Assignment Seven: Verification of Abel-Jacobi Theorem

David Gu
Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

August 21, 2022

Canonical Fundamental Group Generator

Step 1

Compute a set of canonical fundamental group generators of S,

$$
\pi_{1}(S, p)=\left\langle a_{1}, b_{1}, \cdots, a_{g}, b_{g} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}\right\rangle
$$

Based on Assignment 6 to compute handle loops and tunnel loops.

Holomorphic Differential

Step 2

Use Hodge decomposition algorithm to compute a holomorphic 1-form:
(1) Compute $2 g$ random 1-forms, $\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{2 g}\right\}$;
(2) Decompose each τ_{i} to the harmonic 1 -form $\omega_{i}, i=1,2, \cdots, 2 g$;
(3) Compute the Hodge star ${ }^{*} \omega_{i}$ of $\omega_{i}=\sum_{j=1}^{2 g} \lambda_{i j} \omega_{j}$;
(1) Pair ω_{i} and ${ }^{*} \omega_{i}$ to form a holomorphic 1-form $\varphi_{i}=\omega_{i}+\sqrt{-1}^{*} \omega_{i}$, $i=1,2, \cdots, 2 g$

Abel-Jacobi Map

Step 3

(1) Cut the surface along the fundamental group generators to get a fundamental domain Ω;
(2) Select one holomorphic 1-form φ and one base point $p_{0} \in \Omega$;
(3) Compute the Abel-Jacobi map

$$
\mu(p)=\int_{p_{0}}^{p} \varphi .
$$

Verify Abel Theorem

Step 4

(1) Locate all the corner points of the polycube surfaces, the valence 3 corners are poles, denoted as q_{i} 's, the valence 5 corners are zeros, denoted as p_{j} 's;
(2) Locate the zeros of the holomorphic 1-forms, denoted as c_{k} 's;
(3) Compute

$$
\mu(D):=\sum_{j} \mu\left(p_{j}\right)-\sum_{i} \mu\left(q_{i}\right)-4 \sum_{k} \mu\left(c_{k}\right)
$$

(a) in theory, $\mu(D)$ modulo the periods should be zero.

Genus One Polycube Surface Example

A genus one closed surface S, which is a polycube surface (union of canonical unit cubes). The holomorphic one form $\omega \in \Omega^{1}(S)$.

Genus One Polycube Surface Example

The homology basis is $\{a, b\}$, the surface is sliced along $\{a, b\}$ to get a fundamental domain $D, \partial D=a b a b^{-1} b^{-1}$. The conformal mapping $\mu: D \rightarrow \mathbb{C}$ is given by

$$
\mu(q)=\int_{p}^{q} \omega
$$

where p is a base point and the integration path is arbitrarily chosen.

Genus One Polycube Surface Example

Suppose q_{i} 's are poles (degree 3), p_{j} 's are zeros (degree 5), then we have found that the number of poles equals to that of the zeros, furthermore,

$$
\sum_{j=1}^{22} \mu\left(p_{j}\right)-\sum_{i=1}^{22} \mu\left(q_{i}\right)=0
$$

Genus Two Polycube Surface Example

Suppose S is a genus two polycube surface, ω is a holomorphic one-form. The red circles show the poles (degree 3), the blue circles show the zeros (degree 5), the purple circles the zeros of ω.

(a). front view

(b). back view

Genus Two Polycube Surface Example

The surface is sliced along $a_{1}, b_{1}, a_{2}, b_{2}, \tau$, and integrate ω to obtain $\mu: S \rightarrow \mathbb{C}$

$$
\mu(q)=\int_{p}^{q} \omega
$$

it branch covers the plane, the branching points are zeros of ω, c_{1}, c_{2}.

(a). cuts

(b). conformal fattening

Genus Two Polycube Surface Example

Suppose p_{i} 's are zeros (degree 5), q_{j} 's are poles (degree 3), c_{k} 's are branch points, then we have

$$
\sum_{i=1}^{16} \mu\left(p_{i}\right)-\sum_{j=1}^{8} \mu\left(q_{j}\right)=4 \sum_{k=1}^{2} \mu\left(c_{k}\right)
$$

Genus Two Polycube Surface Example

Suppose S is a genus two polycube surface, ω is a holomorphic one-form. The red circles show the poles (degree 3), the blue circles show the zeros (degree 5), the purple circles the zeros of ω.

(a). front view

(b). bacck view

Genus Two Polycube Surface Example

Suppose p_{i} 's are zeros (degree 5), q_{j} 's are poles (degree 3), c_{k} 's are branch points, then we have

$$
\sum_{i=1}^{16} \mu\left(p_{i}\right)-\sum_{j=1}^{8} \mu\left(q_{j}\right)=4 \sum_{k=1}^{2} \mu\left(c_{k}\right)
$$

Final Project

You can also choose other topics, which are related to computational conformal geometry and can demonstrate your talence and skills. The project is due within one month. The solution is required to be written in generic $\mathrm{C}++$ with a detailed technical report to describe your design of data structures, algorithms, potential applications and improvement direction.

