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Regular Homotopy

Definition (Parameterized Regular Closed Curve)

A parameterized regular closed curve is a path γ : [0, 1] → R2 satisfying
the following conditions:

γ(0) = γ(1);

γ has a well-defined, continuous derivative γ′ : [0, 1] → R2;

γ′(0) = γ′(1);

γ′(t) ̸= (0, 0) for all t ∈ [0, 1].

A differentiable function γ : [0, 1] → R2 is a parameterized regular closed
curve if and only if both γ and its derivative γ′ are loops and γ′ avoids the
origin.
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Regular Homotopy

Definition (Equivalent)

Two regular closed curves γ and δ are equivalent, denoted as γ ∼ δ, if they
differ only by reparameterization, that is, if there is a continuous function
η : R → R such that η(t +1) = η(t) + 1 and γ(t) = δ(η(t) mod 1) for all
t. If such a function η exists, its derivative must be positive everywhere.

It is easy to check that ∼ is an equivalence relation; the equivalence
classes are called regular closed curves, and its elements are called
parameterizations.
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Regular Homotopy

Definition (Regular Homotopy)

A regular homotopy is a homotopy through parameterized regular closed
curves, that is, a function h : [0, 1]× [0, 1] → R2 such that for all s, the
function t 7→ h(s, t) is a parameterized regular closed curve.

Definition (Regular Homotopic Equivalence)

Two parameterized regular closed curves γ and δ are regular homotopic,
denoted as γ ∼r δ if there is a regular homotopy h such that
h(0, t) = γ(t) and h(1, t) = δ(t) for all t.
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Regular Homotopy

Definition (Turning Number)

The turning number of a regular closed curve γ is the winding number of
its derivative γ′ around the origin (degree of the Gauss map).
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Figure: Turning number of regular curves.
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Regular Homotopy

Theorem (Whitney-Graustein)

Two regular curves in R2 are regularly homotopic if and only if their
turning numbers are equal.

Proof.

Let h′ : [0, 1]2 → S1 be a homotopy from γ′ to δ′. A loop
α : [0, 1] → R2 \ {0} is the derivative of a regular closed curve if and only
if its center of mass is the origin. Let c : [0, 1] → R2 be defined as

c(s) =
∫ 1
0 h′(s, t)dt. Thus the function h∗(s, t) = h′(s, t)− c(s) is a

homotopy from γ′ to δ′. h(s, t) :=
∫ t
0 h∗(s, u)du is a regular homotopy

from γ to δ.
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Regular Homotopy on the Sphere

Theorem

Suppose γ and δ are two regular curves on the sphere, γ is regular
homotopic to δ if and only both of them have even or odd algebraic
intersection numbers.

Proof.

Lift γ to the unit tangent bundle as γ̃ by γ(t) 7→ (γ(t), γ′(t)/|γ′(t)|),
γ ∼r δ if and only if γ̃ is homotopic to δ̃. The fundamental group of the
unit tangent bundle of S2 is Z2, there are only two regular homotopy
classes.
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Fundamental Group SO(3)

Lemma

The fundamental domain of SO(3) is Z2.

Proof.

Any orientation preserving rotation in R3 can be represented as (v , θ)
where v is the rotation axis, v ∈ S2, and θ ∈ S1. Therefore, SO(3) is
homeomorphic to UTM(S2), π1(SO(3)) = Z2.
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Quaternion

Definition (Quaternion)

The space of quaternions H is a 4-dimensional vector space over R
spanned by 1, i , j , k ,

H = {ρ+ xi + yj + zk |(ρ, x , y , z) ∈ R4}

with multiplicative relations:

1 i j k

1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1

Re(H) := SpanR(1) Im(H) := SpanR(i , j , k)
∼= R3
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Quaternion

The product of two quaternions: qα = aα + bαi + cαj + dαk, the product
q1q2 equals to

a1a2 − b1b2 − c1c2 − d1d2

+(a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 − b1d2 + c1a2 + d1b2)j

+(a1d2 + b1c2 − c1b2 + d1a2)k

q1 = (ρ1, v1), q2 = (ρ2, v2), where ρα ∈ R, vα ∈ R3,

q1q2 = (ρ1ρ2 − ⟨v1, v2⟩R3 , ρ1v2 + ρ2v1 + v1 ×R3 v2).
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Quaternion

Definition (Conjugate)

A conjugate is a linear operator on H such that for any
q = a+ bi + cj + dk ∈ H where a, b, c , d ∈ R, the conjugation of q is

q̄ = a− bi − cj − dk.

