
Compositional Refinement for Hierarchical Hybrid

Systems�

Rajeev Alur1, Radu Grosu2, Insup Lee1, and Oleg Sokolsky1

1 Department of Computer and Information Science, University of Pennsylvania
2 Department of Computer Science, State University of New York at Stony Brook

Abstract. In this paper, we develop a theory of modular design and refine-
ment of hierarchical hybrid systems. In particular, we present compositional
trace-based semantics for the language Charon that allows modular specifi-
cation of interacting hybrid systems. For hierarchical description of the system
architecture, Charon supports building complex agents via the operations of
instantiation, hiding, and parallel composition. For hierarchical description
of the behavior of atomic components, Charon supports building complex
modes via the operations of instantiation, scoping, and encapsulation. We de-
velop an observational trace semantics for agents as well as for modes, and
define a notion of refinement for both, based on trace inclusion. We show this
semantics to be compositional with respect to the constructs in the language.

1 Introduction

Modern software design paradigms promote hierarchy as one of the key constructs
for structuring complex specifications. We are concerned with two distinct notions
of hierarchy. In architectural hierarchy, a system with a collection of communicating
agents is constructed by parallel composition of atomic agents, and in behavioral hi-
erarchy, the behavior of an individual agent is described by hierarchical sequential
composition. The former hierarchy is present in almost all concurrency formalisms,
and the latter, while present in all block-structured programming languages, was
introduced for state-machine-based modeling in Statecharts [9], and forms an in-
tegral part of modern notations such as UML [5].

A hybrid system typically consists of a collection of digital programs that interact
with each other and with an analog environment. Specifications of hybrid systems
integrate state-machine models of discrete behavior with differential equations for
continuous behavior. This paper is about developing a formal and compositional se-
mantics of hierarchical hybrid specifications. Formal semantics leads to definitions
of semantic equivalence (or refinement) of specifications based on their observable
behaviors, and compositionality means that semantics of a component can be con-
structed from the semantics of its subcomponents. Such formal compositional seman-
tics is a cornerstone of concurrency frameworks such as CSP [11] and CCS [14], and
is a prerequisite for developing modular reasoning principles such as compositional
model checking and systematic design principles such as stepwise refinement.

� This research was supported in part by NSF CCR-9988409, ARO DAAG55-98-1-0466,
DARPA ITO MOBIES F33615-00-C-1707, DARPA ITO MARS program, grant no. 130-
1303-4-534328-xxxx-2000-0000, and ONR N00014-97-1-0505 (MURI).

The main contribution of the paper is a formal compositional semantics for the
language Charon [3] with an accompanying compositional refinement calculus. The
building block for describing the system architecture is an agent that communicates
with its environment via shared variables. The language supports the operations of
composition of agents to model concurrency, hiding of variables to restrict sharing
of information, and instantiation of agents to support reuse. The building block for
describing flow of control inside an atomic agent is a mode. A mode is basically
a hierarchical state machine, that is, a mode can have submodes and transitions
connecting them. Variables can be declared locally inside any mode with standard
scoping rules for visibility. Modes can be connected to each other only via well-defined
entry and exit points. We allow sharing of modes so that the same mode definition
can be instantiated in multiple contexts. To support exceptions , the language allows
group transitions from default exit points that are applicable to all enclosing modes,
and to support history retention, the language allows default entry transitions that
restore the local state within a mode from the most recent exit. Discrete updates
are specified by guarded actions labeling transitions connecting the modes. Some of
the variables in Charon can be declared analog, and they flow continuously during
continuous updates that model passage of time. The evolution of analog variables can
be constrained in three ways: differential constraints (e.g. by equations such as ẋ =
f(x, u)), algebraic constraints (e.g. by equations such as y = g(x, u)), and invariants
(e.g. |x− y| ≤ ε) which limit the allowed durations of flows. Such constraints can be
declared at different levels of the mode hierarchy.

To define the modular semantics for modes, with each mode we associate two rela-
tions, one capturing its discrete behavior and one capturing its continuous behavior.
Defining the discrete relation is tricky in presence of features such as group transi-
tions, exceptions, and history retention. Our solution relies on a closure construction,
inspired by a similar construction for hierarchical discrete systems [2], which allows
us to treat the transfer of control between a mode and its environment as a game.

While discrete steps of a mode and its environment are interleaved, continuous
steps need to be synchronized as time is a global parameter. In fact, during a flow,
all active hierarchically nested modes must participate. To allow flexible and hierar-
chical specifications, in Charon, flow constraints can be specified at all levels of the
hierarchy. To formalize this feature in a consistent and modular manner, we require
that a mode can participate in a flow only when the control is at its default exit
point. Then, all applicable constraints are properly used to define permitted flows.

