Fixed Point, Hopf-Poincarère Index Theorem, Characteristic Class

David Gu

Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu
July 6, 2022

Homology and Cohomology Groups

Figure: γ is the generator of $H_{1}(M, \mathbb{Z}), \omega$ is the generator of $H^{1}(M, \mathbb{R})$.
$d \omega=0$ but $\int_{\gamma} \omega=18$, so ω is closed but not exact.

Fixed Point

Brouwer Fixed Point

Figure: Brouwer fixed point.

Brouwer Fixed Point

Theorem (Brouwer Fixed Point)

Suppose $\Omega \subset \mathbb{R}^{n}$ is a compact convex set, $f: \Omega \rightarrow \Omega$ is a continous map, then there exists a point $p \in \Omega$, such that $f(p)=p$.

Proof.

Assume $f: \Omega \rightarrow \Omega$ has no fixed point, namely $\forall p \in \Omega, f(p) \neq p$. We construct $g: \Omega \rightarrow \partial \Omega$, a ray starting from $f(p)$ through p and intersect $\partial \Omega$ at $g(p),\left.g\right|_{\partial \Omega}=i d . i$ is the inclusion map, $(g \circ i): \partial \Omega \rightarrow \partial \Omega$ is the identity,

$$
\partial \Omega \xrightarrow{i} \Omega \xrightarrow{g} \partial \Omega
$$

$(g \circ i)_{\#}: H_{n-1}(\partial \Omega, \mathbb{Z}) \rightarrow H_{n-1}(\partial \Omega, \mathbb{Z})$ is $z \mapsto z$. But $H_{n-1}(\Omega, \mathbb{Z})=0$, then $g_{\#}=0$. Contradiction.

Lefschetz Fixed Point

Definition (Index of Fixed Point)

Suppose M is an n-dimensional topological space, p is a fixed point of $f: M \rightarrow M$. Choose a neighborhood $p \in U \subset M$, $f_{*}: H_{n-1}(\partial U, \mathbb{Z}) \rightarrow H_{n-1}(\partial U, \mathbb{Z})$,

$$
f_{*}: \mathbb{Z} \rightarrow \mathbb{Z}, z \mapsto \lambda z,
$$

where λ is an integer, the algebraic index of $p, \operatorname{Ind}(f, p)=\lambda$.

Lefschetz Fixed Point

Given a compact topological space M, and a continuous automorophism $f: M \rightarrow M$, it induces homomorphisms

$$
f_{* k}: H_{k}(M, \mathbb{Z}) \rightarrow H_{k}(M, \mathbb{Z})
$$

each $f_{* k}$ is represented as a matrix.

Definition (Lefschetz Number)

The Lefschetz number of the automorphism $f: M \rightarrow M$ is given by

$$
\Lambda(f):=\sum_{k}(-1)^{k} \operatorname{Tr}\left(f_{* k} \mid H_{k}(M, \mathbb{Z})\right)
$$

Lefschetz Fixed Point

Theorem (Lefschetz Fixed Point)

Given a continuous automorphism of a compact topological space $f: M \rightarrow M$, if its Lefschetz number is non-zero, then there is a point $p \in M, f(p)=p$.

Proof.

Triangulate M, use a simplicial map to approximate f, then

$$
\begin{equation*}
\sum_{k}(-1)^{k} \operatorname{Tr}\left(f_{k} \mid C_{k}\right)=\sum_{k}(-1)^{k} \operatorname{Tr}\left(f_{k} \mid H_{k}\right)=\Lambda(f) . \tag{1}
\end{equation*}
$$

If $\Lambda(f) \neq 0, \exists \sigma \in C_{k}, f_{k}(\sigma) \subset \sigma$, from Brouwer fixed point theorem, there is a fixed point $p \in \sigma$.

Lefschetz Fixed Point

Lemma

$$
\sum_{k}(-1)^{k} \operatorname{Tr}\left(f_{k} \mid C_{k}\right)=\sum_{k}(-1)^{k} \operatorname{Tr}\left(f_{k} \mid H_{k}\right)=\Lambda(f) .
$$

Proof.