The norm | · | is defined as
|λ|2 = qq̄.

The conjugate satisfies
λµ = µ̄λ̄

and
Re(λµ) = Re(µλ)
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Quaternion and Rotation

Definition

An inner product ⟨, ⟩ on H is defined such that for any two quaternions λ
and µ ∈ H,

⟨λ, µ⟩H = Re(λµ̄)

and the norm | · | is defined by

|λ|2 = ⟨λ, λ⟩H.
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Quaternion and Rotation

A rotation can be represented as a quaternion. The rotation axis is
v ∈ S2 ⊂ Img(H), v = (x , y , z), the rotation angle is θ ∈ [0, 2π), the
quaternion is

q = cos
θ

2
− sin

θ

2
v ,

θ

v

w

w⊥

w − w⊥

q̄wq

q = cos θ
2 − sin θ

2v
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Quaternion and Rotation

Lemma

Let λ ∈ H be arbitrary, λ = |λ|(cos θ
2 − sin θ

2v) form some θ ∈ R and a
unit vector v ∈ S2 ⊂ Im(H). Then for any w ∈ Im(H),

λ̄wλ = |λ|2((w − w⊥) + cos θw⊥ + sin θv × w⊥)

where w⊥ is the component of w perpendicular to v .

θ

v

w

w⊥

w − w⊥

q̄wq

q = cos θ
2 − sin θ

2v
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Quaternion and Rotation

Let α = θ/2, w = w v + w⊥, then

|λ|2(cosα, sinαv)(0,w)(cosα,− sinαv)

=|λ|2(0− sinαv · w , cosαw + sinαv × w)(cosα,− sinαv)

=|λ|2(− sinα cosαv · w + (cosαw + sinαv × w) · sinαv ,
sin2 αv · wv + cosα(cosαw + sinαv × w)

− (cosαw + sinαv × w)× sinαv)

=|λ|2(0, sin2 αw v + cos2 αw + 2 sinα cosαv × w − sin2 αv × w × v)

=|λ|2(0, sin2 αw v + cos2 α(w v + w⊥) + sin θv × w⊥ − sin2 αw⊥)

=|λ|2(0, (sin2 α+ cos2 α)w v + (cos2 α− sin2 α)w⊥ + sin θv × w⊥)

=|λ|2(0, (w − w⊥) + cos θw⊥ + sin θv × w⊥).

Namely, w rotates about v with angle θ.
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Quaternion and Rotation

Lemma

The universal covering space of SO(3) is S3.

Proof.

The set of all unit quaternions |λ|2 = 1 is S3, which is simply connected.
Since

λ̄qλ = (−λ)q(−λ),

so antipodal points ±q represent the same rotation, S3 double covers
SO(3).

The set of the unit quaternions is defined as

Spin(3) := {q ∈ H|qq̄ = 1},

which is homemorphic to S3. SO(3) is homeomorphic to RP3.
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Surface Regular Homotopy

Definition (Surface Regular Homotopy)

Let f and F be two immersions of a given abstract surface M into R3. We
say that f is regular homotopic to F , denoted by f ∼r F , if there exists a
continuous family of immersions ft of M into R3 such that f0 = f and
f1 = F .

The set of all immersions regularly homotopic to f is denoted by [f ], the
space of regular homotopy classes of immersions of a given surface M into
R3 bt Imm(M,R3).

