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Abstract. We present an approach based on hybrid automata (HA),
which combine discrete transition graphs with continuous dynamical sys-
tems, to modeling complex biological systems. Our goal is to efficiently
capture the behavior of excitable cells previously modeled by systems
of nonlinear differential equations. In particular, we derive HA models
from the Hodgkin-Huxley model of the giant squid axon, the Luo-Rudy
dynamic model of a guinea pig ventricular cell, and a model of a neonatal
rat ventricular myocyte. Our much simpler HA models are able to suc-
cessfully capture the action-potential morphology of the different cells, as
well as reproduce typical excitable cell characteristics, such as refractori-
ness (period of non-responsiveness to external stimulation) and restitu-
tion (adaptation to pacing rates). To model electrical wave propagation
in a cell network, the single-cell HA models are linked to a classical 2D
spatial model. The resulting simulation framework exhibits significantly
improved computational efficiency in modeling complex wave patterns,
such as the spiral waves underlying pathological conditions in the heart.

1 Introduction

Systems biology is an emerging multidisciplinary field, whose goal is to pro-
vide a systems-level understanding of biological systems, by uncovering the struc-
ture, dynamics and control methods of these systems [21]. While many exciting
and profound advances have been made in investigating robustness, network
structures and dynamics, and application to drug discovery, systems biology is
still in its infancy.

An important open problem in systems biology is finding appropriate com-
putational models that scale well for both the simulation and formal analysis
of biological processes. Currently, the majority of these models are given in
terms of large and complex sets of nonlinear differential equations, describing
in painful detail the underlying biological phenomena. Although an invaluable
asset for understanding local interactions, such models are often not amenable
to formal analysis and may render simulation at the organ or even the cell level
impractical. See, however, [7].
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Considering this state of affairs, systems biology could greatly benefit from
the development of abstraction techniques that, given a system of nonlinear dif-
ferential equations, (semi-automatically) construct a more abstract model for
which the properties of interest are preserved. One promising technique is Hy-
brid automata [16, 1], which intuitively replace short-lived, transient behaviors
with discrete transitions. A hybrid automaton (HA) includes both discrete and
continuous dynamical variables. The discrete variables define the automaton’s
modes of behavior. The continuous variables are governed by mode-dependent
differential equations. Hybrid automata have been used as mathematical models
for a variety of embedded systems, including automated highway systems, air
traffic management, embedded automotive controllers, robotics and real-time
circuits. More recently, they have been used to model the behavior of biological
systems [13, 12, 11, 20, 2].

In abstracting a system of nonlinear differential equations to an HA, one can
follow a rational approach, by analyzing the particular form of the equations;
or an empirical approach, by analyzing the shape of the curves obtained via
numerical integration. The rational approach is appealing because the resulting
HAs are likely to be closely related to the original biological phenomena. How-
ever, the larger the system of equations, the harder it becomes to perform the
abstraction. The empirical approach is appealing because, as shown in Sect. 3.1,
it is often independent of the number of equations. Moreover, as a “curve fit-
ting” technique first trained on a formal model, it can be subsequently applied
on experimental data.

The main goal of this paper is to prove the feasibility and illustrate the bene-
fits of the empirical abstraction technique. The particular biological processes we
consider are networks of excitable cells. Brain, heart and skeletal muscle share
similar properties of excitable tissue, featuring both discrete behavior (all-or-
nothing response to electrical activation) and continuous behavior (recovery to
rest follows a temporal path, determined by multiple competing ion flows).

The classical mathematical models of excitable cells [17, 24, 4] involve com-
plex systems of nonlinear differential equations. Starting from each model, we
manually construct a four-state HA that captures essential excitable-cell behav-
ior (reentrance in particular), is amenable to formal analysis, and exhibits a
nearly ten-fold speedup in a simulation of a 400-by-400 cell network. The states
of the HA are directly derived from the biological interpretation of the action
potential (AP) curve, which was derived via numerical integration.

The rest of the paper is organized as follows. Sect. 2 describes the excitable
behavior of cardiac cells, while Sect. 3 reviews their classic mathematical models.
Sect. 3.1 presents our corresponding HA models, while Sect. 3.2 contains our
simulation results. Sect. 4 concludes with directions for future work.

