Surface Immersion Regular Homotopy

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 13, 2022

Differential Topology: Regular Homotopy Theory

Definition (Parameterized Regular Closed Curve)

A parameterized regular closed curve is a path $\gamma:[0,1]\to\mathbb{R}^2$ satisfying the following conditions:

- $\gamma(0) = \gamma(1);$
- ullet γ has a well-defined, continuous derivative $\gamma':[0,1] o \mathbb{R}^2$;
- $\gamma'(0) = \gamma'(1)$;
- $\gamma'(t) \neq (0,0)$ for all $t \in [0,1]$.

A differentiable function $\gamma:[0,1]\to\mathbb{R}^2$ is a parameterized regular closed curve if and only if both γ and its derivative γ' are loops and γ' avoids the origin.

Definition (Equivalent)

Two regular closed curves γ and δ are equivalent, denoted as $\gamma \sim \delta$, if they differ only by reparameterization, that is, if there is a continuous function $\eta: \mathbb{R} \to \mathbb{R}$ such that $\eta(t+1) = \eta(t) + 1$ and $\gamma(t) = \delta(\eta(t) \mod 1)$ for all t. If such a function η exists, its derivative must be positive everywhere.

It is easy to check that \sim is an equivalence relation; the equivalence classes are called *regular closed curves*, and its elements are called *parameterizations*.

Definition (Regular Homotopy)

A regular homotopy is a homotopy through parameterized regular closed curves, that is, a function $h:[0,1]\times[0,1]\to\mathbb{R}^2$ such that for all s, the function $t\mapsto h(s,t)$ is a parameterized regular closed curve.

Definition (Regular Homotopic Equivalence)

Two parameterized regular closed curves γ and δ are regular homotopic, denoted as $\gamma \sim_r \delta$ if there is a regular homotopy h such that $h(0,t)=\gamma(t)$ and $h(1,t)=\delta(t)$ for all t.

Definition (Turning Number)

The turning number of a regular closed curve γ is the winding number of its derivative γ' around the origin (degree of the Gauss map).

Figure: Turning number of regular curves.

Theorem (Whitney-Graustein)

Two regular curves in \mathbb{R}^2 are regularly homotopic if and only if their turning numbers are equal.

Proof.

Let $h':[0,1]^2\to\mathbb{S}^1$ be a homotopy from γ' to δ' . A loop $\alpha:[0,1]\to\mathbb{R}^2\setminus\{0\}$ is the derivative of a regular closed curve if and only if its center of mass is the origin. Let $c:[0,1]\to\mathbb{R}^2$ be defined as $c(s)=\int_0^1h'(s,t)dt$. Thus the function $h^*(s,t)=h'(s,t)-c(s)$ is a homotopy from γ' to δ' . $h(s,t):=\int_0^th^*(s,u)du$ is a regular homotopy from γ to δ .

Regular Homotopy on the Sphere

Theorem

Suppose γ and δ are two regular curves on the sphere, γ is regular homotopic to δ if and only both of them have even or odd algebraic intersection numbers.

Proof.

Lift γ to the unit tangent bundle as $\tilde{\gamma}$ by $\gamma(t) \mapsto (\gamma(t), \gamma'(t)/|\gamma'(t)|)$, $\gamma \sim_r \delta$ if and only if $\tilde{\gamma}$ is homotopic to $\tilde{\delta}$. The fundamental group of the unit tangent bundle of \mathbb{S}^2 is \mathbb{Z}_2 , there are only two regular homotopy classes.

Fundamental Group SO(3)

Lemma

The fundamental domain of SO(3) is \mathbb{Z}_2 .

Proof.

Any orientation preserving rotation in \mathbb{R}^3 can be represented as (v,θ) where v is the rotation axis, $v \in \mathbb{S}^2$, and $\theta \in \mathbb{S}^1$. Therefore, SO(3) is homeomorphic to $\mathsf{UTM}(\mathbb{S}^2)$, $\pi_1(SO(3)) = \mathbb{Z}_2$.

