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Camera Model
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Figure: Model of a video camera.
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Model of Projector and Camera

In practice, the mathematical model for camera and projector can be
described using the following pipeline:

(Xw ,Yw ,Zw )
φ1−−−−−→ (Xc ,Yc ,Zc)

φ2−−−−−→ (xc , yc)
φ3−−−−−→ (xd

c , y
d
c )

φ4−−−−−→ (uc , vc)yid

yψ
(Xw ,Yw ,Zw )

φ1−−−−−→ (Xp,Yp,Zp)
φ2−−−−−→ (xp, yp)

φ3−−−−−→ (xd
p , y

d
p )

φ4−−−−−→ (up, vp)

The top row shows the image formation process of the camera, the
bottom row shows the image formation of the projector.
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Pinhole Camera Model

1 The map φ1 : (Xw ,Yw ,Zw ) → (Xc ,Yc ,Zc) transforms from the world
coordinates to the camera coordinates, which is a rotation and a
translation, as shown in Eqn. (1);

2 φ2 : (Xc ,Yc ,Zc) → (xc , yc) is the pinhole camera projection, maps
from camera coordinates to the camera projective coordinates, as
shown in Eqn. (2);

3 φ3 : (xc , yc) → (xdc , y
d
c ) is the camera distortion map in Eqn. (5),

transforms from camera projective coordinates to the distorted
camera projective coordinates, the distortion includes both radial
distortion Eqn. (3) and tangential distortion Eqn. (4);
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Pinhole Camera Model

1 φ4 : (x
d
c , y

d
c ) → (uc , vc) is the projective transformation in Eqn. (6),

which maps from the distorted camera projective coordinates to the
camera image coordinates.

2 The inverse of φ3 maps from the distorted camera projective
coordinates to the camera projective coordinates,
φ−1
3 : (xdc , y

d
c ) → (xc , yc), is Heikkila’s formula in Eqn. (7).
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Pinhole Camera Model

A point p in the world coordinate system is (Xw ,Yw ,Zw ), in the camera
coordinate system is (Xc ,Yc ,Zc), then Xc

Yc

Zc

 = R

 Xw

Yw

Zw

+ T . (1)

where R is the rotation matrix from the world coordinate system to the
camera coordinate system, T is the translation vector.
The projection to the camera projective coordinates (without considering
distortions) are given by: {

xc = Xc/Zc

yc = Yc/Zc
(2)
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Distortion Model

In practice, the lense of the camera introduces distortions, the imaging is
not ideal pinhole camera model, in calibration the distortions need to be
considered. In general, the distortion include both radial distortion and
tangential distortion. We use (x , y) to represent the projective coordinates
on the image plane, such as (xc , yc). The radial distortion (δxr , δyr ) are
represented as{

δxr (x , y) = x(k1r
2 + k2r

4 + k3r
6 + · · · ),

δyr (x , y) = y(k1r
2 + k2r

4 + k3r
6 + · · · ), (3)

where r2 = x2 + y2, k1, k2, k3, · · · are the radial distortion parameters.
The tangential distortion (δxt , δyt) can be represented as{

δxt(x , y) = 2p1xy + p2(r
2 + 2x2),

δyt(x , y) = p1(r
2 + 2y2) + 2p2xy ,

(4)

where p1, p2 are tangential distortion parameters.
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Distortion Model

After considering the camera distortion, the distorted camera projective
coordinates (xd , yd) of the point p can be represented as{

xd = x + δxr (x , y) + δxt(x , y)
yd = y + δyr (x , y) + δyt(x , y)

(5)

After projective transformation, the camera image coordinates of the point
p can be represented as u

v
1

 =

 fu s u0
0 fv v0
0 0 1

 xd
yd
1

 = A

 xd
yd
1

 (6)

where fu, fv are the effective focal lengths along u and v directions
respectively, s is the slant parameter of the coordinate axis, (u0, v0) are
the coordinates of principle point, the intersection point between the
optical axis of the camera and the image plane.
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Camera Calibration

camera calibration aims at find all the parameters of the camera, including

Extrinsic parameters: rotation R, translation T ;

Intrinsic parameters: effective focal lengths fu, fv ; slant parameter s,
principle center (u0, v0);

Distortion parameters: radial distortion parameters k1, k2, k3;
tangential distortion parameters p1, p2.

