Surface Uniformization

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 28, 2022

Surface Uniformization

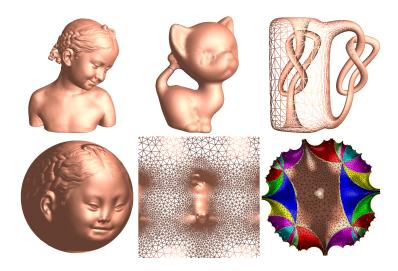


Figure: Closed surface uniformization.

Surface Uniformization

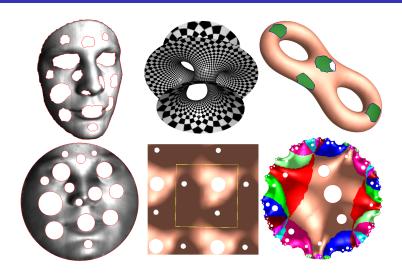


Figure: Open surface uniformization.

Problem

Suppose we have an infinite triangle mesh, \tilde{M} , such as the universal covering space of a closed mesh, fix a point $v_0 \in \tilde{M}$, choose a sequence of neighborhood $E_n \subset \tilde{M}$,

$$v_0 \in E_0 \subset E_1 \subset E_2 \cdots E_n \cdots$$

where each E_k is a topological disk, construct discrete conformal mapping $\varphi_n : E_n \to \mathbb{D}^n$, such that

$$\varphi_n(v_0)=0, \quad \varphi_n'(v_0)>0,$$

then what is the is limit of the sequence $\{\varphi_n(v_0)'\}$?

Answer

- **1** If \tilde{M} is the universal covering of a torus, then the limit is 0;
- ② If \tilde{M} is the universal covering space of a high genus mesh, then the limit is a positive number $\delta > 0$.

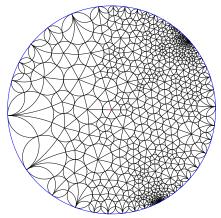


Figure: Discrete Riemann mapping of triangle mesh.

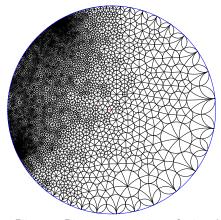


Figure: Discrete Riemann mapping of triangle mesh.

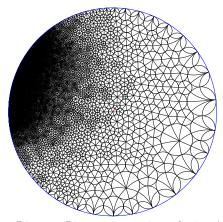


Figure: Discrete Riemann mapping of triangle mesh.

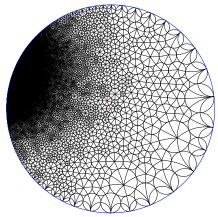


Figure: Discrete Riemann mapping of triangle mesh.

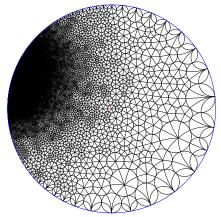


Figure: Discrete Riemann mapping of triangle mesh.

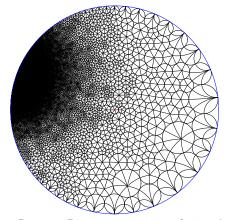


Figure: Discrete Riemann mapping of triangle mesh.

Liuville Theorem

Theorem (Liuville)

Suppose a holomorphic function $f : \mathbb{C} \to \mathbb{C}$ is bounded, |f(z)| < C, for all $z \in \mathbb{C}$, then f(z) = const.

Proof.

According to Cauchy's formula:

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z-a)^{n+1}} dz,$$

here Γ is a circle centered at a with radius r,

$$|f'(a)| = \left|\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z-a)^2} dz\right| \leq \frac{1}{2\pi} \int_{0}^{2\pi} \frac{C}{r} d\theta = \frac{C}{r},$$

let $r \to \infty$, the derivative goes to 0. Hence the holomorphic function f(z) is constant.

Liuville Theorem

The unit sphere \mathbb{S}^2 is conformal equivalent to the augmented complex plane $\hat{\mathbb{C}}$. Complex plane \mathbb{C} and the unit open disk \mathbb{D} are open sets, therefore they are not homeomorphic to the compact set \mathbb{S}^2 . Liuville theorem shows \mathbb{C} and \mathbb{D} are not conformally equivalent to each other.