Quaternion

Definition (Quaternion)

The space of quaternions $\mathbb H$ is a 4-dimensional vector space over $\mathbb R$ spanned by 1, i, j, k,

$$\mathbb{H} = \{ \rho + xi + yj + zk | (\rho, x, y, z) \in \mathbb{R}^4 \}$$

with multiplicative relations:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

$$\mathsf{Re}(\mathbb{H}) := \mathsf{Span}_{\mathbb{R}}(1) \quad \mathsf{Im}(\mathbb{H}) := \mathsf{Span}_{\mathbb{R}}(i,j,k) \cong \mathbb{R}^3$$

Quaternion

The product of two quaternions: $q_{\alpha}=a_{\alpha}+b_{\alpha}i+c_{\alpha}j+d_{\alpha}k$, the product $q_{1}q_{2}$ equals to

$$a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i + (a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)k$$

$$q_1=(
ho_1, v_1), \; q_2=(
ho_2, v_2), \; ext{where} \;
ho_lpha \in \mathbb{R}, \; v_lpha \in \mathbb{R}^3, \ q_1q_2=(
ho_1
ho_2-\langle v_1, v_2
angle_{\mathbb{R}^3},
ho_1v_2+
ho_2v_1+v_1 imes_{\mathbb{R}^3}v_2).$$

Quaternion

Definition (Conjugate)

A conjugate is a linear operator on $\mathbb H$ such that for any $q=a+bi+cj+dk\in\mathbb H$ where $a,b,c,d\in\mathbb R$, the conjugation of q is

$$\bar{q} = a - bi - cj - dk$$
.

The norm $|\cdot|$ is defined as

$$|\lambda|^2 = q\bar{q}$$
.

The conjugate satisfies

$$\overline{\lambda\mu} = \bar{\mu}\bar{\lambda}$$

and

$$Re(\lambda\mu) = Re(\mu\lambda)$$

Definition

An inner product \langle,\rangle on $\mathbb H$ is defined such that for any two quaternions λ and $\mu\in\mathbb H$,

$$\langle \lambda, \mu \rangle_{\mathbb{H}} = \mathsf{Re}(\lambda \bar{\mu})$$

and the norm $|\cdot|$ is defined by

$$|\lambda|^2 = \langle \lambda, \lambda \rangle_{\mathbb{H}}.$$

A rotation can be represented as a quaternion. The rotation axis is $v \in \mathbb{S}^2 \subset \operatorname{Img}(\mathbb{H})$, v = (x, y, z), the rotation angle is $\theta \in [0, 2\pi)$, the quaternion is

$$q=\cos\frac{\theta}{2}-\sin\frac{\theta}{2}v,$$

Lemma

Let $\lambda \in \mathbb{H}$ be arbitrary, $\lambda = |\lambda|(\cos \frac{\theta}{2} - \sin \frac{\theta}{2}v)$ form some $\theta \in \mathbb{R}$ and a unit vector $v \in \mathbb{S}^2 \subset Im(\mathbb{H})$. Then for any $w \in Im(\mathbb{H})$,

$$\bar{\lambda}w\lambda = |\lambda|^2((w-w^{\perp}) + \cos\theta w^{\perp} + \sin\theta v \times w^{\perp})$$

where w^{\perp} is the component of w perpendicular to v.

Let
$$\alpha = \theta/2$$
, $w = w^{v} + w^{\perp}$, then
$$|\lambda|^{2}(\cos \alpha, \sin \alpha v)(0, w)(\cos \alpha, -\sin \alpha v)$$

$$=|\lambda|^{2}(0 - \sin \alpha v \cdot w, \cos \alpha w + \sin \alpha v \times w)(\cos \alpha, -\sin \alpha v)$$

$$=|\lambda|^{2}(-\sin \alpha \cos \alpha v \cdot w + (\cos \alpha w + \sin \alpha v \times w) \cdot \sin \alpha v,$$

$$\sin^{2} \alpha v \cdot wv + \cos \alpha (\cos \alpha w + \sin \alpha v \times w)$$

$$-(\cos \alpha w + \sin \alpha v \times w) \times \sin \alpha v)$$

$$=|\lambda|^{2}(0, \sin^{2} \alpha w^{v} + \cos^{2} \alpha w + 2\sin \alpha \cos \alpha v \times w - \sin^{2} \alpha v \times w \times v)$$

$$=|\lambda|^{2}(0, \sin^{2} \alpha w^{v} + \cos^{2} \alpha (w^{v} + w^{\perp}) + \sin \theta v \times w^{\perp} - \sin^{2} \alpha w^{\perp})$$

$$=|\lambda|^{2}(0, (\sin^{2} \alpha + \cos^{2} \alpha)w^{v} + (\cos^{2} \alpha - \sin^{2} \alpha)w^{\perp} + \sin \theta v \times w^{\perp})$$

$$=|\lambda|^{2}(0, (w - w^{\perp}) + \cos \theta w^{\perp} + \sin \theta v \times w^{\perp}).$$

Namely, w rotates about v with angle θ .

