Assignment Seven: Persistent Homology for Handle and Tunnel Loops

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 9, 2022

Figure: Handle and tunnel loops of the amphora model.

Tunnel Loops

Figure: Null homotopy detection.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 9, 2022

∃ >

< 行

Tunnel Loops

Figure: Birkhoff curve shortening.

∃⊳

Topological Torus

Figure: Handle and tunnel loops.

< 47 ▶

∃ →

Topological Torus

Figure: Handle and tunnel loops.

∃⊳

- (日)

Topological Torus

Figure: Interior and exterior volumes.

- ∢ /⊐ >

3.5 3

The input is an oriented closed triangular mesh, use Dr. Hang Si's tetgen to generate the inteior and exterior volumetric mesh.

Interior Volume

Use Tetgen to generate the interior tetrahedral mesh inside the mesh M, denoted as I_M .

Exterior Volume

Construct a sphere enclosing the input mesh M, use Tetgen to generate a tetrahedral mesh between the sphere and the mesh M. Add the infinity point ∞ , connect ∞ with each triangle face on the sphere to form a tetrahedron, denoted as O_M .

Interior Volume

Extract the boundary surface of the interior volume $M = \partial I_M$; Sort all the vertices, edges, faces of M,

$$\sigma_0^1, \sigma_0^2, \cdots, \sigma_0^{n_0}, \sigma_1^1, \sigma_1^2, \cdots, \sigma_1^{n_1}, \sigma_2^1, \sigma_2^2, \cdots, \sigma_2^{n_2}.$$

After that insert the interior vertices, edges, faces and tetrahedra of $I_M \setminus M$,

$$\tau_0^1, \tau_0^2, \cdots, \tau_0^{m_0}, \tau_1^1, \tau_1^2, \cdots, \tau_1^{m_1}, \tau_2^1, \tau_2^2, \cdots, \tau_2^{m_2}, \tau_3^1, \tau_3^2, \cdots, \tau_3^{m_3}.$$

Exterior Volume

Extract the boundary surface of the exterior volume $M = \partial O_M$; Sort all the vertices, edges, faces of M,

$$\sigma_0^1, \sigma_0^2, \cdots, \sigma_0^{n_0}, \sigma_1^1, \sigma_1^2, \cdots, \sigma_1^{n_1}, \sigma_2^1, \sigma_2^2, \cdots, \sigma_2^{n_2}.$$

After that insert the interior vertices, edges, faces and tetrahedra of $O_M \setminus M$,

$$\tau_0^1, \tau_0^2, \cdots, \tau_0^{m_0}, \tau_1^1, \tau_1^2, \cdots, \tau_1^{m_1}, \tau_2^1, \tau_2^2, \cdots, \tau_2^{m_2}, \tau_3^1, \tau_3^2, \cdots, \tau_3^{m_3}.$$

э

Pair Algorithm

 $\mathsf{Pair}(\sigma)$

- $c = \partial_p \sigma$
- **2** au is the youngest positive (p-1)-simplex in c.
- **3** while au is paired and c is not empty do
- find (τ, d) , d is the p-simplex paired with τ ;

$$o c \leftarrow \partial_p d + c$$

• Update au to be the youngest positive (p-1)-simplex in c

🧿 end while

- **if** *c* is not empty **then**
- σ is negative *p*-simplex and paired with au

🕛 else

🔮 endif

э

- The simplices on the surface M are added into the filtration in any arbitrary order. Since $H_1(M)$ is of rank 2g, the algorithm Pair generates 2g number of unpaired positive edges.
- The simplices up to dimension 2 in *I* are added into the filtration. Since H₁(*I*) of rank *g*, half of 2*g* positive edges generated in step 1 get paired with the negative triangles in *I*. Each pair correponds to a killed loop, these *g* loops are handle loops.
- Or the simplices up to dimension 2 in O are added into the filtration. Since H₁(O) of rank g, half of 2g positive edges genrated in step 2 get paried with the negative triangles in O. Each pair corresponds to a killed loop, these g loops are tunnel loops.

Mark Loop Algorithm

Input: Trace $Pair(\tau, \sigma)$, τ is a handle loop generator, σ is its killer. Output: a handle loop cycle c, the youngest generator of c is τ

- $c = \partial_2 \sigma$
- **2** au is the youngest generator edge in c.
- **(a)** while τ is paired and c is not empty **do**
- If ind (τ, d) , d is the killer face paired with τ ;

$$\mathbf{o} \qquad \mathbf{c} \leftarrow \partial_{\mathbf{p}} \mathbf{d} + \mathbf{c}$$

- Update au to be the youngest generator edge in c
- **()** if au is on the boundary surface, then
- Interpretation break;
- 🧿 endif
- 🔍 end while
- return the resultant c.