$C_{k}=C_{k} / Z_{k} \oplus Z_{k}, Z_{k}$ is the closed chain space; $Z_{k}=B_{k} \oplus H_{k}, B_{k}$ is the exact chain space, H_{k} is the homology group. $\partial_{k}: C_{k} / Z_{k} \rightarrow B_{k-1}$ is isomorphic.

$$
\begin{array}{clc}
C_{k} / Z_{k} & \xrightarrow{f_{k}} & C_{k} / Z_{k} \\
\partial_{k} \downarrow & & \downarrow^{\partial_{k}} \\
B_{k-1} & \xrightarrow{f_{k-1}} & B_{k-1}
\end{array}
$$

Lefschetz Fixed Point

Lemma

$$
\sum_{k}(-1)^{k} \operatorname{Tr}\left(f_{k} \mid C_{k}\right)=\sum_{k}(-1)^{k} \operatorname{Tr}\left(f_{k} \mid H_{k}\right)=\Lambda(f) .
$$

The left hand side depends on the triangulation, the right hand side is independent.

Proof.

$\partial_{k} \circ f_{k} \circ \partial_{k}^{-1}=f_{k-1}, \operatorname{Tr}\left(f_{k} \mid C_{k} / Z_{k}\right)=\operatorname{Tr}\left(f_{k-1} \mid B_{k-1}\right)$,

$$
\begin{aligned}
\operatorname{Tr}\left(f_{k} \mid C_{k}\right) & =\operatorname{Tr}\left(f_{k} \mid C_{k} / Z_{k}\right)+\operatorname{Tr}\left(f_{k} \mid Z_{k}\right) \\
& =\operatorname{Tr}\left(f_{k-1} \mid B_{k-1}\right)+\operatorname{Tr}\left(f_{k} \mid B_{k}\right)+\operatorname{Tr}\left(f_{k} \mid H_{k}\right)
\end{aligned}
$$

Euler Number

Lemma

Suppose M is a compact oriented surface with genus $g, f: M \rightarrow M$ is a continuous automorphism of M, f is homotopic to the identity map of M, then the Lefschetz number of f equals to the Euler characteristic number of M,

$$
\Gamma(f)=\chi(S)
$$

Proof.

We construct a triangulation of M and use a simplicial map to approximate the automorphism. Then

$$
\Lambda(f)=\Lambda(I d)=|V|+|F|-|E|=\chi(S)
$$

Poincaré-Hopf Theorem

Isolated Zero Point

Figure: Islated zero point.

Definition (Isolated Zero)

Given a smooth tangent vector field $\mathbf{v}: S \rightarrow T S$ on a smooth surface S, $p \in S$ is called a zero point, if $\mathbf{v}(p)=\mathbf{0}$. If there is a neighborhood $U(p)$, such that p is the unique zero in $U(p)$, then p is an isolated zero point.

Zero Index

Definition (Zero Index)

Given a zero $p \in Z(v)$, choose a small disk $B(p, \varepsilon)$ define a map $\varphi: \partial B(p, \varepsilon) \rightarrow \mathbb{S}^{1}, q \mapsto \frac{\mathbf{v}(q)}{|\mathbf{v}(q)|}$. This map induces a homomorphism $\varphi_{\#}: \pi_{1}(\partial B) \rightarrow \pi_{1}\left(\mathbb{S}^{1}\right), \varphi_{\#}(z)=k z$, where the integer k is called the index of the zero.

Zero Index

source +1

saddle -1

sink +1

Figure: Indices of zero points.

Poincaré-Hopf

Theorem (Poincaré-Hopf Index)

Assume S is a compact, oriented smooth surface, v is a smooth tangent vector field with isolated zeros. If S has boundaries, then v point along the exterior normal direction, then we have

$$
\sum_{p \in Z(v)} \operatorname{Index}_{p}(v)=\chi(S)
$$

where $Z(v)$ is the set of all zeros, $\chi(S)$ is the Euler characteristic number of S.

Poincaré-Hopf Theorem

Proof.

