Instruction for Assignment Two: Differential Topology

David Gu

Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

July 13, 2022

Differential Topology: Theoretic Proofs

Brouwer Fixed Point

Problem (Mobius Transformation)

Let $\mathbb{D}=\{z \in \mathbb{C}| | z \mid \leq 1\}$ be the unit planar disk. A Möbius transformation $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is given by

$$
\varphi(z)=e^{i \theta} \frac{z-z_{0}}{1-\bar{z}_{0} z}
$$

According to Brouwer fixed point theorem, there should be fixed points. Compute the fixed points, what are the norms of them ?

Surface Fixed Points

Problem

By stereo-projection, the unit sphere \mathbb{S}^{2} is mapped onto the complex plane $\mathbb{C} \cup\{\infty\}$, a Möbius transformation $\varphi: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is given by

$$
\varphi(z)=\frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{C}
$$

(1) Show the mapping is homotopic to the identity map.
(2) How many fixed points are there?
(3) What are the indices of each of them ?

Cohomology Group

Problem (Cohomology Group)

In our simplicial cohomology group basis $H^{1}(M, \mathbb{R})$ algorithm, we compute the 1-forms $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{2 g}\right\}$, show that
(1) each ω_{k} is closed by not exact;
(2) they are linearly independent, so form a basis of $H^{1}(M, \mathbb{R})$

Harmonic Differential

Problem

Suppose a complex function $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic, $f: x+i y \mapsto u+i v$,
(1) Write down the Cauchy-Riemann equation for f;
(2) Show both $d u$ and $d v$ are harmonic 1-forms;
(3) Show $d v=* d u$, where $*$ is the Hodge star operator;
(9) Show the mapping is angle-preserving.

Harmonic Differential

Problem

Suppose (S, \mathbf{g}) is a closed oriented surface with genus $g,(u, v)$ is an isothermal parameter such that $\mathbf{g}=e^{2 \lambda(u, v)}\left(d u^{2}+d v^{2}\right)$
(1) Suppose $\mathbf{v} \in T_{p} S$ is a tangent vector, represented as $\mathbf{v}=v_{1} \partial u+v_{2} \partial v ; \omega \in T_{p}^{*} S$ is a differential 1-form, $\omega=\omega_{1} d u+\omega_{2} d v$, show that there is a vector field \mathbf{w} corresponding to ω, such that for any tangent vector

$$
\omega(\mathbf{v})=\langle\mathbf{w}, \mathbf{v}\rangle_{\mathbf{g}} .
$$

What is the representation of \mathbf{w} ?
(2) Show that ω must have zeros, where $\omega_{1}(p)=\omega_{2}(p)=0$.
(3) If ω is harmonic, are the positions of the zeros random? How to describe the zeros?