2 Biological Background

Our focus in this paper is on the efficient modeling of cardiac cells, which
serve as a primary example of excitable tissue. The rhythmic, pump-like function



of the heart is driven by muscle contractions, which are triggered by electrical
signals. On each beat, a control electrical signal is generated by the sinoatrial
node, the heart’s internal pacemaking region. Electrical waves then travel along
a prescribed path, exciting cells in the main chambers of the heart (atria and
ventricles) and assuring synchronous contractions. At the cellular level, the elec-
trical signal is a change in the potential across the cell membrane, and is caused
by the flow of ions between the inside and outside of the cell. The major ion
species involved in this process are sodium, potassium and calcium; they flow
through multiple voltage-gated ion channels (pore-forming proteins in the cell
membrane). Excitation disturbances can occur in the behavior of these ion chan-
nels at the cell level, or in the propagation of the electrical waves at the cell
network level. Computational tools can help better understand both of these
pathological conditions.
Cardiac Action Potential. The electrical signal at the cellular level for each
excitation event is known as an action potential (AP). Action potentials for
ventricular cells (the major portion of the heart muscle) are externally triggered
events: a cell fires an action potential as an all-or-nothing response to a supra-
threshold electrical signal, and each AP follows more or less the same sequence
of events and has the same magnitude regardless of the applied stimulus. After
an initial step-like increase in the membrane potential, an AP lasts for a couple
of hundred milliseconds in most mammals. During the AP, no re-excitation can
occur, which is a safety mechanism to ensure the reliable working of the heart.
The early portion of an AP is known as the “absolute refractory period” due
to its non-responsiveness to further stimulation. The later portion of an AP is
known as the “relative refractory period”, during which an altered secondary
excitation event is possible if the stimulation threshold is raised.

There are considerable differences in AP duration, morphology and under-
lying ion currents for different species and different regions in the heart. Nev-
ertheless, all APs exhibit the following major phases (see Fig. 1): resting, rapid
upstroke, early repolarization, plateau or later repolarization, and final repolar-
ization (identical to the resting phase due to the cyclic nature of an AP).
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Fig. 1. Major AP phases.
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Fig. 2. APD and DI time periods.

The resting phase features a constant transmembrane potential (difference
between the inside and outside potential of the cell) of about -80mV for most



species; i.e. the membrane is polarized at rest. During the AP upstroke, the trans-
membrane potential rapidly changes (over the course of a couple of milliseconds)
from negative to positive; i.e. the membrane depolarizes. This is followed by an
early repolarization phase, between the upstroke and the following plateau. A
slower, plateau phase is present in most mammalian action potentials, during
which calcium influx facilitates the muscle contraction. A faster final repolariza-
tion brings the potential back to the resting phase. Because of their universal
nature among species and regions, the AP phases served as a natural guide in
the construction of our hybrid-automaton models.

When a cardiac cell is subjected to repeated stimuli, two important time
periods can be identified: the action potential duration (APD), the time the cell
is in an excited state, and the diastolic interval, the time between the “end” of
the action potential and the next stimulus. Figure 2 illustrates the two inter-
vals. The function relating APD to DI is called the APD restitution function.
The relationship is nonlinear and captures the phenomenon that the longer the
recovery time, the closer in duration a subsequent APD is to the current one.

3 Mathematical Models of Excitation

Mathematical modeling of ionic processes that underly cell excitation dates
back to 1952, when Hodgkin and Huxley formulated their model of a squid
giant axon [17]. This laid the framework for subsequent models of increasing
complexity, using multiple continuous state variables (voltage, ion channel gates,
ion concentrations) to describe the action potentials in different cell types [24,
4, 19, 8, 23]. Current models of cardiac cells include more than 20 such state
variables and a very large number of fitted parameters.

At the opposite end of the spectrum, oversimplified discrete models emerged,
based on cellular automata [10, 6]. These models do not attempt to truthfully
represent the morphology or intricacies of the action potentials, but rather view
the excitation process as a finite state machine with simple rules of state transi-
tions. This approach has been criticized for its ad hoc rules and failure to capture
essential features, such as response to pacing. Our HA models fall between the
classical differential equation approach and the discrete cellular automata ap-
proach, attempting, as much as possible, to retain the authenticity of the former
and the efficiency of the latter.