Lemma

The universal covering space of SO(3) is \mathbb{S}^3 .

Proof.

The set of all unit quaternions $|\lambda|^2=1$ is \mathbb{S}^3 , which is simply connected. Since

$$\bar{\lambda}q\lambda=\overline{(-\lambda)}q(-\lambda),$$

so antipodal points $\pm q$ represent the same rotation, \mathbb{S}^3 double covers SO(3).

The set of the unit quaternions is defined as

$$\mathsf{Spin}(3) := \{q \in \mathbb{H} | q\bar{q} = 1\},$$

which is homemorphic to \mathbb{S}^3 . SO(3) is homeomorphic to \mathbb{RP}^3 .

Definition (Surface Regular Homotopy)

Let f and F be two immersions of a given abstract surface M into \mathbb{R}^3 . We say that f is regular homotopic to F, denoted by $f \sim_r F$, if there exists a continuous family of immersions f_t of M into \mathbb{R}^3 such that $f_0 = f$ and $f_1 = F$.

The set of all immersions regularly homotopic to f is denoted by [f], the space of regular homotopy classes of immersions of a given surface M into \mathbb{R}^3 bt $\overline{\mathrm{Imm}}(M,\mathbb{R}^3)$.

Regular Immersion

Let M be an oriented surface, $f:M\to\mathbb{R}^3$ is an immersion, then its differential df is a rank two \mathbb{R}^3 -valued one form on M, df is a section of the bunddle of orientation-preserving rank 2 \mathbb{R}^3 -valued one forms on M,

$$\mathcal{T}^* \mathcal{M} \otimes \mathbb{R}^3_+ := \{ \tau \in \mathcal{T}^* \mathcal{M} \otimes \mathbb{R}^3 | \mathsf{rank}(\tau) = 2 \}$$

Theorem (Hirsch)

Every continuous section of $T^*M \otimes \mathbb{R}^3_+$ is homotopic to the differential of an immersion of M into \mathbb{R}^3 .

Regular Immersion

Theorem (James-Thomas)

Let M be an oriented surface. The mapping sending an immersion f to its differential df descends to a bijection

$$\overline{\mathit{Imm}}(M,\mathbb{R}^3) \to [M,SO(3)],$$

where [M, SO(3)] denotes the space of homotopy classes of maps from M into SO(3).

Proof.

Chose a reference immersion $\tilde{f}:M\to\mathbb{R}^3$, denote by \tilde{N} the Gauss map of \tilde{f} . Let τ be an orientation preserving rank 2 \mathbb{R}^3 -valued one form on M, $\tau\in T^*M\otimes\mathbb{R}^3_+$.

Proof.

au defines a vector space isomorphism

$$eta_{ au}: T_{\pi(au)}M \oplus \mathbb{R} o \mathbb{R}^3 \ (X,
ho) o au(X) +
ho N$$

Let $A_{\tau} \in GL(3,\mathbb{R})^+$ be the unique orientation preserving matrix, which makes the diagram commute:

$$T_{\pi(\tau)}M \oplus \mathbb{R} \xrightarrow{\beta_{\tau}} \mathbb{R}^{3}$$

$$id \downarrow \qquad \qquad \downarrow A_{\tau}$$

$$T_{\pi(d\tilde{f})}M \oplus \mathbb{R} \xrightarrow{\beta_{d\tilde{f}}} \mathbb{R}^{3}$$

Proof.

The map

$$A: T^*M \otimes \mathbb{R}^3_+ \to M \times GL(3, \mathbb{R})^+$$
$$\tau \in T^*M \otimes \mathbb{R}^3_+ \to (\pi(\tau), A_\tau)$$

is a bundle map which descends to a map

$$\langle A \rangle : \overline{\mathsf{Imm}}(M, \mathbb{R}^3) \to [M, GL(3, \mathbb{R})^+]$$

$$[f] \to \langle A_{df} \rangle$$

where $\langle \cdot \rangle$ denotes the homotopy class of a map. By Hirsch theorem, the map $\langle A \rangle$ is a bijection. The polar decomposition of $GL(3,\mathbb{R})^+$ implies that $[M,SO(3)]=[M,GL(3,\mathbb{R})^+].$