The discrete and continuous relations of a mode allow us to define executions of a
mode, and corresponding traces are obtained by projecting out the private variables.
We show that the set of traces of a mode can be constructed from the traces of its
submodes. This compositionality result leads to a compositional notion of refinement
for modes. A mode M refines a mode N if they have the same interface in terms of
entry/exit points and shared variables, and the traces of M is a subset of traces of N .
This notion admits modular reasoning in the following manner. Suppose we obtain
an implementation design I from a specification design S simply by locally replacing
some submode N in S by a submode M . Then, to show I refines S, it suffices to
show that M refines N . We illustrate this benefit by a simple example.

Once we have the compositionality results for modes, analogous results for agents
are relatively straightforward. We define an observational trace semantics for agents,

a resulting notion of refinement, and show it to be compositional with respect to the
operations of parallel composition, hiding, and instantiation.

Related work. Early formal models for hybrid systems include phase transition
systems [13] and hybrid automata [1]. Models such as hybrid I/O automata [12] and
hybrid modules [4] allow compositional treatment of concurrent hybrid behaviors.
The notion of hierarchical state machines was introduced in Statecharts [9], and is
present in many software design paradigms such as Uml [5]. Our treatment of hierar-
chy is closest to hierarchical reactive modules [2] which shows how to define a modular
semantics for hierarchical (discrete) modes. Tools such as Shift [7], Ptolemy [6],
and Stateflow (see www.mathworks.com) allow hierarchical specifications of hybrid
behavior, but formal semantics has not been a concern. HyCharts [8] presents a
hierarchical model with modular operational semantics, but does not consider refine-
ment. Masaccio [10] is a formal model for hierarchical hybrid systems. While same
in spirit, it differs from our model in many technically significant aspects: it allows
nesting of sequential and parallel composition, and allows a more general form of syn-
chronous communication, but disallows high-level features of Charon modes such
as exceptions, history retention, and specification of constraints at various levels.

2 Motivational example

In this section, we present a simple example that outlines features, useful in a spec-
ification language for hybrid systems. We also point out the difficulties of defining
semantics for such a language. Then we give the intuition for our approach to the
semantics definition, which allows us to overcome the difficulties.

Our example is a system that controls the level of liquid in a leaky tank. The
level is controlled by infusing a flow of liquid into the tank. The level in the tank can
be measured directly, but the rate of the leak has to be estimated. The controller
has two goals: first, it must make sure that the level is within some critical bounds.
If it is not, emergency measures are taken to make the level safe. When the level is
safe, the controller should change the infusion rate according to instructions of the
user. To do that, the controller periodically recomputes the desired rate of change
for infusion and maintains the computed rate until the next update.

We now present a hierarchical description of the system inCharon. The hierarchy
in Charon is twofold. The architectural hierarchy describes how the system agents
interact with each other, hiding the details of interaction between sub-agents. The
behavioral hierarchy describes behavior of each agent, hiding the low-level behavioral
details. In our example, we have only one level of architecture description with agents
Tank and Controller. There are two variables shared by the agents: level for the
level of the liquid, and infusion for the infusion rate.

Both agents are primitive, that is, without concurrent sub-agents. Behavior of a
primitive agent is given by a mode, a hybrid state machine equipped with analog and
discrete variables. While a mode stays in a state, its analog variables are updated
continuously according to a set of constraints. Taking transitions from one state to
another, the mode updates its discrete variables. States of the mode are submodes
that can have their own behavior. A mode has a number of control points, through
which control enters and exits the mode. That is, to perform a computation in one
of its submodes, a mode takes a transition to an entry point of that submode. When
the computation is complete, a transition from an exit point of the submode is taken.

Before the computation of a mode is completed, it may be interrupted by a group
transition, originating from a default exit point dx. After an interrupt, control is
restored to the mode via a default entry point de. In our example, the behavior of
Tank is represented by a single differential equation d(level) = infusion − leak , where
leak is a local variable of Tank. Figure 1 shows the behavior of the agent Controller.
The top-level mode of Controller has two submodes, Normal and Emergency. We
do not show the details of the mode Emergency. It is activated when the level enters
the critical region.

est ...

estrate

rate

Compute
local discrete real est

...

ComputeLow

∈ [2,10]}{level
dx

d(infusion) = est+1

Emergency

dx
de

d(infusion) = est-1
ComputeHigh

de

e level ≥ 5

level < 5

global discrete real rate
global analog real

x

level, infusion
level

level ∈

∉

de

dx

dx

de

[2,10]

[4,8]
d(infusion) = rate
{t<10}

Maintain

t=10
t 0

dx de

e x

Compute

Normal
local analog real

global analog real

t
local discrete real rate

level, infusion

d(t) = 1

Fig. 1. Behavior of the controller

The mode Normal has two submodes. Submode Maintain is used to maintain
the current rate of change for infusion, represented by a local variable rate. Every 10
seconds, measured by a local clock t, Maintainmakes a call to Submode Compute that
computes a new value of rate. The details of the computation are irrelevant, but we
assume that the computation is done differently depending on the level. We therefore
introduce two submodes in Compute and show only the constraints for infusion in
each submode. The exit transition of Compute assigns the computed value to the
variable rate.

