Assignment Three: Harmonic Map for Topological Disk

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 21, 2022

Triangle Mesh: Discrete Harmonic Maps

э

Surface Harmonic Map

input mesh

harmonic map image

∃ >

Surface Harmonic Map

input mesh

harmonic map image

< 1 k

July 21, 2022

This C++ project aims at helping students to implement geometric algorithms: harmonic maps for topological disks.

∃ >

The code has been tested on Windows, Linux and Mac. If there is any problem on the platforms, please let the instructor know.

- Image of the second second
- Ifreeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

- harmonic_map/include, The header files of cut graph
- harmonic_map/src, The source files of cut graph algorithm.
- data,Some models.
- CMakeLists.txt, CMake configuration file.
- resources, Some resources needed.
- 3rdparty, MeshLib and freeglut libraries.

Before you start, read README.md carefully, then go three the following procedures, step by step.

- Install [CMake](https://cmake.org/download/).
- 2 Download the source code of the C++ framework.
- Sonfigure and generate the project for Visual Studio.
- Open the .sln using Visual Studio, and complie the solution.
- Sinish your code in your IDE.
- Run the executable program.

- open a command window
- 2 cd ccg_homework_skeleton
- Image: mkdir build
- Cd build
- 6 cmake ..
- open HarmonicMap.sln inside the build directory.

5. Finish your code in your IDE

- You only need to modify one file: HarmonicMap.cpp
- search for comments

//insertyourcodehere

and insert your code

Modify

CHarmonicMap::set_mesh(CHarmonicMapMesh * pMesh)

move the image of all the vertices to the origin.

Modify

CHarmonicMap::step_one()

move the image of each vertex to the weighted center of the images of its neighbors;

Modify

CHarmonicMap::map()

Constuct each element of the Matrix A and B;

David Gu (Stony Brook University)

Computational Conformal Geometry

Modify

CHarmonicMap::set_calculate_edge_weight()

Compute the corner angles using cosine law.

Modify

CHarmonicMap::set_calculate_edge_weight()

12 / 17

Compute the cotangent edge weight;

6 Run the executable program

Command: HarmonicMap.exe ../../data/girl.m, press 'h', then press '2'

input mesh

harmonic map image

July 21, 2022

13/17

Input: A topological disk mesh M;

Output: Harmonic map result, stored at the vertex uv coordinates;

- Trace the boundary of *M* counter clockwisely, set the *uv* to be on the unit circle, the angle for each vertex is proportional to the arc length;
- 2 Set all the interior vertices uv to be at the original (0,0);
- Ompute all the corner angles;
- Compute edge cotangent edge weight, w_{ij} for edge $[v_i, v_j]$;
- So For each vertex v_i , move it uv to the weighted center of its neighbors,

$$uv(v_i) \leftarrow rac{\sum_j w_{ij} \ uv(v_j)}{\sum_j w_{ij}}$$

Repeat step 5, until it converges.

Input: A topological disk mesh M; Output: Harmonic map, $\varphi: V \to \mathbb{R}^2$;

- Trace the boundary of *M* counter clockwisely, set the *uv* to be on the unit circle, the angle for each vertex is proportional to the arc length;
- Compute all the corner angles;
- Ompute edge cotangent edge weight, w_{ij} for edge [v_i, v_j];
- For each interior vertex v_i , construct a linear equation

$$\sum_{\mathbf{v}_j\sim\mathbf{v}_i}w_{ij}(\varphi(\mathbf{v}_j)-\varphi(\mathbf{v}_i))=0.$$

with Dirichlet boundary condition.

Cotangent Edge Weight

Figure: Cotangnet edge weight.

$$w_{ij} = \begin{cases} \cot \alpha + \cot \beta & [v_i, v_j] \notin \partial M \\ \cot \alpha & [v_i, v_j] \in \partial M \end{cases}$$

July 21, 2022

3 N 3

Discrete Harmonic Map

Given a discrete map $\varphi: V \to \mathbb{R}^2$,

$$\Delta \varphi(\mathbf{v}_i) = \sum_j w_{ij}(\varphi(\mathbf{v}_j) - \varphi(\mathbf{v}_i)) = \mathbf{0}, \quad \forall \mathbf{v}_i \notin \partial M,$$

with Dirichlet boundary condition $\varphi(v_k) = f(v_k)$, for all $v_k \in \partial M$.