Given two vector fields v_{1} and v_{2} with different isolated zeros. We construct a triangulation T, such that each face contains at most one zero. Define two 2 -forms, Ω_{1} and Ω_{2}.

$$
\Omega_{k}(\Delta)=\operatorname{Index}_{p}\left(\mathbf{v}_{k}\right), \quad p \in \Delta \cap Z\left(v_{k}\right), \quad k=1,2
$$

Along $\gamma(t), \theta(t)$ is the angle from $v_{1} \circ \gamma(t)$ to $v_{2} \circ \gamma(t)$. Define a one form,

$$
\omega(\gamma):=\int_{\gamma} \dot{\theta}(\tau) d \tau
$$

Relation with Fixed Point Theorem

Given a smooth tangent vector field v, we can define a one parameter family of automorphisms, $\varphi(p, t)$,

$$
\frac{\partial \varphi(p, t)}{\partial t}=v \circ \varphi(p, t) .
$$

Then $f_{t}: p \mapsto \varphi(p, t)$ is an automorophism homotopic to the identity. According to lemma 7, the total index of fixed points of f_{t} is $\chi(S)$. The fixed points of f_{t} corresponds to the zeros of v with the sample index.

Poincaré-Hopf Theorem

continued.

Given a triangle Δ, then the relative rotation of v_{2} about v_{1} is given by

$$
\omega(\partial \Delta)=d \omega(\Delta)
$$

then we get

$$
\Omega_{2}-\Omega_{1}=d \omega .
$$

Therefore Ω_{1} and Ω_{2} are cohomological. The total index of zeros of a vector field

$$
\sum_{p \in v_{k}} \operatorname{Index}_{p}\left(v_{k}\right)=\int_{S} \Omega_{k}
$$

Poincaré-Hopf Theorem

continued.

We construct a special vector field, then the total index of all the zeros is

$$
\sum_{p \in Z(v)} \operatorname{Index}_{p}(v)=|V|+|F|-|E|=\chi(S)
$$

Unit Tangent Bundle of the Sphere

Smooth Manifold

Figure: A manifold.

Smooth Manifold

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets $\left\{U_{\alpha}\right\}$. A homeomorphism $\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ maps U_{α} to the Euclidean space \mathbb{R}^{n}. ($U_{\alpha}, \phi_{\alpha}$) is called a coordinate chart of M. The set of all charts $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ form the atlas of M. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$
\phi_{\alpha \beta}=\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is a transition map.
If all transition maps $\phi_{\alpha \beta} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ are smooth, then the manifold is a differential manifold or a smooth manifold.

Tangent Space

Definition (Tangent Vector)

A tangent vector ξ at the point p is an association to every coordinate chart ($x^{1}, x^{2}, \cdots, x^{n}$) at p an n-tuple ($\xi^{1}, \xi^{2}, \cdots, \xi^{n}$) of real numbers, such that if $\left(\tilde{\xi}^{1}, \tilde{\xi}^{2}, \cdots, \tilde{\xi}^{n}\right)$ is associated with another coordinate system ($\tilde{x}^{1}, \tilde{x}^{2}, \cdots, \tilde{x}^{n}$), then it satisfies the transition rule

$$
\tilde{\xi}^{i}=\sum_{j=1}^{n} \frac{\partial \tilde{x}^{i}}{\partial x^{j}}(p) \xi^{j}
$$

A smooth vector field ξ assigns a tangent vector for each point of M, it has local representation

$$
\xi\left(x^{1}, x^{2}, \cdots, x^{n}\right)=\sum_{i=1}^{n} \xi_{i}\left(x^{1}, x^{2}, \cdots, x^{n}\right) \frac{\partial}{\partial x_{i}}
$$

$\left\{\frac{\partial}{\partial x_{i}}\right\}$ represents the vector fields of the velocities of iso-parametric curves on M. They form a basis of all vector fields.

Push forward

Definition (Push-forward)

Suppose $\phi: M \rightarrow N$ is a differential map from M to $N, \gamma:(-\epsilon, \epsilon) \rightarrow M$ is a curve, $\gamma(0)=p, \gamma^{\prime}(0)=\mathbf{v} \in T_{p} M$, then $\phi \circ \gamma$ is a curve on N, $\phi \circ \gamma(0)=\phi(p)$, we define the tangent vector

$$
\phi_{*}(\mathbf{v})=(\phi \circ \gamma)^{\prime}(0) \in T_{\phi(p)} N
$$

as the push-forward tangent vector of \mathbf{v} induced by ϕ.