Note that the mode Normal controls the value of the clock t, and its rate of change
is the same in all its submodes. By contrast, infusion is updated differently in the two
submodes. In this case, every submode must provide a constraint for infusion. Note
also that rate is a discrete variable. It is updated only by transitions of Compute.

We use invariants to force one of the outgoing transitions. Control can reside in
a mode only as long as its invariant is satisfied. As soon as an invariant is violated,
control has to leave the mode by taking one of the enabled outgoing transitions. In
Figure 1, invariants of the modes are shown in braces. For example, ten time units
after entering the mode Maintain the transition to Compute has to be taken.

We distinguish between regular transitions and interrupts. For example, control
is transferred from Compute to Maintain only when the computation is complete.
When it is time to perform another computation, it will start from the beginning.
On the other hand, the transition from Normal to Emergency works as an interrupt.
Regardless of which submode of Normal is operating when an interrupt occurs, control
is transferred to Emergency. Upon return from the interrupt, the control state of

Normal is restored. There is no priority between regular transitions and interrupts1.
A mode can ignore an enabled interrupt and execute its internal transitions or let time
elapse. We use invariants as described above to enforce interrupts (see the invariant
of mode Normal). Invariants give the user finer control over interrupts. For example,
a situation when an interrupt is optional for some time and then becomes urgent can
be easily expressed.

In addition to discrete steps described above, a mode can make continuous steps,
when time progresses and the analog variables of the mode are updated according
to a set of constraints. Because of the hierarchical structure of the mode, the set
of applicable constraints consists of the constraints defined in the mode itself and
those from the currently active submode. This implies that a mode can engage in a
continuous step only when its control properly resides within one of its submodes.
For example, we cannot allow time to pass at the control point e of Compute, be-
tween executing the transition from Maintain to Compute and a transition to enter
ComputeHigh or ComputeLow.

3 Modes

Notation. We will represent modes and agents as tuples of components. If T is a
tuple 〈t1, . . . , tn〉, we identify the component ti of T as T.ti. We extend this notation
to sets of tuples. If ST is a set of tuples with the same structure, we write ST.ti to
mean

⋃
T∈ST T.ti.

Given a set V of typed variables, a valuation for V is a function mapping vari-
ables to their values. We will assume that all valuations are type correct. The set
of valuations over V is denoted QV . We will use variables s, t, possibly primed or
subscripted, to range over valuations. Given a valuation s over V , and a set W ⊆ V ,
s[W] denotes the restriction of s to the variables of W .

A flow for a set V of variables is a differentiable function f from a closed interval
of non-negative reals [0, δ] to QV . We refer to δ as the duration of the flow. We assume
that only constant functions are differentiable for non real-valued types. We denote
a set of flows for V as FV .

3.1 Syntax

Definition 1. (Mode) A mode M is a tuple 〈E,X, V, SM,Cons , T 〉, where E is a
set of entry control points, X is a set of exit control points, V is a set of variables,
SM is a set of submodes, Cons is a set of constraints, and T is a set of transitions.

Variables. A mode has a finite set of typed variables V , partitioned into subsets
Va and Vd, the sets of analog and discrete variables, respectively. We also parition V
into Vg and Vl, the sets of global and local variables2. We assume that there are no
conflicts between the names of local variables of different modes.
Submodes. SM is a finite set of submodes. We require that each global variable of a
submode is a variable (either global or local) of its parent mode. That is, if N ∈ SM ,
1 Other treatments of interrupts can be handled equally well within the proposed frame-
work. For example, [2] discuss weak interrupts in a similar setting.

2 Charon refines the set of global variables further according to allowed read/write access,
but we won’t make such a distinction in this paper for clarity of presentation.

then N.Vg ⊆ V . This induces a natural scoping rule for variables in a hierarchy of
modes: a variable introduced as local in a mode is accessible in all its submodes but
not in any other mode.
Control points. E is the set of entry points; X is the set of exit points. There are two
distinguished control points representing default entry and exit: de ∈ E and dx ∈ X .
We use C for the set of all control points of the mode: C = E ∪X ∪ SM.E ∪SM.X .
Constraints. The finite set Cons of constraints defines the flows permitted by M3.
Cons contains an invariant I, which defines when the mode can be active (see the
definition of an active mode below). Further, for a variable x ∈ Va, Cons can contain
an algebraic constraint Ax, which defines the set of admissible values for x, or a
differential constraint Dx, which defines admissible values for the derivative of x with
respect to time. Every invariant and an algebraic constraint is a predicate c ⊆ QV