David Gu (Stony Brook University) Computational Conformal Geometry July 13, 2022 18 / 33



Regular Immersion

Let M be an oriented surface, f : M → R3 is an immersion, then its
differential df is a rank two R3-valued one form on M, df is a section of
the bunddle of orientation-preserving rank 2 R3-valued one forms on M,

T ∗M ⊗ R3
+ := {τ ∈ T ∗M ⊗ R3|rank(τ) = 2}

Theorem (Hirsch)

Every continuous section of T ∗M ⊗ R3
+ is homotopic to the differential of

an immersion of M into R3.
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Regular Immersion

M

Af

f̃

f̃

f

p TpM

Tf̃(p)f̃(M)

Tf(p)f(M)

Nf(p)

Nf̃(p)
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Surface Regular Homotopy

Theorem (James-Thomas)

Let M be an oriented surface. The mapping sending an immersion f to its
differential df descends to a bijection

Imm(M,R3) → [M, SO(3)],

where [M,SO(3)] denotes the space of homotopy classes of maps from M
into SO(3).

Proof.

Chose a reference immersion f̃ : M → R3, denote by Ñ the Gauss map of
f̃ . Let τ be an orientation preserving rank 2 R3-valued one form on M,
τ ∈ T ∗M ⊗ R3

+.
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Surface Regular Homotopy

Proof.

τ defines a vector space isomorphism

βτ : Tπ(τ)M ⊕ R → R3

(X , ρ) → τ(X ) + ρN

Let Aτ ∈ GL(3,R)+ be the unique orientation preserving matrix, which
makes the diagram commute:

Tπ(τ)M ⊕ R βτ−−−−→ R3

id

y yAτ

Tπ(df̃ )M ⊕ R
βdf̃−−−−→ R3
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Surface Regular Homotopy

Proof.

The map

A : T ∗M ⊗ R3
+ → M × GL(3,R)+

τ ∈ T ∗M ⊗ R3
+ → (π(τ),Aτ )

is a bundle map which descends to a map

⟨A⟩ : Imm(M,R3) → [M,GL(3,R)+]
[f ] → ⟨Adf ⟩

where ⟨·⟩ denotes the homotopy class of a map. By Hirsch theorem, the
map ⟨A⟩ is a bijection. The polar decomposition of GL(3,R)+ implies that
[M, SO(3)] = [M,GL(3,R)+].
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Regular Homotopy

Different regular homotopy classes of immersions of M into R3 can be
distinguished by the twist they assign to topologically nontrivial curves.
Let γ : [0, l ] → M be a continuous loop. For every continuous
SO(3)-valued map A : M → SO(3), let α : [0, l ] → SO(3) be the map
induced by the loop γ, α = A ◦ γ. Denote by α̃ an arbitrary lift to Spin(3)
of α,

A(γ(t))V = α̃(t)V α̃(t), ∀t ∈ [0, l ],V ∈ R3 = Im(H).

Either α̃(0) and α̃(l) are the same or antipodal, we obtain

α̃(0)α̃(l)−1 = ±1

and that α̃(0) and α̃(l) depends only on the loop α but not on the
particular lift.
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Regular Homotopy

Definition (Flip)

We call the number
φA(γ) := α̃(0)α̃(l)−1

the flip of γ with respect to the map A.

By continuity φA(γ) depends only on the homotopy class [A] of A
and the class [γ] of the loop γ.

A continuious map A : M → SO(3) is homotopically trivial if and only
if φA(γ) = 1 for every loop γ in M.

Two SO(3)-valued maps A and B are homotopic if and only if
φA(γ) = φB(γ) for every continuous loop γ.
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Regular Homotopy

Let f̃ : M → R3 be a reference immersion. For every immersion
f : M → R3, left Adf be the GL(3,R)+-valued map defined with respect
to f̃ . Then there exists a SO(3)-valued map Odf homotopic to Adf . By
James-Thomas, we have f ∼r g ⇐⇒ Odf ∼ Odg .

Definition (Relative Twist)

We define the twist of a continuous loop γ by f relative to f̃ by

τ f̃f (γ) := φOdf
(γ).

Corollary

Two immersions f and g are regular homotopic if and only if

τ f̃f (γ) = τ f̃g (γ)

for every loop γ. In particular, f is regularly homotopic to f̃ if and only if
τ f̃f (γ) = 1 for every loop γ.
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Regular Homotopy

Corollary

Let M be a surface such that dimH1(M,Z2) = d , then Imm(M,R3) has
exactly 2d elements.

Proof.