Different regular homotopy classes of immersions of M into \mathbb{R}^3 can be distinguished by the twist they assign to topologically nontrivial curves. Let $\gamma:[0,I]\to M$ be a continuous loop. For every continuous SO(3)-valued map $A:M\to SO(3)$, let $\alpha:[0,I]\to SO(3)$ be the map induced by the loop $\gamma,\ \alpha=A\circ\gamma.$ Denote by $\tilde{\alpha}$ an arbitrary lift to Spin(3) of α ,

$$A(\gamma(t))V = \overline{\tilde{\alpha}(t)}V\tilde{\alpha}(t), \quad \forall t \in [0, 1], V \in \mathbb{R}^3 = \operatorname{Im}(\mathbb{H}).$$

Either $\tilde{\alpha}(0)$ and $\tilde{\alpha}(I)$ are the same or antipodal, we obtain

$$\tilde{\alpha}(0)\tilde{\alpha}(I)^{-1}=\pm 1$$

and that $\tilde{\alpha}(0)$ and $\tilde{\alpha}(I)$ depends only on the loop α but not on the particular lift.

Definition (Flip)

We call the number

$$\varphi_A(\gamma) := \tilde{\alpha}(0)\tilde{\alpha}(I)^{-1}$$

the flip of γ with respect to the map A.

- By continuity $\varphi_A(\gamma)$ depends only on the homotopy class [A] of A and the class $[\gamma]$ of the loop γ .
- A continuious map $A: M \to SO(3)$ is homotopically trivial if and only if $\varphi_A(\gamma) = 1$ for every loop γ in M.
- Two SO(3)-valued maps A and B are homotopic if and only if $\varphi_A(\gamma) = \varphi_B(\gamma)$ for every continuous loop γ .

Let $\tilde{f}: M \to \mathbb{R}^3$ be a reference immersion. For every immersion $f: M \to \mathbb{R}^3$, left A_{df} be the $GL(3,\mathbb{R})^+$ -valued map defined with respect to \tilde{f} . Then there exists a SO(3)-valued map O_{df} homotopic to A_{df} . By James-Thomas, we have $f \sim_r g \iff O_{df} \sim O_{dg}$.

Definition (Relative Twist)

We define the twist of a continuous loop γ by f relative to \tilde{f} by

$$\tau_f^{\tilde{f}}(\gamma) := \varphi_{O_{df}}(\gamma).$$

Corollary

Two immersions f and g are regular homotopic if and only if

$$\tau_f^{\tilde{f}}(\gamma) = \tau_g^{\tilde{f}}(\gamma)$$

for every loop γ . In particular, f is regularly homotopic to \tilde{f} if and only if $\tau_f^{\tilde{f}}(\gamma) = 1$ for every loop γ .

Corollary

Let M be a surface such that $dim H^1(M, \mathbb{Z}_2) = d$, then $\overline{Imm}(M, \mathbb{R}^3)$ has exactly 2^d elements.

Proof.

Let $f:M \to \mathbb{R}^3$ be an immersion, $au_f^{ ilde f}:\pi_1(M) \to \{+1,-1\}$ is a homomorphism,

$$\tau_f^{\tilde{f}}(\gamma_1\gamma_2) = \tau_f^{\tilde{f}}(\gamma_1)\tau_f^{\tilde{f}}(\gamma_2), \quad \tau_f^{\tilde{f}}(\gamma^{-1}) = \tau_f^{\tilde{f}}(\gamma)^{-1}.$$

which is equivalent to the linear map $\tau_f^{\tilde{f}}: H_1(M,\mathbb{Z}_2) \to \mathbb{Z}_2$, by the mapping $(-1)^k: \mathbb{Z}_2 \to \{+1,-1\}$. Suppose $\{a_1,b_1,\ldots,a_g,b_g\}$ is the basis of $H_1(M,\mathbb{Z}_2)$, then $\tau_f^{\tilde{f}}$ has the matrix representation

$$\left(\tau_f^{\tilde{f}}(a_1), \tau_f^{\tilde{f}}(b_1), \tau_f^{\tilde{f}}(a_2), \tau_f^{\tilde{f}}(b_2), \cdots, \tau_f^{\tilde{f}}(a_g), \tau_f^{\tilde{f}}(b_g)\right).$$

Let f be an immersion of an oriented surface M into $\mathbb{R}^3 = \text{Im}(\mathbb{H})$, the immersion induces a conformal structure J on M.