and a differential constraint Dx is a predicate on QV ∪d(V). A flow f is permitted
by the mode if for every t in the domain of f , every variable in f(t) satisfies all
constraints in Cons. Examples of constraints are d(x) ≤ f(x, y) and g(x, y) ≤ 0.
Transitions. T is a finite set of transitions of the form (e, α, x), where e ∈ E∪SM.X ,
x ∈ X ∪ SM.E, and α, the action of the transition, is a relation from QVg to QV

if e ∈ E and from QV to QV otherwise. A transition connects control points of
the mode or its submodes. When a transition is executed, it updates some variables
of the mode. Every mode is assumed to have an identity transition from de to dx,
but we disallow transitions from any non-default control point to dx. A transition
that originates at a default exit point of a submode is called a group transition of
that submode. A group transition can be executed to interrupt the execution of the
submode. We require that if a submode has been exited by a group transition, it must
be entered again through its default entry point to resume the interrupted execution.

Furthermore, we require that the mode cannot be blocked at any of its non-default
control points. Precisely, for every e of M that is not de in M or dx in one of the
submodes of M , the union αe of all actions of the transitions originating at e is
complete, that is, for every s there is t such that (s, t) ∈ αe.
Special modes. We distinguish two kinds of modes that play a special role in the
semantic definitions. A mode M is a leaf mode if M.SM = ∅. Leaf modes perform
continuous steps according to their constraints. A top-level mode has a single non-
default entry point init and no non-default exit points. Top-level modes are used to
describe behavior of agents, as shown in Section 4.

3.2 Semantics

Intuition. A mode can engage in a discrete or continuous behavior. During an ex-
ecution, the mode and its environment either take turns making discrete steps or
take a continuous step together. Discrete and continuous steps of the mode alter-
nate. During a continuous step, the mode follows a flow from the set of flows possible
for the current state for the length of its duration, updating its variables according
to the flow. Note that the set of flows permitted by the mode’s constraints may be
further restricted by the mode’s environment. A discrete step of the mode is a finite
sequence of discrete steps of the submodes and enabled transitions of the mode itself.
A discrete step begins in the current state of the mode and ends when it reaches an
3 The semantics does not depend on how sets of flows are specified. Here, we chose one of
the possible ways.

exit point or when the mode decides to yield control to the environment and let it
make the choice of the next step. Note that in the latter case, the decision to break a
discrete step is made by the mode itself. Technically, when the mode ends its discrete
step in one of its submodes, it returns control to the environment via its default exit
point. The closure construction, described below, ensures that the mode can yield
control at appropriate moments, and that the discrete control state of the mode is
restored when the environment schedules the next discrete step.
State of a mode. We define the state of a mode in terms of all variables of the
mode and its submodes. We use V∗ = V ∪ SM.V∗ for the set of all variables.

The state of a mode M is a pair (c, s), where c is the location of discrete control
in the mode and s ∈ QM.V∗ . Whenever the mode has control, it resides in one of its
control points. In this case, c ∈ M.C. We use special symbol ε to denote the case
when the mode does not have control. Given a state (c, s) of M , we refer to c as the
control state of M and to s as the data state of M .
Preemption. An execution of a mode can be preempted by a group transition.
A group transition of a mode originates at the default exit of the mode. During
any discrete step of the mode, control can be transferred to the default exit and an
enabled group transition can be selected. There is no priority between the transitions
of a mode and its group transitions. When an execution of a mode is preempted,
the control state of the mode is recorded in a special history variable, a new local
variable that we introduce into every mode. Then, when the mode is entered through
the default entry point next time, the control state of the mode is restored according
to the history variable.
The history variable and active submodes. In order to record the location of
discrete control during executions, we introduce a new local variable h into each mode
that has submodes. The history variable h of a mode M can assume values from the
set SM ∪ ε. A submode N of M is called active when the history variable of M has
the value N . Every top-level mode is always active.
Closure of a mode. Closure construction is a technical device to allow the mode
to interrupt its execution, either to allow the environment to schedule another step
or to provide for preemption of the mode execution by group transitions. Transitions
of the mode are modified to update h after a transition is executed. In addition,
default entry and exit transitions are added to the set of transitions of the mode.
These default transitions do not affect the history variable and allow us to interrupt
an execution and then resume it later from the same point.

The closure modifies the transitions of M in such a way that, after each transition,
h records the active submode. If a transition leads to a control point of a submode N ,
the resulting state has h = N . Otherwise, if the transition leads to a control point of
M itself, the value of h after the transition will be ε. For each submode N of M , the
closure adds a default exit transition from N.dx to M.dx. This transition does not
change any variables of the mode and is always enabled. Default entry transitions are
used to restore the local control state of M . A default entry transition leads from a
default entry of the mode to the default entry of every submode N and is enabled if
h = N . Furthermore, we make sure that the default entry transitions do not interfere
with regular entry transitions originating from de. The closure changes each such
transition so that it is enabled only if h = ε.