Corollary

The complex plane $\mathbb C$ and the unit disk $\mathbb D$ are not conformally equivalent.

Proof.

Suppose they are equivalent, there is a biholomorphic function $f:\mathbb{C}\to\mathbb{D}$, according to Liuville, f(z) is constant. Contradiction to biholomorphic function.

Crescent and Full-Moon Theorem

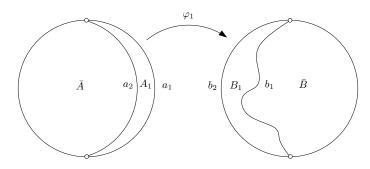


Figure: Initial Map.

Crescent and Full-Moon Theorem

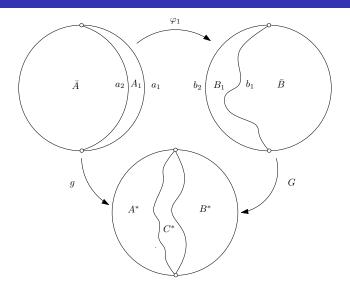


Figure: Analytic extension result.

Crescent and Full Moon

Lemma (Crescent and Full Moon)

As shown in Fig. 9, the boundaries of the crescent domain A_1 are circular arcs a_1 and a_2 , they have intersection angle $\pi/2^m$, $m \in \mathbb{Z}^+$. A conformal map $\varphi_1: A_1 \to B_1$ is defined on the crescent A_1 , $\varphi_1(a_k) = b_k$, k = 1, 2, b_2 is a circular arc. Then there exist analytic functions, $g, G: \mathbb{D} \to \mathbb{D}$, as shown Fig. 10, satisfying

- **1** $A^* = g(\bar{A}), C^* = g(A_1);$
- 2 $B^* = G(\bar{B}), C^* = G(B_1);$
- **3** $g|_{A_1} = G \circ \varphi_1|_{A_1};$

and the restriction on a_k 's and b_k 's, the mappings g and G are homeomorphisms.

Crescent and Full-Moon Theorem

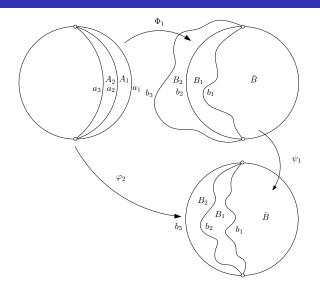


Figure: Analytic extension, step one.

Crescent and Full Moon

Proof.

As shown in Fig. (11), crescents A_1 and A_2 are symmetric about a_2 , by the Schwartz reflection principle, analytic function $\varphi_1:A_1\to B_1$ can be extended about the circular arc a_2 to

$$\Phi_1: A_1 + A_2 \to B_1 + B_2,$$

using Riemann mapping

$$\psi_1: B_1+B_2+\bar{B}\to \mathbb{D},$$

which maps the target to the unit disk. For convenience, we relabel $\psi_1(B_1)$, $\psi_1(B_2)$ as B_1 and B_2 , then the composition map is:

$$\varphi_2 = \psi_1 \circ \Phi_1 : A_1 + A_2 \to B_1 + B_2.$$

Crescent and Full-Moon Theorem

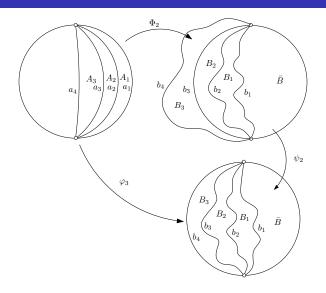


Figure: Analytic extension, step two.

Crescent and Full Moon

continued.

As shown in Fig. (12), we extend $\varphi_2: A_1 + A_2 \to B_1 + B_2$ again, $A_1 + A_2$ is reflected about a_3 to a crescent A_3 , by Schwartz reflection principle,

$$\Phi_2: (A_1+A_2)+A_3 \to (B_1+B_2)+B_3,$$

then composed with the Riemann mapping $\psi_2: B_1 + B_2 + B_3 + \bar{B} \to \mathbb{D}$, we get the result for the second step extension,

$$\varphi_3 = \psi_2 \circ \Phi_2 : A_1 + A_2 + A_3 \to B_1 + B_2 + B_3.$$

Repeat this procedure, by analytic extension we get conformal mappings:

$$\varphi_k: \sum_{i=1}^k A_i \to \sum_{j=1}^k B_j,$$

Crescent and Full Moon

continued.