In practice, intrinsic parameters also include distortion parameters.
Generally, k3 and s are small enough, and usually treated as 0’s. We
denote all the extrinsic and intrinsic parameters as

µ = (Rc ,Tc , fu, fv , s, u0, v0),

and all the distortion parameters as

λ = (k1, k2, k3, p1, p2).
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Calibration Board

Figure: calibration target board.
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Target Board

During the calibration process, each time we fix the position of the target
board plane π, the local coordinates system of the target plane is treated
as the world coordinates system, the plane equation is Zw = 0, the centers
of every star center is known, denoted as

{(X 1
w ,Y

1
w ), (X

2
w ,Y

2
w ), · · · , (X n

w ,Y
n
w )},

the image coordinates of each star center is captured

{(u1, v1), (u2, v2), · · · , (un, vn)}.

From the mapping {(X i
w ,Y

i
w )} → {(ui , vi )}, by optimization, we can

estimate the extrinsic and intrinsic parameters µ.
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Intrinsic and Extrinsic Parameters Estimation

The image formation mapping, also called the forward projection, depends
on the extrinsic and the intrinsic parameters,

φµ,λ : (Xw ,Yw ,Zw ) → (u, v).

The calibration problem is formulated as an optimization problem:

min
λ,µ

E (λ, µ) = min
λ,µ

n∑
i=1

∥φλ,µ(X
i
w ,Y

i
w )− (ui , vi )∥2.

By alternating optimizations, we can reach the optimum

(λ∗, µ∗) = argminλ,µE (λ, µ).

The optimization can be carried out using gradient descend algorithm:

∇E

∂λ
=

[
∂E

∂k1
,
∂E

∂k2
,
∂E

∂k3
,
∂E

∂p1
,
∂E

∂p2

]T
.
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Back Projection

The inverse of the forward projection φλ,µ is called the back projection.
Because the radial distortion Eqn. (3) and the tangential distortion
Eqn. (4) are nonlinear, the transformation from (x , y) to (xd , yd) in
Eqn. (5) can not be directly inverted. One needs to use iterative method
or polynomial approximation method to invert Eqn. (5).
Heikkilä use the following polynomial approximation to compute the
inverse transformation:[

x
y

]
=

1

G

[
xd(1 + a1r

2
d + a2r

4
d ) + 2a3xdyd + a4(r

2
d + 2x2d )

yd(1 + a1r
2
d + a2r

4
d ) + a3(x

2
d + 2y2d ) + 2a4xdyd

]
, (7)

where
G = (a5r

2
d + a6xd + a7yd + a8)r

2
d + 1, (8)

and r2d = x2d + y2d , a1, a2, · · · , a8 are back projection distortion parameters.
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Light Field Camera Model

Figure: Stanford light field Camera.

Definition (light field)

All the rays in R3 form a 4
dimensional space. Each ray is
associated with a color.

Light field camera has been
overdued in vision and graphics.
Each pin-hole camera collects a 2
dimensional family of rays. The
camera array is 2 dimensional.
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Lytro camera

First shoot, then focus !

Figure: Lytro Camera and light field image.
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Light Field Camera Model and Calibration

In the light field camera model, each pixel is associated with a ray, the
rays are independent. The light field camera model is much more general,
and much more accurate than the conventional pinhole model.

Figure: Light Field Model
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Point Cloud Fusion
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Point Cloud Fusion

(a). before fusion (b). after fusion

Figure: Point cloud fusion.
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Normal Estimation

(a). merged point clouds (b). with estimated normal

Figure: Normal estimation.
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Point Cloud Fusion

One of the fundamental problems in SLAM (Simultaneous localization and
mapping) is to fuse point clouds with global consistency.

Figure: point cloud fusion with global consistency.
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Loop Close Problem

Definition (View Graph)

The view graph G = (V ,E ) is a graph, where each node represents a
point cloud, each edge represents two overlapping point clouds.

