Assignment Eight: Surface Hyperbolic Structure

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 21, 2022

∃ →

Step 1

Compute a set of canonical fundamental group generators of S,

$$\pi_1(S,p) = \langle a_1, b_1, \cdots, a_g, b_g | a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 a_2^{-1} b_2^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} \rangle.$$

Based on Assignment 7 to compute handle loops and tunnel loops.

2/18

Canonical Fundamental Group Generator

Figure: A set of canonical fundamental group generators.

Hyperbolic Ricci Flow

Step 2

Use hyperbolic Ricci flow to compute the uniformization metric.

- Set the target curvature \bar{K} to zeros everywhere;
- 2 set the conforaml factor u to zeros for all vertices;
- set the edge length

$$I_{ij} \leftarrow e^{\frac{u_i}{2}} y_{ij} e^{\frac{u_j}{2}}$$

- Use hyperbolic cosine law to compute corner angles θ_{ij}^k
- **(**) Compute the vertex curvature K_i
- Compute the gradient of the entropy energy $\nabla E = (\bar{K}_i K_i)$
- \bigcirc Compute the Hessian matrix of the entropy energy H
- **3** Solve linear system $H\delta u = \nabla E$
- $\mathbf{9} \ \mathbf{u} \leftarrow \mathbf{u} + \lambda \delta \mathbf{u}$
- Repeat step 3 through 9, until $\|\nabla E\| < \varepsilon$.

Hyperbolic Isometric Embedding

Step 3

- Slice the mesh along the canonical fundamental group generators to get a fundamentable domain \overline{S} ;
- 2 isometrically embed a face f_0 onto \mathbb{H}^2
- **③** enqueue the face f_0 to the queue Q, set f_0 as processed
- While queue is not empty
- $\ \, \bullet \ \, \mathsf{Pop} \ \, Q$
- **()** for each face f adjacent to f_0 and unprocessed, embed it on \mathbb{H}^2
- suppose $f = [v_0, v_1, v_2]$, v_0 and v_1 has been embedded, $\varphi(v_2)$ is the intersection of two hyperbolic circles, $c(v_0, l_{02})$ and $c(v_1, l_{12})$, and the orientation is counter-clockwise
- $\mathbf{0}$ enqueue f to the queue Q
- endfor
- 🕛 while

Step 4

- Locate the segments of $\varphi(\bar{S})$ to $a_k, b_k, a_k^{-1}, b_k^{-1}$, $k = 1, 2, \cdots, g$;
- 2 choose a pair of segments, $\gamma,$ and $\gamma^{-1},$
- **③** Find a Möbius transformation α_k , such that

$$\alpha_k(b_k(0)) = b_k^{-1}(1), \quad \alpha_k(b_k(1)) = b_k^{-1}(0).$$

and

$$\beta_k(b_k^{-1}(0)) = b_k(1), \quad \beta_k(b_k^{-1}(1)) = b_k(0).$$

• Output the Fuchsian group genrators $\{\alpha_k, \beta_k\}_{k=1}^g$.

Fuchsian Group Generator

Figure: Fuchsian group generators.

Step 5

- Use the Fuchsian group generators to compute the Fuchsian transformations
- Transform the embedding image of the fundamental domain to tessellate the hyperbolic disk
- Replace each boundary segment of the fundamental domain by the unique hyperbolic geodesic
- Recompute the fundamental domain and its embedding
- Senerator a finite portion of the universal covering space

Hyperbolic Geodesic Boundary

Figure: Fuchsian group generators.

Hyperbolic Triangle

Figure: Hyperbolic triangle.

Cosine law:

$$\cos\theta_i = \frac{\cosh l_j \cosh l_k - \cosh l_i}{\sinh l_j \sinh l_k}$$

Sine law:

$\sinh l_i$	$_{\rm sinh}I_{j}$	$\sinh l_k$
$\sin\theta_i$	$= \overline{\sin \theta_j}$	$\sin\theta_k$

Area

$$A = \frac{1}{2} \sinh l_j \sinh l_k \sin \theta_i$$

3 x 3

Definition (Discrete Curvature)

Given a discrete surface with hyperbolic background geometry (S, V, T, I), every triangle is a hyperbolic geodesic triangle, the vertex discrete curvature is defined as the angle deficit

$$\mathcal{K}(\mathbf{v}) = \left\{egin{array}{cc} 2\pi - \sum_{jk} heta_i^{jk}, & \mathbf{v}
ot\in \partial S \ \pi - \sum_{jk} heta_i^{jk}, & \mathbf{v} \in \partial S \end{array}
ight.$$

Theorem (Gauss-Bonnet)

The discrete Gauss-Bonnet theorem is represented as:

$$\sum_{v \notin \partial S} K(v) + \sum_{v \in \partial S} K(v) - Area(S) = 2\pi \chi(S)$$

< □ > < 凸

Definition (Conformal Deformation)

Given discrete conformal factor function $u: V(\mathcal{T}) \to \mathbb{R}$, hyperbolic vertex scaling is defined as y := u * l,

$$\sinh\frac{y_k}{2} = e^{\frac{u_i}{2}} \sinh\frac{l_k}{2} e^{\frac{u_j}{2}}$$

Lemma (Symmetry)

The symmetric relations holds:

$$rac{\partial heta_i}{\partial u_j} = rac{\partial heta_j}{\partial u_i} = rac{C_i + C_j - C_k - 1}{A(C_k + 1)}$$

where $S_k = \sinh y_k$, $C_k = \cosh y_k$.

12/18

Definition (Hyperbolic Entropy Energy)

$$E_f(u_i, u_j, u_k) = \int^{(u_i, u_j, u_k)} \theta_i du_i + \theta_j du_j + \theta_k du_k.$$

The Hessian matrix of the entropy energy is:

$$\begin{pmatrix} d\theta_1 \\ d\theta_2 \\ d\theta_3 \end{pmatrix} = \frac{-1}{A} \begin{pmatrix} S_1 & 0 & 0 \\ 0 & S_2 & 0 \\ 0 & 0 & S_3 \end{pmatrix} \begin{pmatrix} -1 & \cos\theta_3 & \cos\theta_2 \\ \cos\theta_3 & -1 & \cos\theta_1 \\ \cos\theta_2 & \cos\theta_1 & -1 \end{pmatrix} \begin{pmatrix} 0 & \frac{S_1}{C_1+1} & \frac{S_1}{C_1+1} \\ \frac{S_2}{C_2+1} & 0 & \frac{S_2}{C_2+1} \\ \frac{S_3}{C_3+1} & \frac{S_3}{C_3+1} & 0 \end{pmatrix}$$

which is strictly convex.

Definition (Entropy Energy)

The entropy energy on a triangle mesh with hyperbolic background geometry equals to

$$E(\mathbf{u}) = \int^{\mathbf{u}} \sum_{i} (\bar{K}_{i} - K_{i}) du_{i}$$

Definition (Hyperbolic Ricci Flow)

Hence the discrete hyperbolic surface Ricci flow is defined as:

$$\frac{du_i(t)}{dt}=\bar{K}_i-K_i(t),$$

Uniformizaton of High Genus Surface

Figure: Uniformization of a genus two surface.

Uniformization

Figure: Uniformization of a genus three surface.

→ ∃ →

Uniformization

Figure: Uniformization of a genus two surface.

∃ →

You can also choose other topics, which are related to computational conformal geometry and can demonstrate your talence and skills. The project is due within one month. The solution is required to be written in generic C++ with a detailed technical report to describe your design of data structures, algorithms, potential applications and improvement direction.

18 / 18