Formally, the closure c(M) of a mode M = 〈E,X, V, SM,Cons , T 〉 is defined to
be the mode 〈E,X, V ∪ h, c(SM),Cons , c(T)〉, where h �∈ V is a new local variable,

c(SM) = {c(m) | m ∈ SM} is the set of closed submodes of M , and c(T) is the
closed set of transitions obtained by extending T with transitions (x, αx, dx) for
every x ∈ SM.dx and (de, αx, e) for every e ∈ SM.de, and extending every transition
in T such that

– (s, s) ∈ αx iff x ∈ N.E for some N ∈ SM and s[h] = N ;
– for every transition (e, α, x) ∈ T , the respective closed transition is (e, α′, x),

where (s, t) ∈ α′ iff (s[V], t[V]) ∈ α and
• if x ∈ N.E for some N ∈ SM , then t[h] = N , otherwise t[h] = ε,
• if e ∈ N.X for some N ∈ SM , then s[h] = N , otherwise s[h] = ε.

The closure construction for the example introduced in Section 2 is illustrated
in Figure 2. To avoid cluttering the figure, we omit the default transitions of the
submode ComputeLow, and do not show the variables of the modes.

ComputeLow

h ε
...rate

h ε
rate

0t

...

h Maintain

h Compute

∧ h =level < 5
∧ h = εlevel ≥ 5

d(infusion) = est+1

ε

est ...
h ComputeHigh

est ...
h ComputeLow

dx

Normal

{level ∈ [2,10]}

de

de

Maintain

{t<10}

Compute

x

h=Maintain

d(t) = 1

d(infusion) = rate

e

t=10

de dx

d(infusion) = est-1
ComputeHigh

dx

Compute
h=ComputeHigh

x

h=Compute

dx

dxde

de dx

e

de

Fig. 2. Closed modes

Before formally defining executions of a mode, we illustrate continuous and dis-
crete steps using the example in Figure 2. Assume that the the controller is in the
Maintain mode and none of the invariants is violated. Maintain can voluntarily re-
linquish control to the environment to let it take a step or advance time by taking the
default exit transition to dx of Normal. There, the group transition is not enabled,
and the default exit transition of the parent mode is taken. When the control arrives
thus at the top level, the environment can schedule a continuous step. The analog
variables of all agents are updated according to the constraints of the active modes.
The active modes are Maintain, Normal, and Controller. Thus, the applicable con-
straints are d(t) = 1 and d(infusion) = rate. The global variable level is updated
according to the constraint in Tank. After the continuous step, control returns to
Maintain via the chain of default entry transitions. Assume now that the invariant
of Normal is violated while control is inside a submode of Compute. Then, control is
transferred to dx of Compute and then on to dx of Normal. There, the choice between
the group transition to Emergency or the default exit transition is non-deterministic.
But since the invariant is violated, a continuous step cannot be taken.
Operational semantics. An operational view of a closed mode M with the set of
variables V consists of a continuous relation RC and, for each pair c1 ∈ E, c2 ∈ X ,
a discrete relation RD

c1,c2
.

The relation RC ⊆ QV × FV gives, for every data state of the mode, the set of
flows from this state. By definition, if the control state of the mode is not at dx, the
set of flows for the state is empty. We require that, whenever (s, f) ∈ RC , f(0) = s.
In addition, for each s, the set of flows Fs = {f |(s, f) ∈ RC} is prefix-closed. That is,
if the domain of f ∈ Fs is [0, δ], then for every ε < δ, a flow f ′ : [0, ε] that coincides
with f on [0, ε] also belongs to Fs. RC is obtained from the constraints of a mode and
relations SM.RC of its submodes. Given a data state s of a mode M , (s, f) ∈ RC iff
f is permitted by M and, if N is the active submode at s, (s[N.V], f [N.V]) ∈ N.RC .

For each c1 ∈ E ∪ SM.X , c2 ∈ X ∪ SM.E, relation RD
c1,c2

⊆ QV × QV describes
the discrete behavior in which control is transferred from c1 to c2. The relation
RD

e,x comprises macro-steps of a mode starting at e and ending at x. A macro step
consists of a sequence of micro-steps. Each micro-step is either a transition of the
mode or a macro-step of one of its submodes. Given the relations RD

e′,x′ , e′ ∈ SM.E,
x′ ∈ SM.X of macro-steps of the submodes of M , a micro-execution of a mode
M = 〈E,X, V, SM,C, T 〉 is a sequence of the form (e0, s0), (e1, s1), . . . , (en, sn) such
that, for all i, ei ∈ C and si ∈ V∗ and for even i, ((ei, si), (ei+1, si+1)) ∈ T , while for
odd i, (si, si+1) ∈ SM.RD

ei,ei+1
. Given such a micro execution of M with e0 = e ∈ E

and en = x ∈ X , we have (s0, sn) ∈ RD
e,x.

