Surface Immersion Regular Homotopy

David Gu

Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

July 13, 2022

Differential Topology: Regular Homotopy Theory

Regular Homotopy

Definition (Parameterized Regular Closed Curve)

A parameterized regular closed curve is a path $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ satisfying the following conditions:

- $\gamma(0)=\gamma(1)$;
- γ has a well-defined, continuous derivative $\gamma^{\prime}:[0,1] \rightarrow \mathbb{R}^{2}$;
- $\gamma^{\prime}(0)=\gamma^{\prime}(1)$;
- $\gamma^{\prime}(t) \neq(0,0)$ for all $t \in[0,1]$.

A differentiable function $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ is a parameterized regular closed curve if and only if both γ and its derivative γ^{\prime} are loops and γ^{\prime} avoids the origin.

Regular Homotopy

Definition (Equivalent)

Two regular closed curves γ and δ are equivalent, denoted as $\gamma \sim \delta$, if they differ only by reparameterization, that is, if there is a continuous function $\eta: \mathbb{R} \rightarrow \mathbb{R}$ such that $\eta(t+1)=\eta(t)+1$ and $\gamma(t)=\delta(\eta(t) \bmod 1)$ for all t. If such a function η exists, its derivative must be positive everywhere.

It is easy to check that \sim is an equivalence relation; the equivalence classes are called regular closed curves, and its elements are called parameterizations.

Regular Homotopy

Definition (Regular Homotopy)

A regular homotopy is a homotopy through parameterized regular closed curves, that is, a function $h:[0,1] \times[0,1] \rightarrow \mathbb{R}^{2}$ such that for all s, the function $t \mapsto h(s, t)$ is a parameterized regular closed curve.

Definition (Regular Homotopic Equivalence)

Two parameterized regular closed curves γ and δ are regular homotopic, denoted as $\gamma \sim_{r} \delta$ if there is a regular homotopy h such that $h(0, t)=\gamma(t)$ and $h(1, t)=\delta(t)$ for all t.

Regular Homotopy

Definition (Turning Number)

The turning number of a regular closed curve γ is the winding number of its derivative γ^{\prime} around the origin (degree of the Gauss map).

Figure: Turning number of regular curves.

Regular Homotopy

Theorem (Whitney-Graustein)

Two regular curves in \mathbb{R}^{2} are regularly homotopic if and only if their turning numbers are equal.

Proof.

Let $h^{\prime}:[0,1]^{2} \rightarrow \mathbb{S}^{1}$ be a homotopy from γ^{\prime} to δ^{\prime}. A loop $\alpha:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}$ is the derivative of a regular closed curve if and only if its center of mass is the origin. Let $c:[0,1] \rightarrow \mathbb{R}^{2}$ be defined as $c(s)=\int_{0}^{1} h^{\prime}(s, t) d t$. Thus the function $h^{*}(s, t)=h^{\prime}(s, t)-c(s)$ is a homotopy from γ^{\prime} to δ^{\prime}. $h(s, t):=\int_{0}^{t} h^{*}(s, u) d u$ is a regular homotopy from γ to δ.

Regular Homotopy on the Sphere

Theorem

Suppose γ and δ are two regular curves on the sphere, γ is regular homotopic to δ if and only both of them have even or odd algebraic intersection numbers.

Proof.

Lift γ to the unit tangent bundle as $\tilde{\gamma}$ by $\gamma(t) \mapsto\left(\gamma(t), \gamma^{\prime}(t) /\left|\gamma^{\prime}(t)\right|\right)$, $\gamma \sim_{r} \delta$ if and only if $\tilde{\gamma}$ is homotopic to $\tilde{\delta}$. The fundamental group of the unit tangent bundle of \mathbb{S}^{2} is \mathbb{Z}_{2}, there are only two regular homotopy classes.

Fundamental Group SO(3)

Lemma

The fundamental domain of $S O(3)$ is \mathbb{Z}_{2}.

Proof.

Any orientation preserving rotation in \mathbb{R}^{3} can be represented as (v, θ) where v is the rotation axis, $v \in \mathbb{S}^{2}$, and $\theta \in \mathbb{S}^{1}$. Therefore, $S O(3)$ is homeomorphic to UTM $\left(\mathbb{S}^{2}\right), \pi_{1}(S O(3))=\mathbb{Z}_{2}$.