The Hodgkin-Huxley Model (HH). The first quantitative description of
cellular excitation was empirically developed by Hodgkin and Huxley (HH) for
a squid giant axon [17]. The HH model includes three ionic currents: fast inward
sodium, outward potassium, and a time-independent linear (leak) current. The
generalized form of the HH model is as follows,

CV̇ = −gNam
3h(V − ENa) − gKn4(V − EK) − gL(V − EL) + Ist

ẏ = (y − y∞)/τy, y∞ = ϕy(V ), τy = ψy(V ), y ← m,h, n

where: V is transmembrane voltage [mV], whose changes form the AP; gNa,gK,gL

are the maximum channel conductance [mS/µF] for the sodium, potassium and



the leakage channel, respectively; ENa,EK,EL are reversal potentials [mV] for
the sodium, potassium and the leakage channel, respectively; m,h, n are the ion
channel gates, following the differential equations obtained by substituting m,h
and n for y, where y∞ and τy are voltage-dependent functions, representing the
steady-state and the time-constant of a gate; C is the cell capacitance [µF] and
Ist is the stimulation current [µA/µF].

Luo-Rudy Guinea Pig Ventricular Cell Model (LRd). In a series of
papers, Y. Rudy et al. developed some of the most detailed cardiac cell models to
date, targeting a guinea pig AP [24, 23, 18]. The ion channel description in these
models is similar to the one given in HH, but a much larger number of ion currents
is included. The complexity of this class of models is further increased by the
addition of active ion pumps, intracellular compartments for calcium transport,
and calcium buffers. A detailed description of the LRd model is omitted here.

Neonatal Rat Ventricular Cell Model (NNR). Among the mammalian
species, the mouse and the rat have a substantially different AP morphology—
much more triangular with almost absent plateau phase—compared to the AP
simulated by the LRd model. Neonatal rats are often used as an experimental
model in cardiac electrophysiology, and a computational model is a desirable
tool. A neonatal rat model (NNR), derived from the LRd model, is being devel-
oped by Entcheva et al. (unpublished). Our HA model for NNR has the same
structure as our HA LRd model, with adjusted parameters to replicate the be-
havior of this detailed ionic model.

3.1 Modeling Cardiac Excitation using Hybrid Automata

A hybrid automaton (HA) H is an extended finite automaton, consisting of
the following components [16]:

− A finite set X = {x1, . . . , xn} of real-numbered variables. The number n is
called the dimension of H . We write Ẋ for the set X = {ẋ1, . . . , ẋn} of dotted
variables (which represent first derivatives during continuous change), and
X ′ for the set X = {x′

1, . . . , x
′
n} of primed variables (which represent values

at the conclusion of discrete steps).
− A finite, discrete control graph (V,E). The vertices in V are called control

modes. The edges in E are called control switches.
− Vertex-labeling functions init, inv and flow assigned to each control mode

v ∈ V . Initial condition init(v) and invariant condition inv(v) are predicates
whose free variables are from X . Flow condition flow(v) is a predicate whose
free variables are from X ∪ Ẋ .

− Edge-labeling function jump assigned to each control switch e ∈ E. Jump
condition jump(e) is a predicate whose free variables are from X ∪X ′. As-
sociated with each jump is zero or more actions, which reset the value of
variables in X .

− A finite set Σ of events, and an edge-labeling function event that assigns to
each control switch an event.



An HA has a natural graphical representation as a state transition diagram,
with control modes as the states and control switches as the transitions. Flows
and invariants (predicates within curly braces) appear within control modes,
while jump conditions (in square brackets) and actions appear near the control
switches. Continuous variables are in lower case (v,vx, etc); constant parameters
in the flows are in Greek (α0

x, etc); constants in invariants and jump conditions
are in upper case (VT, etc), the same as events (VS). All the constant values are
given in Table 1 in the end of this section.