Definition 2. (Operational semantics) The operational semantics of the mode M
consists of its control points E ∪ X, its variables V and relations RC and RD

e,x.

The operational semantics of a mode defines a transition systemR over the states
of the mode. We write (e1, s1)

o→(e2, s2) if (s1, s2) ∈ RD
e1,e2

, and (dx, s1)
f→(dx, s2) if

(s1, f) ∈ RC , f is defined on the interval [0, t] and f(t) = s2. We extend R to include
environment steps. An environment step begins at an exit point of the mode and
ends at an entry point. It represents changes to the global variables of the mode
by other components while the mode is inactive. Private variables of the mode are
unaffected by environment steps. Thus there is an environment step (x, s) ε→(e, t)
whenever x ∈ X , e ∈ E, and s[Vp] = t[Vp]. We let λ range over FV ∪ {o, ε}. An
execution of a mode is now a path through the graph of R:

(e0, s0)
λ1→(e1, s1)

λ2→ . . .
λn→(en, sn).

3.3 Trace semantics

To be able to define a refinement relation between modes, we consider a trace seman-
tics for modes. A trace of the mode is a projection of its execution onto the global
variables of the mode. That is, a trace is obtained from each execution by replacing
every si with si[Vg], and every f in transition labels with f [Vg]. We denote the set
of traces of a mode M by LM .

Definition 3. (Trace semantics for modes) The trace semantics for M is given by
its control points E and X, its global variables V , and its set of its traces LM .

In defining compositional and hierarchical semantics, one has to decide, what
details of the behavior of lower-level components are observable at higher levels. In
our approach, the effect of a descrete step that updates only local variables of a mode
is not observable by its environment, but stoppage of time introduced by such step is

observable. For example, consider two systems, one of which is always idle, while the
other updates a local variable every second. These two systems are different, since
the second one does not have flows more than one second long. Defining a modular
semantics in a way that such distinction is not made seems much more difficult.

4 Agents

4.1 Syntax

Definition 4. (Agent) An agent 〈TM, V, I〉 consists of a set of variables V , a set of
initial states, and a set of top-level modes TM .

The top-level modes collectively define behavior of the agent. The set V is par-
titioned into local variables Vl and global variables Vg. We require that TM.V ⊆ V ,
Vg ⊆ TM.Vg; that is, all global variables originate in some mode. The set of initial
states I ⊆ QV specifies possible initializations of the variables of the agent. A primi-
tive agent has a single top-level mode. Composite agents have many top-level modes
and are constructed by parallel composition of other agents as described below.

4.2 Semantics

An execution of an agent follows a trajectory, which starts in one of the initial states
and is a sequence of flows interleaved with discrete updates to the variables of the
agent. An execution of A is constructed from the relations RC and RD of its top-
level modes. For a fixed initial state s0, each mode M ∈ TM starts out in the state
(initM , sM), where initM is the non-default entry point of M and s0[M.V] = sM .
Note that as long as there is a mode M whose control state is at initM , no continuous
steps are possible. However, any discrete step of such mode will come from RD

initM ,dx

and bring the control state of M to dx. Therefore, any execution of an agent A =
〈TM, V, I〉 with |TM | = k will start with exactly k discrete initialization steps. At
that point, every top-level mode of A will be at its default exit point, allowing an
alternation of continuous steps from RC and discrete steps from RD

de,dx. The choice
of a continuous step involving all modes or a discrete step in one of the modes is left
to the environment. Before each discrete step, there is an environment step, which
takes the control point of the chosen mode from dx to de and leaves all the private
variables of all top-level modes intact. After that, a discrete step of the chosen mode
happens, bringing control back to dx. Thus, an execution of A with |TM | = k is a
sequence s0

o→s1
o→ . . . sk

λ1→sk+1
λ2→ . . . such that

– for every 0 ≤ i < k, there is M ∈ TM such that (si[M.V], si+1[M.V]) ∈
M.RD

initM ,dx. That is, the first k steps initialize the top-level modes of A.
– for every i ≥ k, one of the following holds:

• si
f→si+1 such that f is defined on [0, t] and f(t) = si+1, and for every mode

M ∈ TM , (si[M.V], f [M.V]) ∈ M.RC ; that is, the step is a continuous step,
in which every mode takes part;

• si
ε→si+1 such that for every mode M ∈ TM , si[M.Vp] = si+1[M.Vp]; that is,

the step is an environment step;
• si

o→si+1 with i > k, there is M ∈ TM such that (si[M.V], si+1[M.V]) ∈
M.RD

de,dx; that is, the step is a discrete step by one of the modes.

Note that environment steps in agents and in modes are different. In an agent, an
environment step may contain only discrete steps, since all agents participate in every
continuous step. The environment of a mode can engage in a number of continuous
steps while the mode is inactive.