Quaternion

Definition (Quaternion)

The space of quaternions \mathbb{H} is a 4-dimensional vector space over \mathbb{R} spanned by $1, i, j, k$,

$$
\mathbb{H}=\left\{\rho+x i+y j+z k \mid(\rho, x, y, z) \in \mathbb{R}^{4}\right\}
$$

with multiplicative relations:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	-i	-1

$$
\operatorname{Re}(\mathbb{H}):=\operatorname{Span}_{\mathbb{R}}(1) \quad \operatorname{Im}(\mathbb{H}):=\operatorname{Span}_{\mathbb{R}}(i, j, k) \cong \mathbb{R}^{3}
$$

Quaternion

The product of two quaternions: $q_{\alpha}=a_{\alpha}+b_{\alpha} i+c_{\alpha} j+d_{\alpha} k$, the product $q_{1} q_{2}$ equals to

$$
\begin{gathered}
a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2} \\
+\left(a_{1} b_{2}+b_{1} a_{2}+c_{1} d_{2}-d_{1} c_{2}\right) i \\
+\left(a_{1} c_{2}-b_{1} d_{2}+c_{1} a_{2}+d_{1} b_{2}\right) j \\
+\left(a_{1} d_{2}+b_{1} c_{2}-c_{1} b_{2}+d_{1} a_{2}\right) k
\end{gathered}
$$

$$
q_{1}=\left(\rho_{1}, v_{1}\right), q_{2}=\left(\rho_{2}, v_{2}\right), \text { where } \rho_{\alpha} \in \mathbb{R}, v_{\alpha} \in \mathbb{R}^{3}
$$

$$
q_{1} q_{2}=\left(\rho_{1} \rho_{2}-\left\langle v_{1}, v_{2}\right\rangle_{\mathbb{R}^{3}}, \rho_{1} v_{2}+\rho_{2} v_{1}+v_{1} \times_{\mathbb{R}^{3}} v_{2}\right)
$$

Quaternion

Definition (Conjugate)

A conjugate is a linear operator on \mathbb{H} such that for any $q=a+b i+c j+d k \in \mathbb{H}$ where $a, b, c, d \in \mathbb{R}$, the conjugation of q is

$$
\bar{q}=a-b i-c j-d k
$$

The norm $|\cdot|$ is defined as

$$
|\lambda|^{2}=q \bar{q}
$$

The conjugate satisfies

$$
\overline{\lambda \mu}=\bar{\mu} \bar{\lambda}
$$

and

$$
\operatorname{Re}(\lambda \mu)=\operatorname{Re}(\mu \lambda)
$$

Quaternion and Rotation

Definition

An inner product \langle,$\rangle on \mathbb{H}$ is defined such that for any two quaternions λ and $\mu \in \mathbb{H}$,

$$
\langle\lambda, \mu\rangle_{\mathbb{H}}=\operatorname{Re}(\lambda \bar{\mu})
$$

and the norm $|\cdot|$ is defined by

$$
|\lambda|^{2}=\langle\lambda, \lambda\rangle_{\mathbb{H}}
$$

Quaternion and Rotation

A rotation can be represented as a quaternion. The rotation axis is $v \in \mathbb{S}^{2} \subset \operatorname{lmg}(\mathbb{H}), v=(x, y, z)$, the rotation angle is $\theta \in[0,2 \pi)$, the quaternion is

$$
q=\cos \frac{\theta}{2}-\sin \frac{\theta}{2} v
$$

Quaternion and Rotation

Lemma

Let $\lambda \in \mathbb{H}$ be arbitrary, $\lambda=|\lambda|\left(\cos \frac{\theta}{2}-\sin \frac{\theta}{2} v\right)$ form some $\theta \in \mathbb{R}$ and a unit vector $v \in \mathbb{S}^{2} \subset \operatorname{Im}(\mathbb{H})$. Then for any $w \in \operatorname{Im}(\mathbb{H})$,

$$
\bar{\lambda} w \lambda=|\lambda|^{2}\left(\left(w-w^{\perp}\right)+\cos \theta w^{\perp}+\sin \theta v \times w^{\perp}\right)
$$

where w^{\perp} is the component of w perpendicular to v .