General HA template for excitable cells. Piecewise linear HA models are
attractive because they offer rich descriptive power, while still amenable to for-
mal analysis. The basic idea of our method is to find such HAs (non-linearity
may occur as stated later), containing as few continuous variables as possible,
and accurately depicting cell excitation behavior. The empirical method we use
is basically a curve-fitting technique, where the curve being fitted has the linear
form V̇ = AV . The dimension of V for the HH, LRd and NNR model is 2,3
and 3, respectively. Experimental analysis showes that at least two variables are
needed for a faithful simulation. While the variables in V are not directly con-
nected to the ones in the ODE model, they essentially represent the degrees of
freedom in the ODE model.

All of our HA models associate a control mode with each major AP phase:
resting and final repolarization (FR), stimulated, upstroke, and plateau and early
repolarization (ER). Initially, the cell is in resting and FR. When (externally)
stimulated with the event VS, it enters mode stimulated and updates its voltage
according to the stimulus current. Upon termination of the stimulation, via event
V S, with a sub-threshold voltage, the cell returns to resting without firing an
AP. If the stimulus is supra-threshold, i.e., v ≥ VT holds, the excited cell will
generate an AP by progressing to mode upstroke. The recovery course of the cell
follows transitions to mode plateau and ER and then to resting and FR. The
jump conditions on the control switches monitor the transmembrane potential
v, rather than imposing a rigid timing scheme. This approach allows for AP
adaptation (response to various pacing frequencies).

q3 : Plateau & ER

q1 : Stimulatedq0 : Resting & FR

q2 : Upstroke

[v < VT ∧ V̄s] {v < VT}

[Vs]

{v < VO ∧ v > VR}
v = vx − vy [v ≥ VO]

v̇x = α3
xvx, v̇y = α3

yvy

[v ≤ VR] [v ≥ VT ]

v̇x = α0
xvx, v̇y = α0

yvy v̇x = ist, v̇y = α1
yvy

{v < VO ∧ v > VT}
v = vx − vy

v̇x = α2
xvx, v̇y = α2

yvy

{v < VR}
v = vx − vy v = vx − vy

Fig. 3. Hybrid automaton for HH model.



HA for the HH model. The HA model for HH is given in Fig. 3. Variables vx

and vy define a second-order system of linear differential equations in each control
mode, while ist is the excitation current and VS is the stimulation event. The
membrane voltage v = vx−vy is used to control mode switches. The initial mode
is q0. The mode invariants are given below the differential equations describing
the membrane voltage. Like the jump conditions, they depend on three (albeit
different) model-specific constants (see Table 1): threshold voltage VT, overshoot
voltage VO, and repolarization voltage VR.

HA for the LRd model. Our HA model for LRd can be seen as an extension
of the one for HH. In particular, to properly represent the longer-maintained
plateau phase of the cardiac AP and to capture its frequency adaptation, addi-
tional variables vz and vn are introduced. The need for vz in the LRd and NNR
models can be explained by the complexity increase in the ion fluxes between
neurons and cardiac cells; namely, calcium flux plays a profound role in the
maintenance of the AP plateau for proper cardiac-muscle contraction to occur.

Restitution-related variable vn (read v “next”, see Fig 2) is used to modify
the overall voltage by recording the voltage at the termination of the DI; i.e.,
upon the arrival of a new stimulation. It is known that the immediate memory
of an excitable cell is directly linked to the DI: a shorter DI results in a shorter
following AP, while a longer DI produces a longer AP [5]. This simple memory
model helps capture the proper response of AP to pacing frequency, which is
an essential feature of the cardiac excitation. Accordingly, we define θ = vn/VR

and incorporate the function f(θ) = 1+13 6
√
θ (our choice of a 6th root function

is inspired by the fact that the APD is not proportional to DI but a convex
function of it—see Fig. 8) into mode Plateau and ER, which mainly determines
the length of the APD. The resulting HA (Fig 4) is, however, no longer linear.
It is an interesting question whether this nonlinearity can be removed.