Problem (Loop Close)

Given a view graph G = (V ,E ), for each oriented edge [ni , nj ], find a rigid
motion (a rotation and translation) from ni to nj , Tij , such that, for each
loop γ with ordered nodes n0, n1, · · · , nk−1, the composition

Tk−1,0 ◦ Tk−2,k−1 ◦ · · · ◦ T1,2 ◦ T0,1 = Id.
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Point Cloud Normal Estimation

Figure: Normal estimation for merged point clouds.
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Point Cloud Fusion

Problem

Given two corresponding point clouds:

P = {p1, p2, · · · , pn}, Q = {q1, q2, · · · , qn}

pk corresponds to qk , find the optimal translation T and rotation R to
minimizes the registration error:

E (R,T ) :=
1

n

n∑
i=1

∥pi − (Rqi + T )∥2.
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Point Cloud Fusion

Center of Mass

Compute the centers of mass of P and Q,

µp =
1

Np

Np∑
i=1

pi , µq =
1

Nq

Nq∑
j=1

qj .

Covariance Matrix

The covariance matrix is given by

M =

Np∑
i=1

(pi − µp)(qi − µq)
T
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Point Cloud Fusion

Covariance Matrix

Denote the singular value decomposition (SVD) of the covariance matrix
by:

M = U

σ1 0 0
0 σ2 0
0 0 σ3

V T

where U,V ∈ GL(R, 3) are unitary, and σ1 ≥ σ2 ≥ σ3 are the singular
values of M.

David Gu (Stony Brook University) Computational Conformal Geometry August 5, 2022 25 / 67



Point Cloud Fusion

Theorem

If the covariance matrix is full rank, then the optimal solution of E (R,T )
is unique and given by:

R = UV T

T = µp − Rµq

The error E (R,T ) is given by

E (R,T ) =

Np∑
i=1

(∥pi − µp∥2 + ∥qi − µq∥2)− 2(σ1 + σ2 + σ3).
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Point Cloud Fusion

Proof.

By ∂E
∂T = 0, we obtain

∂E

∂T
=

2

Np

Np∑
i=1

(Rqi + T − pi ) = 2(Rµq + T − µp) = 0,

hence T = µp − Rµq. Plug into E (R,T ),

E (R,T ) =

Np∑
i=1

∥pi − (Rqi + T )∥2 =
Np∑
i=1

∥(pi − µp)− R(qi − µq)∥2

=

Np∑
i=1

p̄Ti p̄i − q̄Ti R
T p̄i − p̄Ti Rq̄i + q̄Ti qi .

where p̄i = pi − µp and q̄i − µq.
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Point Cloud Fusion

Proof.

2

Np∑
i=1

q̄Ti R
T p̄i = 2

Np∑
i=1

Tr(q̄Ti R
T p̄i ) = 2

Np∑
i=1

Tr(RT p̄i q̄
T
i )

= 2Tr

RT

Np∑
i=1

p̄i q̄
T
i

 = 2Tr(RTM)

= 2Tr(RTUΣV T ) = 2Tr(V TRUΣ)

where Σ = diag(σ1, σ2, σ3), V
TRTU is a rotation matrix. So the above

terms reaches maximum if and only if V TRTU is the identity matrix,
R = UV T , and

2Tr(V TRUΣ) ≤ σ1 + σ2 + σ3.
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Iterative Closest Point

If the correct correspondences are not known, it is generally impossible to
determine the optimal relative rotation and translation in one step.

1 Initialize registration parameters (R,T ) and registration error
E (R,T );

2 For each point in the scene shape, find the corresponding closest
point in the model shape;

3 Calculate registration parameters given point correspondences
obtained from step 2.

4 Apply the alignment to the scence shape;

5 Calculate the registration error between the currently aligned scene
shape and the model shape;

6 If the error is greater than threshold, return to step 2, else return with
new sence shape.
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Iterative Closest Point

ICP Variants

1 Point subsets from one or both point sets

2 Weighting the correspondences

3 Data association

4 Rejecting outlier point pairs
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Selecting Source Points

Use all the points

Uniform sub-sampling

Random sampling

Feature based sampling

Normal space sampling: ensure the samples have normals distributed
as uniformly as possible
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Data Association

Greatest effect on convergence and speed

Closest point

Normal shooting

Closest compatible point

Projection

Using kd-trees or oc-trees
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Rejecting Outlier Point Pairs

Sorting all correspondences with respect to their error and deleting
the worst k% pairs

k is to estimate with respect to the overlap
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Surface Reconstruction
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Point Cloud Normal Estimation

Figure: Normal estimation for merged point clouds.
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Poisson Mesh Reconstruction

Figure: Poisson mesh reconstruction.
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Poisson Mesh Reconstruction

Figure: 3D printed model and the original sculpture.
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Reconstruction

Problem (Surface Reconstruction)

Given a set of points P = {p1, p2, · · · , pn} with pi ∈ R3, find a manifold
surface S ⊂ R3 which approximates P.