Quaternion and Rotation

Let $\alpha=\theta / 2, w=w^{\vee}+w^{\perp}$, then

$$
\begin{aligned}
& |\lambda|^{2}(\cos \alpha, \sin \alpha v)(0, w)(\cos \alpha,-\sin \alpha v) \\
= & |\lambda|^{2}(0-\sin \alpha v \cdot w, \cos \alpha w+\sin \alpha v \times w)(\cos \alpha,-\sin \alpha v) \\
= & |\lambda|^{2}(-\sin \alpha \cos \alpha v \cdot w+(\cos \alpha w+\sin \alpha v \times w) \cdot \sin \alpha v, \\
& \sin ^{2} \alpha v \cdot w v+\cos \alpha(\cos \alpha w+\sin \alpha v \times w) \\
& -(\cos \alpha w+\sin \alpha v \times w) \times \sin \alpha v) \\
= & |\lambda|^{2}\left(0, \sin ^{2} \alpha w^{v}+\cos ^{2} \alpha w+2 \sin \alpha \cos \alpha v \times w-\sin ^{2} \alpha v \times w \times v\right) \\
= & |\lambda|^{2}\left(0, \sin ^{2} \alpha w^{v}+\cos ^{2} \alpha\left(w^{v}+w^{\perp}\right)+\sin \theta v \times w^{\perp}-\sin ^{2} \alpha w^{\perp}\right) \\
= & |\lambda|^{2}\left(0,\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) w^{v}+\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right) w^{\perp}+\sin \theta v \times w^{\perp}\right) \\
= & |\lambda|^{2}\left(0,\left(w-w^{\perp}\right)+\cos \theta w^{\perp}+\sin \theta v \times w^{\perp}\right) .
\end{aligned}
$$

Namely, w rotates about v with angle θ.

Quaternion and Rotation

Lemma

The universal covering space of $S O(3)$ is \mathbb{S}^{3}.

Proof.

The set of all unit quaternions $|\lambda|^{2}=1$ is \mathbb{S}^{3}, which is simply connected. Since

$$
\bar{\lambda} q \lambda=\overline{(-\lambda)} q(-\lambda)
$$

so antipodal points $\pm q$ represent the same rotation, \mathbb{S}^{3} double covers SO(3).

The set of the unit quaternions is defined as

$$
\operatorname{Spin}(3):=\{q \in \mathbb{H} \mid q \bar{q}=1\}
$$

which is homemorphic to $\mathbb{S}^{3} . S O(3)$ is homeomorphic to $\mathbb{R} \mathbb{P}^{3}$.

Surface Regular Homotopy

Definition (Surface Regular Homotopy)

Let f and F be two immersions of a given abstract surface M into \mathbb{R}^{3}. We say that f is regular homotopic to F, denoted by $f \sim_{r} F$, if there exists a continuous family of immersions f_{t} of M into \mathbb{R}^{3} such that $f_{0}=f$ and $f_{1}=F$.

The set of all immersions regularly homotopic to f is denoted by $[f]$, the space of regular homotopy classes of immersions of a given surface M into \mathbb{R}^{3} bt $\overline{\operatorname{Imm}}\left(M, \mathbb{R}^{3}\right)$.

Regular Immersion

Let M be an oriented surface, $f: M \rightarrow \mathbb{R}^{3}$ is an immersion, then its differential $d f$ is a rank two \mathbb{R}^{3}-valued one form on $M, d f$ is a section of the bunddle of orientation-preserving rank $2 \mathbb{R}^{3}$-valued one forms on M,

$$
T^{*} M \otimes \mathbb{R}_{+}^{3}:=\left\{\tau \in T^{*} M \otimes \mathbb{R}^{3} \mid \operatorname{rank}(\tau)=2\right\}
$$

Theorem (Hirsch)

Every continuous section of $T^{*} M \otimes \mathbb{R}_{+}^{3}$ is homotopic to the differential of an immersion of M into \mathbb{R}^{3}.

Regular Immersion

Surface Regular Homotopy

Theorem (James-Thomas)

Let M be an oriented surface. The mapping sending an immersion f to its differential df descends to a bijection

$$
\overline{\operatorname{Imm}}\left(M, \mathbb{R}^{3}\right) \rightarrow[M, S O(3)]
$$

where $[M, S O(3)]$ denotes the space of homotopy classes of maps from M into $S O(3)$.

Proof.