Let f : M → R3 be an immersion, τ f̃f : π1(M) → {+1,−1} is a
homomorphism,

τ f̃f (γ1γ2) = τ f̃f (γ1)τ
f̃
f (γ2), τ f̃f (γ

−1) = τ f̃f (γ)
−1.

which is equivalent to the linear map τ f̃f : H1(M,Z2) → Z2, by the
mapping (−1)k : Z2 → {+1,−1}. Suppose {a1, b1, . . . , ag , bg} is the

basis of H1(M,Z2), then τ f̃f has the matrix representation(
τ f̃f (a1), τ

f̃
f (b1), τ

f̃
f (a2), τ

f̃
f (b2), · · · , τ f̃f (ag ), τ f̃f (bg )

)
.
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Immersion Regular Homotopy

Let f be an immersion of an oriented surface M into R3 = Im(H), the
immersion induces a conformal structure J on M.
Let γ : [0, 1] → M be a regular closed curve. Define movable frame along
γ, {

df (γ′)

|df (γ′)|
,
df (Jγ′)

|df (Jγ′)|
,N =

df (γ′)× df (Jγ′)

|df (γ′)× df (Jγ′)|

}
Let λ : [0, l ] → H∗ be a continuous quaternion-valued function such that

λ̄E1λ = df (γ′)/|df (γ′)|
λ̄E2λ = df (Jγ′)/|df (Jγ′)|
λ̄E3λ = N

where (E1,E2,E3) = (k, j ,−i) to be the standard basis in R3. We call the
map λ the lift of the moving frame associated with the curve γ. λ(t) is
determined uniquely up to a sign.

David Gu (Stony Brook University) Computational Conformal Geometry July 13, 2022 28 / 33



Immersion Regular Homotopy

Definition (Twist)

The twist of γ with respect to f is defined by

τf (γ) := λ(0)λ(l)−1

belongs to Z2 = {+1,−1}.

Suppose γ is regular homotopic to γs , fr is regular homotopic to f , then

τf (γs) = τf (γ) = τfr (γ).
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Immersion Regular Homotopy

Definition (Twist)
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Immersion Regular Homotopy

Problem

Let M be an annulus in the C M := {z |1/2 < |z | < 2}. Consider the
immersion f (z) = kz , then df = kdz . Then τf (γ) = −1 for every
generator γ of π1(M).

Consider the curve γ(t) = −ie it , 0 ≤ t ≤ 2π in
M, γ′(t) = e it , the moving frame is

df (γ′(t)) = ke it

df (Jγ′(t)) = je it

N(t) = −i

The rotatio axis is −i , the angle is t, therefore
λ(t) = (cos t/2,− sin t/2(−i)) = e it/2. Hence
we obtain

λ(0)λ(2π)−1 = 1 · e iπ = −1.

k

j

−i

R3 = Im(H)

γ
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Immersion Regular Homotopy

Problem

Let M be an annulus in the C M := {z |1/2 < |z | < 2}. Consider the
immersion f as a ribbon, then df = kdz . Then τf (γ) = +1 for every
generator γ of π1(M).

Cut the ribbon along the fiber at 0 and π, each
half can be regular homotopic to a straight
cylinder, which is regular homotopic to the
annulus. Hence

λ(0)λ(π)−1 = −1 λ(π)λ(2π)−1 = −1

Thus the twist of γ equals

λ(0)λ(2π)−1 = (λ(0)λ(π)−1)(λ(π)λ(2π)−1) = +1.

γ(0)

γ(π)
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Immersion Regular Homotopy

Lemma

Let M be a Riemann surface. For every two conformal immersions
f̃ , f : M → R3 = Im(H), for every continuous loop γ in M, we have

τf (γ) = τf̃ (γ)τ
f̃
f (γ),

Theorem

Let M be a Riemann surface. Two conformal immersions f and f̃ of M
into R3 are regularly homotopic if and only if τf (γ) = τf̃ (γ) for every
continuous loop γ in M.

Proof.

From corollary, f ∼r f̃ if and only if τ f̃f ≡ 1. By above lemma, we

conclude that τ f̃f ≡ 1 if and only if τf ≡ τf̃ .

David Gu (Stony Brook University) Computational Conformal Geometry July 13, 2022 33 / 33