Approaches

1 Explicit: local surface connectivity estimation, point interpolation.
Ball pivoting algorithm, Delaunay triangulation, Alpha shapes,
Zippering, image space triangulation;

2 Implicit: signed distance function estimation, mesh approximation;
SDF estimation via RBF
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Implicit Surface Reconstruction

Implicit Surface Reconstruction

Generate an implicit surface description from the point cloud

generate surface from this using marching cubes
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Marching Cube Algorithm

Algorithm for f (x , y) = 0 level set

1 Sample function on uniform grid
2 Check for each cell whether it

intersects the iso-line

Compute for cell faces the
intersection with the
f (x , y) = 0
connect intersections

3 Repeat for all cells

4 Care for ambiguous
configuration

2 −1 3 2 −3

2 5 −3 −2

2

−1

2

3

4

−1 −2

3

1 −1

−1

−4

−1

2

−2

−3

Figure: Marching cube: evaluation on
grid points, interpolate the zero level set.
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Marching Cube Algorithm

Algorithm for iso-surface

1 Sample function on uniform grid
2 For each cell in grid

Mark corners whether they are
smaller or larger than iso-value
Cell has 8 vertices, therefore
there are 256 different +/-
configurations (due to
symmetry, cases may be
reduced to 15)
Determine correct case, use
lookup table to find
triangulation
Adjust vertex positions
according to linear
interpolation

Figure: Marching cube: evaluation on
grid points, interpolate the zero level set.
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Implicit Surface Reconstruction

Hoppe’s Method

Evaluate the signed distance function on uniform grid (=volume)

When evaluating the signed distance function at p
1 Find closest point q with normal n
2 Compute distance as the distance to the tangent plane at q

f (p) = (p − q) · n

Run marching cubes on volume to extract f (x , y , z) = 0
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Implicit Surface Reconstruction

Hoppe’s Method

The signed distance function is f (p) = (p − qi ) · ni , qi is the closest
point to p;

f (p) is piecewise linear, defined on the Voronoi diagram of the input
points;

discontinuous along Voronoi edges;

Marching cubes makes it manifold again;
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Partition Unity Implicit

Improvement: To evaluate the implicit function at some point p

Look for the k nearest samples qi

Compute their distance just as before: di = (qi − p) · ni
Blend these, e.g., based on their distance to p:

f (p) =

∑k
i=1 w(∥qi − p∥)di∑k
i=1 w(∥qi − p∥)

This leads to smoother signed distance function.
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Poisson Reconstruction

Definition (Indicator Function)

Suppose M is a volumetric domain in R3, its indicator function

χM(p) :=

{
1 if p ∈ M
0 if p ̸∈ M

The gradient of the indicator function ∇χM equals to the inverse normal
field of the boundary surface ∂M.
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Poisson Reconstruction

Find the function χ whose gradient best approximate a vector field v,

min
χ

∥∇χ− v∥

By Hodge decomposition

v = ∇χ+∇×w + h

Because R3 is topologically trivial, the harmonic component h is zero.

∇ · v = ∇ · ∇χ+∇ · ∇ ×w = ∆χ
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Smoothing the indicator function

(χ ∗ F̃ )(q0) =
∫
M
F̃ (p − q0)χ(p)dp

∇(χ ∗ F̃ )(q0) =
∫
M
F̃ (p − q0)N(p)dp

F̃

p− q0

p

q0

M

filter function integration over all the domain.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field

3 Compute indicator function

4 Extract iso-surface

Figure: Input point cloud
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree Q to partition R3

with prescribed depth D, each
sampling point must lie inside a
depth D cell.

2 Compute the vector field

3 Compute indicator function

4 Extract iso-surface

Figure: The Octree O.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
1 Define function space
2 Splat samples

3 Compute indicator function

4 Extract iso-surface

Figure: Base function associated with
the root node.
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Poisson Reconstruction

For every cell o ∈ O, a basis
function is defined as

Fo(p) =
1

o.w3
ϕ

(
p − o.c

o.w

)
ϕ is a tri-quadratic function
approximating a Gaussian with
unit variance

Fo(p) will be used as the filter
function too, i.e.