Chose a reference immersion $\tilde{f}: M \rightarrow \mathbb{R}^{3}$, denote by \tilde{N} the Gauss map of \tilde{f}. Let τ be an orientation preserving rank $2 \mathbb{R}^{3}$-valued one form on M, $\tau \in T^{*} M \otimes \mathbb{R}_{+}^{3}$.

Surface Regular Homotopy

Proof.

τ defines a vector space isomorphism

$$
\begin{aligned}
\beta_{\tau}: T_{\pi(\tau)} M \oplus \mathbb{R} & \rightarrow \mathbb{R}^{3} \\
(X, \rho) & \rightarrow \tau(X)+\rho N
\end{aligned}
$$

Let $A_{\tau} \in G L(3, \mathbb{R})^{+}$be the unique orientation preserving matrix, which makes the diagram commute:

$$
\begin{array}{ccc}
T_{\pi(\tau)} M \oplus \mathbb{R} \xrightarrow{\beta_{\tau}} & \mathbb{R}^{3} \\
& \\
& \\
& \downarrow A_{\tau} \\
T_{\pi(d \tilde{f})} M \oplus \mathbb{R} \xrightarrow{\beta_{d \tilde{f}}} & \mathbb{R}^{3}
\end{array}
$$

Surface Regular Homotopy

Proof.

The map

$$
\begin{aligned}
& A: T^{*} M \otimes \mathbb{R}_{+}^{3} \rightarrow M \times G L(3, \mathbb{R})^{+} \\
& \quad \tau \in T^{*} M \otimes \mathbb{R}_{+}^{3} \rightarrow\left(\pi(\tau), A_{\tau}\right)
\end{aligned}
$$

is a bundle map which descends to a map

$$
\begin{aligned}
\langle A\rangle: \overline{\operatorname{Imm}}\left(M, \mathbb{R}^{3}\right) & \rightarrow\left[M, G L(3, \mathbb{R})^{+}\right] \\
{[f] } & \rightarrow\left\langle A_{d f}\right\rangle
\end{aligned}
$$

where $\langle\cdot\rangle$ denotes the homotopy class of a map. By Hirsch theorem, the $\operatorname{map}\langle A\rangle$ is a bijection. The polar decomposition of $G L(3, \mathbb{R})^{+}$implies that $[M, S O(3)]=\left[M, G L(3, \mathbb{R})^{+}\right]$.

Regular Homotopy

Different regular homotopy classes of immersions of M into \mathbb{R}^{3} can be distinguished by the twist they assign to topologically nontrivial curves. Let $\gamma:[0, I] \rightarrow M$ be a continuous loop. For every continuous $S O(3)$-valued map $A: M \rightarrow S O(3)$, let $\alpha:[0, I] \rightarrow S O(3)$ be the map induced by the loop $\gamma, \alpha=A \circ \gamma$. Denote by $\tilde{\alpha}$ an arbitrary lift to $\operatorname{Spin}(3)$ of α,

$$
A(\gamma(t)) V=\overline{\tilde{\alpha}(t)} V \tilde{\alpha}(t), \quad \forall t \in[0, l], V \in \mathbb{R}^{3}=\operatorname{lm}(\mathbb{H})
$$

Either $\tilde{\alpha}(0)$ and $\tilde{\alpha}(I)$ are the same or antipodal, we obtain

$$
\tilde{\alpha}(0) \tilde{\alpha}(I)^{-1}= \pm 1
$$

and that $\tilde{\alpha}(0)$ and $\tilde{\alpha}(I)$ depends only on the loop α but not on the particular lift.

Regular Homotopy

Definition (Flip)

We call the number

$$
\varphi_{A}(\gamma):=\tilde{\alpha}(0) \tilde{\alpha}(I)^{-1}
$$

the flip of γ with respect to the map A.

- By continuity $\varphi_{A}(\gamma)$ depends only on the homotopy class $[A]$ of A and the class $[\gamma]$ of the loop γ.
- A continuious map $A: M \rightarrow S O(3)$ is homotopically trivial if and only if $\varphi_{A}(\gamma)=1$ for every loop γ in M.
- Two $S O(3)$-valued maps A and B are homotopic if and only if $\varphi_{A}(\gamma)=\varphi_{B}(\gamma)$ for every continuous loop γ.

