mobility at a very abstract level. In fact, we believe our semantics is well-
suited as a foundation for a method for the speci�cation and development of
mobile systems. The exact relationship between our model and other models
like for instance the �-calculus [MPW92] and actor-based approaches [AMST92]
is a interesting area for future research. For example, we believe that the model
for many-to-many communication [GS96a] can be used to give a denotational
semantics for the asynchronous �-calculus. We also believe that the actor lan-
guages can be smoothly integrated within our formalism.

Our approach is related to the work of Kok [Kok87, Kok89]. The major
di�erence is that Kok does not deal with mobility. Moreover, his handling of
nondeterminism di�ers from ours. In [Kok89], where he uses a metric on rela-
tions, he can basically handle only bounded nondeterminism. In [Kok87], which
is not based on metric spaces, an automaton is used to generate the behaviors of
basic agents. This guarantees the existence of �x-points. We use sets of strongly
guarded functions for the same purpose.

[Gro94, Bro95b] give equational characterizations of dynamic recon�guration
with respect to stream processing functions.
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A Streams and Named Stream Tuples

A stream is a �nite or in�nite sequence of elements. For any set of elements E,
we use E� to denote the set of all �nite streams over E, and [E] to denote the set
of all in�nite streams over E. For any in�nite stream s, we use s#j to denote the
pre�x of s containing exactly j elements. We use � to denote the empty stream.

We de�ne the metric of streams generically with respect to an arbitrary
discrete metric (E; �).

De�nition 15. (The metric space of streams) The metric space of streams
([E]; d) over a discrete metric (E; �) is de�ned as follows

[E] =
Q
i2NE

d(s; t) = inff2�j j s#j = t#jg

This metric is also known as the Baire metric [Eng77].

Theorem16. The metric space of streams ([E]; d) is complete.

Proof. See for example [Eng77].

A named stream tuple is a mapping � 2 (I ! [E]) from a set of names to
in�nite streams. # is overloaded to named stream tuples in a point-wise style,
i.e., �#j denotes the result of applying #j to each component of �.

De�nition 17. (The metric space of named stream tuples) The metric space
of named stream tuples (I ! [E]; d) with names in I and elements in (E; �) is
de�ned as follows

d(s; t) = inff2�j j s#j = t#jg

where I ! [E] is the set of functions from the countable set I to the metric [E].

Theorem18. The metric space of named stream tuples (I ! [E]; d) is complete.

Proof. This metric is equivalent to the Cartesian product metric
Q
i2I [E] which

is complete because [E] is [Eng77].
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