F̃ (p − o.c) = Fo(p).

Figure: Base function associated with
the current node.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
1 Define function space
2 Splat samples

3 Compute indicator function

4 Extract iso-surface

Figure: Base function associated with
the current node.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
1 Define function space
2 Splat samples

3 Compute indicator function

4 Extract iso-surface

Figure: Base function associated with
the current node.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
1 Define function space
2 Splat samples

3 Compute indicator function

4 Extract iso-surface

Figure: Splat the samples.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
1 Define function space
2 Splat samples

3 Compute indicator function

4 Extract iso-surface

Figure: Splat the samples.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
1 Define function space
2 Splat samples

3 Compute indicator function

4 Extract iso-surface

Figure: Splat the samples.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
1 Define function space
2 Splat samples

3 Compute indicator function

4 Extract iso-surface

Figure: Splat the samples.
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Poisson Reconstruction:Vector field V⃗

Original Definition:

V⃗ (q0) =

∫
M
F̃ (p − q0)N⃗(p)dp

Numerical Approximation (S is the
set of sample points):

V⃗ (q0) =
∑
s∈S

F̃ (s − q0)s.N⃗Ps

Ignoring the constant surface area
and using trilinear interpolation

V⃗ (q0) =
∑
s∈S

∑
o∈ND(s)

αo,sFo(q0)s.N⃗

F̃ (s − qo) =
∑

o∈ND(s)
αo,sFo(q0).

Figure: Splat the samples.
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Poisson Reconstruction:Vector field V⃗

Original Definition:

V⃗ (q0) =

∫
M
F̃ (p − q0)N⃗(p)dp

Numerical Approximation (S is the
set of sample points):

V⃗ (q0) =
∑
s∈S

F̃ (s − q0)s.N⃗Ps

Ignoring the constant surface area
and using trilinear interpolation

V⃗ (q0) =
∑
s∈S

∑
o∈ND(s)

αo,sFo(q0)s.N⃗

F̃ (s − qo) =
∑

o∈ND(s)
αo,sFo(q0).

q0

s

o1 o2

o3 o4

Figure: Trilinear interpolation to obtain
all the coefficients αo,s ’s.

David Gu (Stony Brook University) Computational Conformal Geometry August 5, 2022 59 / 67



Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
3 Compute indicator function

1 Compute Divergence
2 Solve Poisson Equation

4 Extract iso-surface

Figure: Compute the divergence.
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Poisson Reconstruction - Solving Poisson Equation

The numerical solution is defined as

χ(p) =
∑
o∈Q

χoFo(p)

the goal is to find the values of χo

for every octree cell by minimizing∑
o∈O

|⟨∆χ−∇ · V⃗ ,Fo⟩|2

=
∑
o∈O

|⟨∆χ,Fo⟩ − ⟨∇ · V⃗ ,Fo⟩|2

Figure: Compute the divergence.
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Poisson Reconstruction - Solving Poisson Equation

which reduces to minimizing the
following norm:

∥Lχ− V ∥2

where

vo =

∫
M
Fo(q)∇ · V⃗ dq

Loo′ =

∫
M
∆Fo(q)Fo′(q)dq

Figure: Compute the divergence.
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Poisson Reconstruction - Solving Poisson Equation

which reduces to minimizing the
following norm:

∥Lχ− V ∥2

where

vo =

∫
M
Fo(q)∇ · V⃗ dq

Loo′ =

∫
M
∆Fo(q)Fo′(q)dq

Figure: Multi-grid method.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
3 Compute indicator function

1 Compute Divergence
2 Solve Poisson Equation

4 Extract iso-surface

Figure: Solve Poisson equation.
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Poisson Reconstruction

Given point cloud with normals

1 Set Octree to partition R3

2 Compute the vector field
3 Compute indicator function

1 Compute Divergence
2 Solve Poisson Equation

4 Extract iso-surface

∂M̃ := {p ∈ R3 : χ̃(p) = γ}

γ =
1

|S|
∑
s∈S

χ̃(s.p)

Figure: Extract iso-surface.
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Poisson Mesh Reconstruction

Figure: Poisson mesh reconstruction.
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Poisson Mesh Reconstruction

Figure: Poisson mesh reconstruction.
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