Regular Homotopy

Let $\tilde{f}: M \rightarrow \mathbb{R}^{3}$ be a reference immersion. For every immersion $f: M \rightarrow \mathbb{R}^{3}$, left $A_{d f}$ be the $G L(3, \mathbb{R})^{+}$-valued map defined with respect to \tilde{f}. Then there exists a $S O(3)$-valued map $O_{d f}$ homotopic to $A_{d f}$. By James-Thomas, we have $f \sim_{r} g \Longleftrightarrow O_{d f} \sim O_{d g}$.

Definition (Relative Twist)

We define the twist of a continuous loop γ by f relative to \tilde{f} by

$$
\tau_{f}^{\tilde{f}}(\gamma):=\varphi O_{\mathrm{off}}(\gamma) .
$$

Corollary

Two immersions f and g are regular homotopic if and only if

$$
\tau_{f}^{\tilde{f}}(\gamma)=\tau_{g}^{\tilde{f}}(\gamma)
$$

for every loop γ. In particular, f is regularly homotopic to \tilde{f} if and only if $\tau_{f}^{\tilde{f}}(\gamma)=1$ for every loop γ.

Regular Homotopy

Corollary

Let M be a surface such that $\operatorname{dim} H^{1}\left(M, \mathbb{Z}_{2}\right)=d$, then $\overline{\operatorname{Imm}}\left(M, \mathbb{R}^{3}\right)$ has exactly 2^{d} elements.

Proof.

Let $f: M \rightarrow \mathbb{R}^{3}$ be an immersion, $\tau_{f}^{\tilde{f}}: \pi_{1}(M) \rightarrow\{+1,-1\}$ is a homomorphism,

$$
\tau_{f}^{\tilde{f}}\left(\gamma_{1} \gamma_{2}\right)=\tau_{f}^{\tilde{f}}\left(\gamma_{1}\right) \tau_{f}^{\tilde{f}}\left(\gamma_{2}\right), \quad \tau_{f}^{\tilde{f}}\left(\gamma^{-1}\right)=\tau_{f}^{\tilde{f}}(\gamma)^{-1}
$$

which is equivalent to the linear map $\tau_{f}^{\tilde{f}}: H_{1}\left(M, \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}$, by the mapping $(-1)^{k}: \mathbb{Z}_{2} \rightarrow\{+1,-1\}$. Suppose $\left\{a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right\}$ is the basis of $H_{1}\left(M, \mathbb{Z}_{2}\right)$, then $\tau_{f}^{\tilde{f}}$ has the matrix representation

$$
\left(\tau_{f}^{\tilde{f}}\left(a_{1}\right), \tau_{f}^{\tilde{f}}\left(b_{1}\right), \tau_{f}^{\tilde{f}}\left(a_{2}\right), \tau_{f}^{\tilde{f}}\left(b_{2}\right), \cdots, \tau_{f}^{\tilde{f}}\left(a_{g}\right), \tau_{f}^{\tilde{f}}\left(b_{g}\right)\right)
$$

Immersion Regular Homotopy

Let f be an immersion of an oriented surface M into $\mathbb{R}^{3}=\operatorname{Im}(\mathbb{H})$, the immersion induces a conformal structure J on M.
Let $\gamma:[0,1] \rightarrow M$ be a regular closed curve. Define movable frame along γ,

$$
\left\{\frac{d f\left(\gamma^{\prime}\right)}{\left|d f\left(\gamma^{\prime}\right)\right|}, \frac{d f\left(J \gamma^{\prime}\right)}{\left|d f\left(J \gamma^{\prime}\right)\right|}, N=\frac{d f\left(\gamma^{\prime}\right) \times d f\left(J \gamma^{\prime}\right)}{\left|d f\left(\gamma^{\prime}\right) \times d f\left(J \gamma^{\prime}\right)\right|}\right\}
$$

Let $\lambda:[0, I] \rightarrow \mathbb{H}^{*}$ be a continuous quaternion-valued function such that

$$
\begin{aligned}
& \bar{\lambda} E_{1} \lambda=d f\left(\gamma^{\prime}\right) /\left|d f\left(\gamma^{\prime}\right)\right| \\
& \bar{\lambda} E_{2} \lambda=d f\left(J \gamma^{\prime}\right) /\left|d f\left(J \gamma^{\prime}\right)\right| \\
& \bar{\lambda} E_{3} \lambda=N
\end{aligned}
$$

where $\left(E_{1}, E_{2}, E_{3}\right)=(k, j,-i)$ to be the standard basis in \mathbb{R}^{3}. We call the map λ the lift of the moving frame associated with the curve $\gamma . \lambda(t)$ is determined uniquely up to a sign.

