Instruction for Assignment Three: Differential Geometry

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 21, 2022

Differential Geometry: Theoretic Proofs

э

Problem (Random Walk)

Suppose *M* is a genus zero triangulated polyhedral surface with a single boundary. A particle randomly walks along the edges, each step the particle reaches a vertex. We use ω_k to represent the vertex the particle reaches at the k-th step. Suppose at the k-th step, the particle is at an interior vertex v_i , then at the k + 1-th step, the probability of the particle reaches an adjacent vertex v_j is:

$$\mathsf{Prob}(\omega_{k+1} = \mathsf{v}_j | \omega_k = \mathsf{v}_i) = rac{\mathsf{w}_{ij}}{\sum_{\mathsf{v}_i \sim \mathsf{v}_k} \mathsf{w}_{ik}}$$

where w_{ij} is the cotangent edge weight. The random walks terminates when the particle hits a boundary vertex.

< ロト < 同ト < ヨト < ヨト

Problem (Random Walk)

Fix a boundary vertex $v_k \in \partial M$, for any interior vertex v_i , a random walk ω starting from v_i , and the probability of ω first hits the boundary at v_k is denoted as $f(v_i)$.

1 Prove that $f : M \to \mathbb{R}$ is a discrete harmonic function.

Suppose we want to solve a discrete Laplace equation with Dirichlet boundary condition, h : M → ℝ,

$$\begin{cases} \Delta h = 0 \\ h|_{\partial M} = g, \end{cases}$$

design an algorithm based on random walks to solve it.

Problem (Gaussian Curvature)

Suppose S is a closed, orientable, compact C^2 surface embedded in \mathbb{R}^3 ,

- Show there is at least one point p, such that the Gaussian curvature at p is strictly positive;
- Show that the surface S with a different Riemannian metric g), such that the curvature induced by g is negative everywhere, can not be isometrically embedded in ℝ³.

Problem (Gaussian Curvature)

Suppose S is a closed, orientable, compact C^2 surface embedded in \mathbb{R}^3 ,

- Show there is at least one point p, such that the Gaussian curvature at p is strictly positive;
- Show that the surface S with a different Riemannian metric g), such that the curvature induced by g is negative everywhere, can not be isometrically embedded in R³.

Problem (Special Atlas)

Suppose S is a genus g > 1 closed, orientable, compact surface, $\mathcal{A} = \{(U_i, \varphi_i)\}$ is an atlas of the surface such that all the chart transition functions

$$\varphi_{ij}:\varphi_i(U_i\cap U_j)\to\varphi_j(U_i\cap U_j)$$

are planar rigid motions. Does that kind of atlas exist or not ? Justify.

Problem (Cross Field)

Suppose (S, \mathbf{g}) is a closed genus one surface, $p, q \in S$ are distinct points on the surface, \mathbf{g} is a flat metric with cone singularities at p and q, such that the discrete Gaussian curvature is $\frac{\pi}{2}$ at p and $-\frac{\pi}{2}$ at q. A cross field is to assocate a non-oriented frame (a cross) at each point. Is there a smooth cross field on the surface ? If such kind of field exists, how to construct it ?

July 21, 2022