Definition 5. (Trace semantics for agents) A trace of A is an execution of A, pro-
jected onto the set of its global variables. The denotational semantics of an agent
consists of its set of global variables and its set of traces.

Let A be a primitive agent and (init, s0)
o→(dx, s1)

λ1→(c2, s2)
λ2→ . . .

λn−1→ (cn, sn) be

a trace of its top-level mode. It is easy to see that s0
o→s1

λ1→s2
λ2→ . . .

λn−1→ sn is a trace
of A. A similar statement is true for agents with multiple top-level modes.

4.3 Operations on agents

Variable hiding. The hiding operator makes a set of agent variables private. Given
an agent A = 〈TM, V, I〉, the agent A\{Vh} = 〈TM, V ′, I〉 with V ′

l = Vl ∪ Vh, V ′
g =

Vg −Vh. A trace of A, projected onto the set of global variables of A\{Vh}, is a trace
of A\{Vh}.
Variable renaming. Variable renaming replaces a set of variables in an agent A
with another set of variables. Let V1 = {x1, . . . , xn}, V2 = {y1, . . . , yn} be indexed
sets of variables with V1 ⊆ A.V . Then, A[V1 := V2] is an agent with the set of global
variables (A.Vg − V1) ∪ V2. Semantics of the variable renaming operator is given by
renaming the variables in the traces of the agent.
Parallel composition. The composition of the two agents A1||A2 is an agent
A = 〈TM, V, I〉 defined as follows:A.TM = A1.TM ∪ A2.TM,A.Vg = A1.Vg ∪
A2.Vg, A.Vl = A1.Vl ∪A2.Vl, and if s ∈ A.I then s[A1.V] ∈ A1.I and s[A2.V] ∈ A2.I.

5 Compositionality results

We show that our semantics is compositional for both modes and agents. First, the
set of traces of a mode can be computed from the definition of the mode itself and
the semantics of its submodes. Second, the set of traces of a composite agent can be
computed from the semantics of its sub-agents. For the lack of space, we omit the
proofs and concentrate on intuitions for the results.

5.1 Compositionality of modes

In order to show that our trace semantics for modes is compositional, we need to be
able to define the semantics of a mode only in terms of the semantics of its submodes.
Compositional Trace Construction. First, we show that every trace of a mode
can be constructed using the traces of the submodes.

Theorem 1. The set of traces of a mode M can be computed from the set of traces
of its submodes, its closed transition relation c(T) and the set of constraints Cons.

...

...

...

...

...... ...N1<
M

k

M

k M11 M1

M

M M

C1

N

1 k < Nk< N1

<

<
C

M

1

Mk Mk

C2

C2

Fig. 3. Compositionality rules for modes

Theorem 1 relies on the following observation. Given a submode N of M , we
can “project” a trace σ of M onto N and obtain a trace of N . This projection will
1) restrict all data states and flows to the global variables of N , 2) replace every
subsequence of σ where N is inactive into a single environment step, and 3) convert
continuous steps of M into continuous steps of N by removing transitions from N.dx
to M.dx and from M.de to N.de. The critical point in proving this observation is
that, whenever the control state is at dx of M , and N is the active submode of M ,
N has its control state at N.dx, since only default exit transitions and the identity
transition of the mode can end at dx.
Mode Refinement. The trace semantics leads to a natural notion of refinement
between modes: a mode M refines N if it has the same global variables and control
points, and every trace of M is a trace of N .

Definition 6. (Refinement) A mode M and a mode N are said to be compatible if
M.Vg = N.Vg, M.E=N.E and M.X=N.X. Given two compatible modes M and N ,
M refines N , denoted M�N , if LM⊆LN .

For a finite index set I, we write {Mi | i ∈ I} � {Ni | i ∈ I} if Mi � Ni for each
i ∈ I. The refinement operator is compositional with respect to the encapsulation:

Theorem 2. (Submode compositionality)Given a mode N , suppose SM � SN and
let M = N [SM/SN]. Then M � N .

The refinement rule is explained visually in Figure 3, left. If we consider a submode
N within a mode M , the remaining submodes of M and the transitions of M can
be viewed as an environment or mode context for N . In other words, a context for
N1 . . .Nk is a mode M [G1, . . .Gk] with holes or most general submodes Gi, 1<i<k
that have the same interface as Ni, have no local variables and put no constraints
on the update of global variables. Two contexts are said to be compatible if they are
compatible as modes and they also are compatible on their holes.

Definition 7. (Context traces) An execution of a mode context C with holes G1 . . . Gk

is a path

(e0, s0)
λ1→(e1, s1)

λ2→ . . .
λn→(en, sn)

through the graph of R of C with λi = ε for each ei, ei+1 such that ei is in C.X and
ei+1 is in C.E or ei is in Gj .E and ei+1 is in Gj .X, for 1<j<k. A trace of C is
obtained by projecting an execution on its global variables.