Consider the inner angle of the crescents, the angle of A_k is θ_k , we have recursive relations,

$$\begin{cases} \theta_1 &= \pi/2^m \\ \theta_2 &= \pi/2^m \\ \theta_k &= \sum_{j=1}^{k-1} \theta_j, \ k > 2 \end{cases}$$

therefore at the m+1 step, all the crescents cover the whole disk. Hence, we obtain analytic function

$$G = \psi_m \circ \psi_{m-1} \circ \cdots \circ \psi_2 \circ \psi_1,$$

and

$$g = \psi_m \circ \psi_{m-1} \circ \cdots \circ \psi_2 \circ \phi_1.$$

We use a combinatorial representation to define a Riemann surface. Given a Riemann surface M, and a triangulation \mathcal{T} . If \mathcal{T} has finite number of faces, then M is a compact surface; if the surface has countable infinite number of faces, then M is an open surface. Van der Waerden proves the existence of a special type of triangulation.

Lemma (Van der Waerden)

Assume \tilde{M} is an open surface, then its triangulation can be sorted,

$$\mathcal{T} = \{\Delta_1, \Delta_2, \Delta_3, \cdots, \Delta_n, \cdots\}$$

such that for any $n = 1, 2, \cdots$,

$$\mathcal{T}_n := \bigcup_{k=1}^n \Delta_k$$

and Δ_{n+1} has only one intersection edge (and the third non-intersecting vertex), or two edges, namely \mathcal{T}_n is a topological disk.

Let \tilde{M} be the universal covering space of a Riemann surface, then \tilde{M} is a simply connected Riemann surface, its triangulation \mathcal{T} is sorted in Van der Waerden pattern. All the edges of \mathcal{T} are analytic arcs, and every face Δ_k is covered by a conformal local chart.

Lemma

For any n > 0, the interior of

$$E_n = \Delta_1 + \Delta_2 + \cdots + \Delta_n$$

is conformally mapped onto the open unit disk, $\varphi_n : E_n \to R_n$, R_n is an open unit disk, and the restriction on the boundary,

$$\varphi_n|_{\partial E_n}:\partial E_n\to\partial R_n$$

is topological homeomorphic.

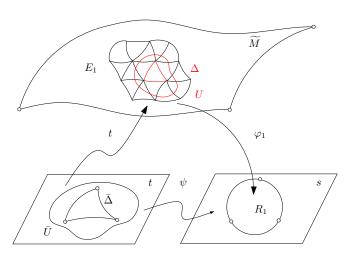


Figure: Initial induction step.

Proof.

Step one: when n=1, as shown in Fig. (13), E_1 only includes one triangle Δ_1 , denote $\Delta=\Delta_1$. Δ is covered by a conformal coordinate system $(U,t),\ \Delta\subset U$. Let $\bar{\Delta},\ \bar{U}$ are the pre-images of $\Delta,\ U$ on the t-plane,

$$t(\bar{\Delta}) = \Delta, \quad t(\bar{U}) = U.$$

 $\bar{\Delta}$ is a simply connected domain, its boundary is piecewise analytic curves. According to Riemann mapping theorem, there is a holomorphic map $\psi:\bar{\Delta}\to R_1$, from $\bar{\Delta}$ to the unit disk R_1 on s-plane, and the restriction on the boundary is topological homeomorphic,

$$\psi|_{\partial\bar{\Delta}}:\partial\bar{\Delta}\to\partial R_1,$$

then construct a holomorphic map $\varphi_1 = \psi \circ t^{-1} : E_1 \to R_1$, its restriction on the boundary is a homeomorphism.

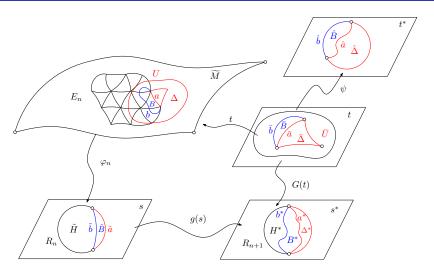


Figure: Induction step.

continued.