q1 : Stimulated

q3 : Plateau & ER

q0 : Resting & FR

q2 : Upstroke

[v ≥ VT ]

v = vx − vy + vz

v = vx − vy + vz

v̇x = α3
xvxf(θ), v̇y = α3

yvy

v̇z = α3
zvz,

v = vx − vy + vz

{v < VT}

v̇x = α2
xvx, v̇y = α2

yvy, v̇z = α2
zvz

v = vx − vy + vz

{v < VO ∧ v > VT}
[v ≥ VO]

[Vs]

[v < VT ∧ V̄s]

vn = vv̇x = α0
xvx, v̇y = α0

yvy, v̇z = α0
zvz v̇x = ist, v̇y = α1

yvy, v̇z = α1
zvz

{v < VR}

{v < VO ∧ v > VR}

[v ≤ VR]

Fig. 4. Hybrid automaton for LRd model.



HA for the NNR Model. Our HA model for NNR is defined in Fig. 5, where
f(θ) = 1+2θ. For better modeling of cell-to-cell interactions in cardiac excitation,
the threshold and overshoot do not remain constant during simulation. Instead,
they also become a function of θ, and are defined as follows: g(VT) = VT · (1 +
1.45 6

√
θ) and h(VO) = VO − 40 · √θ.

q1 : Stimulated

q2 : Upstrokeq3 : Plateau & ER

q0 : Resting & FR

v̇x = α3
xvxf(θ), v̇y = α3

yvy

v̇z = α3
zvz,

v = vx − vy + vz

v̇x = α2
xvx, v̇y = α2

yvy, v̇z = α2
zvz

v = vx − vy + vz

[Vs]

v = vx − vy + vzv̇z = α0
zvz,

{v < h(VO) ∧ v > VR}

{v < g(VT )}

[v ≥ g(VT )]

{v < h(VO) ∧ v > g(VT )}

[v < g(VT ) ∧ V̄s]

[v ≥ h(VO)]

v̇x = α0
xvxf(θ), v̇y = α0

yvy vn = v v̇x = ist, v̇y = α1
yvy, v̇z = α1

zvz

{v < VR}

[v ≤ VR]

v = vx − vy + vz

Fig. 5. Hybrid automaton for NNR model.

Parameter definitions. The values of the coefficients and constants occurring
in the HH, LRd and NNR HA models are summarized in Table 1. They were
obtained either from the cited literature or empirically through experimentation.

HH LRd NNR HH LRd NNR

VR 10 20 20 α1
z N/A -0.1 -0.2

VT 10 20 30 α2
x 1.4 200 250

VO 83 138 120 α2
y 15 0 200

α0
x -0.98 -0.1 -0.025 α2

z N/A 100 125

α0
y -0.16 -0.1 -0.07 α3

x -0.98 -0.001 -0.025

α0
z N/A -0.1 -0.2 α3

y -0.16 0.036 -0.07

α1
x N/A N/A N/A α3

z N/A 0.008 -0.2

α1
y -0.16 -0.1 -0.07

cell array size original hybrid

2× 2 cell array 5 s 3 s

4× 4 cell array 9 s 3 s

8× 8 cell array 26 s 6 s

16× 16 cell array 93 s 14 s

32× 32 cell array 365 s 51 s

64× 64 cell array 1460 s 198 s

400× 400 cell array 61833 s 8018 s

Tbl. 1: Parameter definitions. Tbl. 2: Computational efficiency.

3.2 Simulation Results

We present simulation results obtained with our HA models of excitable cells.
The results demonstrate that our simulations are both accurate and efficient.
For the HH and LRd models, the membrane potential (v) is offset such that the
resting potential is 0 mv. The time unit in all three models is milliseconds and
the voltage is in millivolts except Table 2 which shows the computation time
in seconds of the simulation for both HA and NNR model. The voltage of each
time step is integrated using Euler method.