Lemma (Termination Condition)

In the mark loop algorithm, when τ is on the boundary surface, then the whole cycle c is also contained in the surface.

Proof.

1. By assumption, the generator τ corresponds to a handle loop *L*; the boundary of the killer $C = \partial \sigma$ is homologous to *L*, *C* is contained in the volume.

2. At each step in the while-loop, the transformation C preserves homologous class. Assume at the k-th step

$$C_k = L + \partial D_{S,k} + \partial D_{V,k},$$

where $D_{S,k}$ is a 2-chain on the surface; $D_{V,k}$ is a 2-chain in the volume, not on the surface. Then $\partial D_{V,k}$ is a cycle in the volume.

< (T) > <

Proof.

3. In the filtration, there is a step n, when all the edges of the volume have been added, but no face has been inserted to the complex \mathbb{K}_n . Then cycle $\partial D_{V,k}$ is in \mathbb{K}_n and homological non-trivial. According to the key lemma, the youngest generator edge τ' of $\partial D_{V,k}$ is a cycle in the volume, younger than any cycle on the surface, hence $\tau' > \tau$. 4. Therefore, when τ becomes the youngest generator edge, $D_{V,k}$ must be empty,

$$C_k = L + \partial D_{S,k} \subset S$$

contained in the surface.

Figure: Step 1: the output of the handle loop algorithm.

Figure: Exact component in the output of the mark loop algorithm. γ is the handle loop, c_0 is the boundary of the killer σ .

$$c_0 = \partial \sigma = c_1 + \gamma + \partial \Sigma, \quad [c_0] = [\gamma].$$

Figure: Step 2: Find the null homologous component and remove it.

August 9, 2022

Input : a graph G on the mesh M labeled as sharp edges; Output: remove null homological cycles

- **9** Build a spanning tree T of G, $G \setminus T = \{e_1, e_2, \dots, e_k\};$
- **2** Construct cycles $c_i = T \cup e_i$, $i = 1, 2, \cdots, k$;
- Ompute the persistent homology of the mesh M;
- If or each cycle c_i find the unpaired youngest generator; if one can not find the generator, then c_i is null homologous.

19/30

Figure: Step 3: Birkhoff curve shortening result.

Birkhoff curve shortening

æ

Birkhoff curve shortening

David Gu (Stony Brook University)

Computational Conformal Geometry

August 9, 2022

< 行

문 문 문

Input : a loop c on M labeled as sharp edges; Output: a shortened cycle homotopic to c;

- Sort the vertices of c as $v_0, v_1, \ldots, v_{n-1}$;
- Find the shortest path between v₀ and v_{n/3}, and replace the sequence of edges between v₀ and v_{n/3};
- Find the shortest path between v_{n/3} and v_{2n/3}, and replace the sequence of edges between v_{n/3} and v_{2n/3};
- Find the shortest path between v_{2n/3} and v₀, and replace the sequence of edges between v_{2n/3} and v₀;
- Solution State of the sequence, and repeat step 2 through step 4.

Instruction

< 行

æ

- 'DartLib', a volumetric mesh library based on Dart data structure.
- 'freeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

- 3rdparty/DartLib, header files for volumetric mesh;
- HandleTunnelLoop/include, the header files for handle-tunnel loop computation;
- data,Some data models and batch scripts;
- CMakeLists.txt, CMake configuration file;
- resources, snapshot for circular slit mapping results;

26 / 30

Before you start, read README.md carefully, then go three the following procedures, step by step.

- Install [CMake](https://cmake.org/download/).
- 2 Download the source code of the C++ framework.
- Sonfigure and generate the project for Visual Studio.
- Open the .sln using Visual Studio, and complie the solution.
- Finish your code in your IDE.
- O Run the executable program.

- open a command window
- 2 cd Assignment_7_skeleton
- Image: Market Market Strain Strain
- Cd build
- 💿 cmake ..
- open CCGHomework.sln inside the build directory.

- You need to modify the file: HandleTunnelLoop.cpp;
- search for comments "insert your code"
- Modify functions:
 - OchandleTunnelLoop :: _pair(std :: set < M :: CVertex* > &vertices)
 - OchandleTunnelLoop :: _pair(std :: set < M :: CEdge* > &edges)
 - OchandleTunnelLoop :: _pair(std :: set < M :: CFace* > &faces)
 - OHANDLE CONTRACTION CONTRACTICON CONTE

29/30

Modify assignment one, CutGraph, to implement the algorithms for null homologous cycle detection and Birkhoff curve shortening.