Immersion Regular Homotopy

Definition (Twist)

The twist of γ with respect to f is defined by

$$
\tau_{f}(\gamma):=\lambda(0) \lambda(I)^{-1}
$$

belongs to $\mathbb{Z}_{2}=\{+1,-1\}$.
Suppose γ is regular homotopic to γ_{s}, f_{r} is regular homotopic to f, then

$$
\tau_{f}\left(\gamma_{s}\right)=\tau_{f}(\gamma)=\tau_{f_{r}}(\gamma)
$$

Immersion Regular Homotopy

Definition (Twist)

The twist of γ with respect to f is defined by

$$
\tau_{f}(\gamma):=\lambda(0) \lambda(I)^{-1}
$$

belongs to $\mathbb{Z}_{2}=\{+1,-1\}$.
Suppose γ is regular homotopic to γ_{s}, f_{r} is regular homotopic to f, then

$$
\tau_{f}\left(\gamma_{s}\right)=\tau_{f}(\gamma)=\tau_{f_{r}}(\gamma)
$$

Immersion Regular Homotopy

Problem

Let M be an annulus in the $\mathbb{C} M:=\{z|1 / 2<|z|<2\}$. Consider the immersion $f(z)=\mathbf{k} z$, then $d f=k d z$. Then $\tau_{f}(\gamma)=-1$ for every generator γ of $\pi_{1}(M)$.

Consider the curve $\gamma(t)=-i e^{i t}, 0 \leq t \leq 2 \pi$ in $M, \gamma^{\prime}(t)=e^{i t}$, the moving frame is

$$
\begin{aligned}
d f\left(\gamma^{\prime}(t)\right) & =k e^{i t} \\
d f\left(J \gamma^{\prime}(t)\right) & =j e^{i t} \\
N(t) & =-i
\end{aligned}
$$

The rotatio axis is $-i$, the angle is t, therefore $\lambda(t)=(\cos t / 2,-\sin t / 2(-i))=e^{i t / 2}$. Hence we obtain

$$
\lambda(0) \lambda(2 \pi)^{-1}=1 \cdot e^{i \pi}=-1 .
$$

Immersion Regular Homotopy

Problem

Let M be an annulus in the $\mathbb{C} M:=\{z|1 / 2<|z|<2\}$. Consider the immersion f as a ribbon, then $d f=k d z$. Then $\tau_{f}(\gamma)=+1$ for every generator γ of $\pi_{1}(M)$.

Cut the ribbon along the fiber at 0 and π, each half can be regular homotopic to a straight cylinder, which is regular homotopic to the annulus. Hence

$$
\lambda(0) \lambda(\pi)^{-1}=-1 \quad \lambda(\pi) \lambda(2 \pi)^{-1}=-1
$$

Thus the twist of γ equals

$$
\lambda(0) \lambda(2 \pi)^{-1}=\left(\lambda(0) \lambda(\pi)^{-1}\right)\left(\lambda(\pi) \lambda(2 \pi)^{-1}\right)=+1 .
$$

Immersion Regular Homotopy

Lemma

Let M be a Riemann surface. For every two conformal immersions $\tilde{f}, f: M \rightarrow \mathbb{R}^{3}=\operatorname{Im}(\mathbb{H})$, for every continuous loop γ in M, we have

$$
\tau_{f}(\gamma)=\tau_{\tilde{f}}(\gamma) \tau_{f}^{\tilde{f}}(\gamma),
$$

Theorem

Let M be a Riemann surface. Two conformal immersions f and \tilde{f} of M into \mathbb{R}^{3} are regularly homotopic if and only if $\tau_{f}(\gamma)=\tau_{\tilde{f}}(\gamma)$ for every continuous loop γ in M.

Proof.

From corollary, $f \sim_{r} \tilde{f}$ if and only if $\tau_{f}^{\tilde{f}} \equiv 1$. By above lemma, we conclude that $\tau_{f}^{\tilde{f}} \equiv 1$ if and only if $\tau_{f} \equiv \tau_{\tilde{f}}$.