HH model. For the HH model, simulations were conducted at the single-cell
level. For the case of a solitary action potential firing successfully, results are
given in Fig. 6 for both the original HH model and our derived HA model.
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Fig. 6. AP in HH model.
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Fig. 7. AP in LRd model.
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LRd model. Figure 7 compares the AP for the HA model with that of the
original model. The simulated electrical restitution curve (response to pacing
frequencies) for the LRd model is given in Fig. 8. The plot relates the preceding
diastolic interval (DI) and the subsequent action potential duration at 90% re-
covery (APD90). It can be seen that, in contrast to cellular automata models,
our hybrid model captures the frequency sensitivity of the original ODE model.
Thus, we have achieved sensitivity to frequency without maintaining explicit
timers, but rather by relying strictly on voltage-related parameters.
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Fig. 9. AP in NNR model.
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NNR model. To simulate the cardiac cell excitation propagation in homoge-
neous tissues, we need, in addition to a single-cell model, a diffusion model that
describes the relationship of a cell with its neighbors. Here, we use a classic spa-
tial 2D model as our diffusion model. The comparison of a single cell’s solitary
AP is demonstrated in Fig. 9. Figure 10 shows our results on a 2 × 2 cell array
when three outside stimuli are delivered. The first stimulus does not cause an
action potential, while the following two trigger a full response. For small grids,
the high cell-to-cell coupling causes all cells to respond simultaneously.



time=0s time=0.07s time=0.145s time=0.18s
1st stimulus occurs 2nd stimulus occurs

time=0.21s time=0.27s time=0.34s time=0.55s

Fig. 11. Snapshots during spatial simulation of excitation propagation in Hybrid
model.

We extended the simulations to model cell arrays as large as 400× 400 cells.
In these spatial simulations, the stimulation conditions (location and timing of
the stimuli) were varied to simulate classical phenomena typical for cardiac tis-
sue [25, 14, 15]. Running the original NNR model and the derived HA model
under the same stimulation protocols, we observed similar spatiotemporal pat-
terns (including spiral waves, in Fig. 11). This suggests that the proposed re-
duced hybrid automaton not only captures the AP morphology for a single cell,
but also correctly models the system in multicellular conditions when cell-to-cell
communication in propagating the AP is critical. Thus, we show for the first
time that the hybrid automaton modeling approach is a suitable framework for
modeling multicellular excitable tissue. Additionally, a substantial improvement
in computational efficiency was observed with the hybrid model, as shown in
Table 2. The benefit of the computational simplicity and scalability of the de-
veloped hybrid model will become especially valuable for large-scale 2D and 3D
simulations with millions of cells.

4 Conclusions and Related Work

Representing the complex response of excitable cells with piecewise-linear ap-
proximate HA models permits fully analytical solutions in the different phases
of the excitation cycle, therefore providing a framework for analytical analysis
regardless of the complexity of the system. This is particularly important when
one is concerned with issues of stability and rhythm disturbance upon stimula-
tion in both neurons and cardiac cells. Additionally, the piecewise linearization
of the system and the reduced representation increase efficiency of computation
without abstracting away essential system features.

A previous study [9] derived a piecewise linear affine representation of the
HH model and analyzed the behavior of the system as a function of the stimulus



intensity. In that simplified 2-parameter, 9-state hybrid model, the phase plane
behavior of excitation events was correctly reproduced for a subset of tested
cases, but the AP morphology was oversimplified and did not match the original
model. We present in this study an alternative linearization approach and derive
a hybrid automaton that offers a superior representation of the AP and has the
flexibility to match a variety of AP shapes and responses (from neuronal to car-
diac). Other related work includes [26], where another linearization technique,
based on Taylor expansion, is successfully applied to biochemical pathways; [22],
who argue in favor of hybrid automata as an efficient framework for reason-
ing about complex biological processes; and [3], who propose the application of
bisimulation and collapsing techniques on HA models of biological systems for
the qualitative analysis of their temporal evolution.

We are currently experimenting with the use of optimization techniques to
derive HA model parameters. This should further improve both the efficiency and
precision of our HA models, while allowing us to further simplify model complex-
ity. Future work includes the analytical analysis of stability based on the derived
hybrid automaton, and the mathematical exploration of arrhythmia-prone (un-
stable) modes. To better understand the spatiotemporal behavior of electrical
waves in cardiac tissue, we plan to improve and simplify the diffusion mod-
eling. In particular, the implementation of specialized neighborhood operators
is expected to provide further computational gain over the currently employed
classical diffusion model.

Acknowledgments: We would like to thank the anonymous referees for their
valuable comments.
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