Step two: when n>1, assume at the n-th step, E_n is conformally mapped onto the unit disk R_n on s-plane, $\varphi_n:E_n\to R_n$, the restriction on the boundary $\varphi_n|_{\partial E_n}:\partial E_n\to\partial R_n$ is homeomorphic.

As shown in Fig. (14), we consider $E_{n+1}=E_n+\Delta_{n+1}$. Let $\Delta=\Delta_{n+1}$, covered by a local conformal coordinates (U,t), the preimages of U and Δ are \bar{U} and $\bar{\Delta}$ respectively in the local coordinate system,

$$t(\bar{U}) = U, \quad t(\bar{\Delta}) = \Delta.$$

 E_n and Δ intersect at an analytic arc a, $\Delta \cap E_n = a$. The image of a under φ_n is \tilde{a} , $\varphi_n(a) = \tilde{a}$. The conformal local parametric representation of a is \bar{a} , $t(\bar{a}) = a$.

continued.

In the unit disk R_n on the s-plane, draw a circular arc \tilde{b} , two circular arcs \tilde{a} and \tilde{b} have the same ending points, and the intersection angles at the ending points equal to $\pi/2^k$, where k is a big positive integer. The circlar arcs bound a crescent \tilde{B} , the pre-image of \tilde{B} on \tilde{M} is B; the image of B on the t-image is \bar{B} , $\varphi_n(B) = \tilde{B}$, $t(\bar{B}) = B$. We want to show the existence of holomorphic maps $s^* = g(s)$ and $s^* = G(t)$, satisfying:

- $g(\tilde{B}) = B^*, g(\tilde{H}) = H^*, \text{ where } \tilde{H} = R_n \tilde{B};$
- $② G(\bar{B}) = B^*, \ G(\bar{\Delta}) = \Delta^*;$

The combination of g(s) and G(t) gives the conformal mapping from E_{n+1} to R_{n+1} .

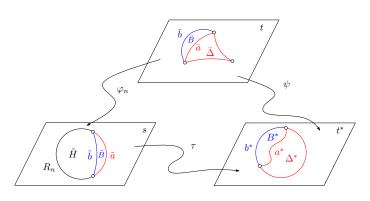


Figure: Combination of conformal mappings.

continued.

As shown in Fig. (15), by Riemann mapping, there is a mapping $t^* = \psi(t)$, mapping $\bar{\Delta} + \bar{B}$ to $\Delta^* + B^*$, the center of the disk is inside Δ^* . Then the composition

$$\tau = \psi \circ \varphi_n^{-1}, \quad t^* = \tau(s)$$

maps the crescent \tilde{B} to B^* . Note that $\tau: \tilde{B} \to B^*$ is defined on crescent \tilde{B} , not defined on \tilde{H} . By crescent-full moon lemma, there exist holomorphic functions g and G, this proves the existence of $\varphi_{n+1}: E_{n+1} \to R_{n+1}$. By induction, the lemma holds.

Theorem (Open Riemann Surface Uniformization)

Simply connected open Riemann surface is conformal equivalent to the whole complex plane $\mathbb C$ or the unit open disk $\mathbb D$.

Proof.

Construct a sequence of holomorphic functions

$$\varphi_{1,n}(s)=\varphi_n\circ\varphi_1^{-1},$$

univalent on R_1 , and normalized at s=0, $\varphi_{1,n}(0)=0$, $\varphi'_{1,n}(0)=1$. Then $\{\varphi_{1,n}\}$ is a normal family. We choose subsequence $\Gamma_1\subset\{\varphi_{1,n}\}$, which converges to univalent function in the interior of R_1 , denoted as

$$\Gamma_1: \varphi_1^1(p), \varphi_2^1(p), \varphi_3^1(p), \cdots$$

converges to a univalent function $\varphi_0(p)$ in E_1 .

Construction of Normal Family

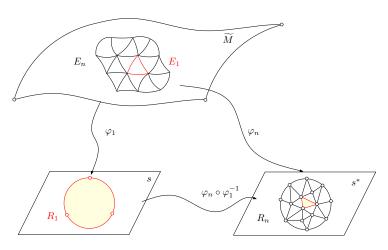


Figure: Construction of normal family $\{\varphi_n \circ \varphi_1^{-1}\}$.

continued.