As with modes, the set of traces of a context C is denoted by LC and refinement
is defined by language inclusion. Given a context C with holes G1, . . .Gk and a set
of modes N1, . . .Nk such that Ni � Gi for 1<i<k, we write C[N1, . . . Nk] the mode
obtained by filling the holes Gi of C with Ni. Contexts are also compositional.

Theorem 3. (Context compositionality) Let C1 and C2 be compatible contexts with
holes G1 . . . Gk. If C1 � C2 then C1[N1, . . . , Nk] � C2[N1, . . . , Nk] for any set
Ni, 1<i<k of modes compatible with the holes, i.e., Ni � Gi for all i.

A visual representation of this rule is shown in Figure 3, right. The compositionality
rules allow us to decompose the proof obligation into refinement of submodes in the
most general context, and refinement of contexts under the most general submode.

t 0
dx de

e x
t 0

dx de

e x

t 10≤t=10

Normal Normal’

∈ [2,10]} {level ∈ [2,10]}
d(t) = 1d(t) = 1

{level

Fig. 4. Refinement example

Consider mode Normal in Figure 1 as a two-place context. Let Normal’ differ
from Normal only by allowing rate computation to happen more often. The tran-
sition to Compute has a relaxed guard t ≤ 10, as shown in Figure 4. By Theo-
rem 3, Normal[Maintain,Compute] � Normal’[Maintain,Compute]. If Controller’
is the agent in which Normal’ replaces Normal, then by Theorem 2, Controller �
Controller’.

5.2 Compositionality of agents

An agent is, in essence, a set of top level modes that interleave their discrete tran-
sitions and synchronize their flows, the compositionality results for modes lift in a
natural way to agents too. The operations on agents are compositional with respect
to refinement.

Definition 8. (Refinement) An agent A and an agent B are said to be compatible
if A.Vg = B.Vg. Agent A refines a compatible agent B, denoted A�B, if LA⊆LB.

Theorem 4. (Agent compositionality)Given compatible agents such that A�B,A1�B1

and A2�B2. Let V1 = {x1, . . . , xn}, V2 = {y1, . . . , yn} be indexed sets of variables
with V1 ⊆ A.V and let Vh ⊆ A.V . Then A\{Vh} � B\{Vh}, A[V1 := V2] � B[V1 :=
V2] and A1||A2 � B1||B2

In our example, Tank||Controller � Tank||Controller’ by Theorem 4.

6 Conclusions

We have presented a hierarchical modular semantics for hybrid systems. The proposed
semantics is compositional both with respect to the system architecture (parallel

agents and their subagents) and the system behavior (modes and their submodes).
We have introduced the notion of refinement between the system components - both
modes and agents - and showed that, in the proposed semantics, composition of
components preserves refinement.

We are currently working to build upon the presented compositionality results
and provide assume-guarantee proof rules for hybrid systems, extending the results
of [2]. The proposed semantics have been used in the modeling language Charon [3]
and its toolkit, currently under development by the authors. For further details, see
http://www.cis.upenn.edu/mobies/charon/.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3–34, 1995.

2. R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines. In Proceed-
ings of the 27th Annual ACM Symposium on Principles of Programming Languages,
pages 390–402, 2000.

3. R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specifications of hybrid
systems in Charon. In Hybrid Systems: Computation and Control, Third International
Workshop, volume LNCS 1790, pages 6–19, 2000.

4. R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In CONCUR
’97: Eighth International Conference on Concurrency Theory, LNCS 1243, pages 74–88.
Springer-Verlag, 1997.

5. G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language User Guide.
Addison Wesley, 1997.

6. J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L. Muliadi,
S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Overview of the Ptolemy
project. Technical Report UCB/ERL M99/37, University of California at Berkeley,
1999.

7. A. Deshpande, A. Göllu, and P. Varaiya. SHIFT: a formalism and a programming
language for dynamic networks of hybrid automata. In Hybrid Systems V, LNCS 1567.
Springer, 1996.

8. R. Grosu, T. Stauner and M. Broy. A Modular Visual Model for Hybrid Systems. In
FTRTFT’98: Formal Techniques in Real Time and Fault Tolerant Systems, LNCS 1486.
Springer-Verlag, 1998.

9. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231–274, 1987.

10. T.A. Henzinger. Masaccio: a formal model for embedded components. In TCS 00:
Theoretical Computer Science, LNCS 1872, pages 549–563. Springer, 2000.

11. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
12. N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid I/O automata. In Hybrid

Systems III: Verification and Control, LNCS 1066, pages 496–510, 1996.
13. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Real-Time:

Theory in Practice, REX Workshop, LNCS 600, pages 447–484. Springer-Verlag, 1991.
14. R. Milner. A Calculus of Communicating Systems. LNCS 92. Springer-Verlag, 1980.