Let $\gamma:[0,1]\to M$ be a regular closed curve. Define movable frame along γ ,

$$\left\{ \frac{df(\gamma')}{|df(\gamma')|}, \frac{df(J\gamma')}{|df(J\gamma')|}, N = \frac{df(\gamma') \times df(J\gamma')}{|df(\gamma') \times df(J\gamma')|} \right\}$$

Let $\lambda:[0,I]\to\mathbb{H}^*$ be a continuous quaternion-valued function such that

$$ar{\lambda}E_1\lambda=df(\gamma')/|df(\gamma')| \ ar{\lambda}E_2\lambda=df(J\gamma')/|df(J\gamma')| \ ar{\lambda}E_3\lambda=N$$

where $(E_1, E_2, E_3) = (k, j, -i)$ to be the standard basis in \mathbb{R}^3 . We call the map λ the lift of the moving frame associated with the curve γ . $\lambda(t)$ is determined uniquely up to a sign.

Definition (Twist)

The twist of γ with respect to f is defined by

$$\tau_f(\gamma) := \lambda(0)\lambda(I)^{-1}$$

belongs to $\mathbb{Z}_2 = \{+1, -1\}.$

Suppose γ is regular homotopic to γ_s , f_r is regular homotopic to f, then

$$\tau_f(\gamma_s) = \tau_f(\gamma) = \tau_{f_r}(\gamma).$$

Definition (Twist)

The twist of γ with respect to f is defined by

$$\tau_f(\gamma) := \lambda(0)\lambda(I)^{-1}$$

belongs to $\mathbb{Z}_2 = \{+1, -1\}.$

Suppose γ is regular homotopic to γ_s , f_r is regular homotopic to f, then

$$\tau_f(\gamma_s) = \tau_f(\gamma) = \tau_{f_r}(\gamma).$$

Problem

Let M be an annulus in the \mathbb{C} $M:=\{z|1/2<|z|<2\}$. Consider the immersion $f(z)=\mathbf{k}z$, then df=kdz. Then $\tau_f(\gamma)=-1$ for every generator γ of $\pi_1(M)$.

Consider the curve $\gamma(t)=-ie^{it}$, $0\leq t\leq 2\pi$ in M, $\gamma'(t)=e^{it}$, the moving frame is

$$df(\gamma'(t)) = ke^{it}$$

 $df(J\gamma'(t)) = je^{it}$
 $N(t) = -i$

The rotatio axis is -i, the angle is t, therefore $\lambda(t) = (\cos t/2, -\sin t/2(-i)) = e^{it/2}$. Hence we obtain

$$\lambda(0)\lambda(2\pi)^{-1} = 1 \cdot e^{i\pi} = -1.$$

Problem

Let M be an annulus in the \mathbb{C} $M:=\{z|1/2<|z|<2\}$. Consider the immersion f as a ribbon, then df=kdz. Then $\tau_f(\gamma)=+1$ for every generator γ of $\pi_1(M)$.

Cut the ribbon along the fiber at 0 and π , each half can be regular homotopic to a straight cylinder, which is regular homotopic to the annulus. Hence

$$\lambda(0)\lambda(\pi)^{-1} = -1 \quad \lambda(\pi)\lambda(2\pi)^{-1} = -1$$

Thus the twist of γ equals

$$\lambda(0)\lambda(2\pi)^{-1} = (\lambda(0)\lambda(\pi)^{-1})(\lambda(\pi)\lambda(2\pi)^{-1}) = +1.$$

Lemma

Let M be a Riemann surface. For every two conformal immersions $\tilde{f}, f: M \to \mathbb{R}^3 = Im(\mathbb{H})$, for every continuous loop γ in M, we have

$$\tau_f(\gamma) = \tau_{\tilde{f}}(\gamma)\tau_f^{\tilde{f}}(\gamma),$$

Theorem

Let M be a Riemann surface. Two conformal immersions f and \tilde{f} of M into \mathbb{R}^3 are regularly homotopic if and only if $\tau_f(\gamma) = \tau_{\tilde{f}}(\gamma)$ for every continuous loop γ in M.

Proof.

From corollary, $f \sim_r \tilde{f}$ if and only if $\tau_f^{\tilde{f}} \equiv 1$. By above lemma, we conclude that $\tau_f^{\tilde{f}} \equiv 1$ if and only if $\tau_f \equiv \tau_{\tilde{e}}$.