Construct a sequence of holomorphic functions

$$\varphi_{2,n}(s) = \varphi_n^1 \circ \varphi_2^{-1}, \ \varphi_n^1 \in \Gamma_1,$$

from $\{\varphi_{2,n}\}$ choose subsequence

$$\Gamma_2: \varphi_1^2(p), \varphi_2^2(p), \cdots$$

converges to a univalent holomorphic function on E_2 , and the restriction on E_1 equals to $\varphi_0(p)$, we still denote it as $\varphi_0(p)$.

continued.

Furthermore, construct a sequence of functions

$$\varphi_{3,n}(s) = \varphi_n^2 \circ \varphi_3^{-1}, \ \varphi_n^1 \in \Gamma_2,$$

from $\{\varphi_{3,n}\}$ choose subsequence

$$\Gamma_3: \varphi_1^3(p), \varphi_2^3(p), \cdots$$

converges to a univalent holomorphic function on E_3 , and the restriction on E_2 equals to $\varphi_0(p)$, we still denote it as $\varphi_0(p)$. Repeat this step, apply diagonal principle, we obtain a function sequence

$$\varphi_1^1(p), \varphi_2^2(p), \varphi_3^3(p), \dots$$

where $\varphi_k^k(p)$ are well defined on E_n $(k \ge n)$, and converge to $\varphi_0(p)$ on E_n .

continued.

Since E_n exhausts the whole open Riemann surface \tilde{M} , $\varphi_0(p)$ is univalent, and maps \tilde{M} to a simply connected domain R on s-plane. Since \tilde{M} is open, R can't be the augmented complex plane. Hence, R is either the whole complex plane \mathbb{C} , or a domain on the complex plane. In the second situation, by Riemann mapping theorem, R can be conformally mapped to the unit disk \mathbb{D} .

Compact Surface Uniformization

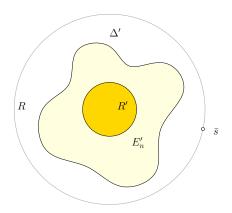


Figure: Compact surface case.

Theorem (Compact Riemann Surface Uniformization)

Compact simply connected Riemann surface is conformal equivalent to the unit sphere.

Proof.

Suppose $ilde{M}$ has a triangulation \mathcal{T} , which includes a finite number of faces,

$$\mathcal{T}_n = \Delta_1 + \Delta_2 + \cdots + \Delta_n,$$

the last triangle Δ_n has three common eges with T_{n-1} . Choose an interior point $q \in \Delta_n$, remove this point, we obtain an open Riemann surface,

$$\tilde{M}_0 = \tilde{M} \setminus \{q\},$$

according to open Riemann surface uniformization theorem, there is a conformal mapping, $\varphi: \tilde{M}_0 \to \mathbb{C}, \ s=\varphi(p)$, which maps the open Riemann surface either to a unit disk or the whole complex plane.

continued.

on s-complex plane, let $\varphi(\Delta_n \setminus \{q\}) = \Delta'$, $\varphi(E_{n-1}) = E'_n$, point $o \in E_{n-1}$, $\varphi(o) = 0$. Let $R' \subset E'_n$ be a disk centered at the origin, then Δ' is outside R'.

Function w=1/z maps Δ' to a bounded domain on w-plane. Consider a function $w=1/\varphi(p)$ defined on $\tilde{M}\setminus\{q\}$, w is bounded in a neighborhood of q, hence q is a removable singularity of function w. Let the image of q in w-plane is w(q).

Assume $R = \varphi(\tilde{M} \setminus \{q\})$ is not the whole complex plane, but the unit disk. Choose a point sequence s_1, s_2, \cdots , its accumulation point is on the unit circle. The corresponding point sequence on the surface is p_1, p_2, \cdots . Since \tilde{M} is compact, the accumulation point of the point sequence is on the surface. But the images of all points on $\tilde{M} \setminus \{q\}$ on s-plane are not on the unit circle, hence

$$q=\lim_{n\to\infty}p_n$$

continued.

For any point on the unit circle, $\bar{s} \in \partial R$, there is a point sequence converging to \bar{s} , hence

$$1/\bar{s}=w(q),$$

but \bar{s} has infinite many value, hence w(q) has infinite, contradiction. Hence the assumption is incorrect, $R = \varphi(\tilde{M} \setminus \{q\})$ is the whole complex plane, \tilde{M} is conformal equivalent to the augmented complex plane. \square