Unit Tangent Bundle

Definition (UTM)

The unit tangent bundle of the unit sphere is the manifold

$$
\text { UTM }(S):=\left\{(p, v)\left|p \in S, v \in T_{p}(S),|v|_{\mathbf{g}}=1\right\} .\right.
$$

The unit tangent bundle of a surface is a 3-dimensional manifold. We want to compute its triangulation and its fundamental group.

Sphere

Figure: Stereo-graphic projection

$$
\begin{aligned}
(x, y) & =\left(\frac{x_{1}}{1-x_{3}}, \frac{x_{2}}{1-x_{3}}\right) \\
\mathbf{r}(x, y) & =\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{2 x}{1+x^{2}+y^{2}}, \frac{2 y}{1+x^{2}+y^{2}}, \frac{-1+x^{2}+y^{2}}{1+x^{2}+y^{2}}\right)
\end{aligned}
$$

Sphere

$$
\begin{gathered}
\mathbf{r}_{x}=\partial_{x}=\frac{2}{\left(1+x^{2}+y^{2}\right)^{2}}\left(1-x^{2}+y^{2},-2 x y, 2 x\right) \\
\mathbf{r}_{y}=\partial_{y}=\frac{2}{\left(1+x^{2}+y^{2}\right)^{2}}\left(-2 x y, 1+x^{2}-y^{2}, 2 y\right) \\
\left\langle\partial_{x}, \partial_{x}\right\rangle=\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}} \\
\left\langle\partial_{y}, \partial_{y}\right\rangle=\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}} \\
\left\langle\partial_{x}, \partial_{y}\right\rangle=0
\end{gathered}
$$

Unit Tangent Bundble of the Sphere

Figure: Unit tangent bundle.

A tangent vector at $\mathbf{r}(x, y)$ is given by: $d \mathbf{r}(x, y)=\mathbf{r}_{x}(x, y) d x+\mathbf{r}_{y}(x, y) d y$. On the equator

$$
((x, y),(d x, d y))=((\cos \theta, \sin \theta),(\cos \tau, \sin \tau))
$$

Unit Tangent Bundble of the Sphere

Figure: Unit tangent bundle.

The unit tangent bundle of a hemisphere is a direct product $\mathbb{S}^{1} \times \mathbb{D}^{2}$, where \mathbb{S}^{1} is the fiber of each point, \mathbb{D}^{2} is the hemisphere. The boundary of the UTM of the hemisphere is a torus $\mathbb{S}^{1} \times \partial \mathbb{D}^{2}$.

Sphere

$$
\begin{gathered}
(u, v)=\left(\frac{x_{1}}{1+x_{3}}, \frac{-x_{2}}{1+x_{3}}\right) \\
\mathbf{r}(u, v)=\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{-2 v}{1+u^{2}+v^{2}}, \frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}\right) \\
\mathbf{r}_{u}=\partial_{u}=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}\left(1-u^{2}+v^{2}, 2 u v,-2 u\right) \\
\mathbf{r}_{u}=\partial_{v}=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}\left(-2 u v,-1-u^{2}+v^{2},-2 v\right) \\
\left\langle\partial_{u}, \partial_{u}\right\rangle=\frac{4}{\left(1+u^{2}+v^{2}\right)^{2}} \\
\left\langle\partial_{v}, \partial_{v}\right\rangle=\frac{4}{\left(1+u^{2}+v^{2}\right)^{2}} \\
\left\langle\partial_{u}, \partial_{v}\right\rangle=0
\end{gathered}
$$

Chart transition

Let $z=x+i y$ and $w=u+i v$, Then

$$
\frac{1}{z}=\frac{x-i y}{x^{2}+y^{2}}=\frac{x_{1}-i x_{2}}{1-x_{3}}: \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{3}\right)^{2}}=\frac{x_{1}-i x_{2}}{1+x_{3}}=w .
$$

Therefore $d w=-\frac{1}{z^{2}} d z$,

$$
\left[\begin{array}{l}
d u \\
d v
\end{array}\right]=\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]\left[\begin{array}{l}
d x \\
d y
\end{array}\right]
$$

this gives the Jacobi matrix,

$$
\left[\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\frac{1}{\left(x^{2}+y^{2}\right)^{2}}\left[\begin{array}{cc}
y^{2}-x^{2} & -2 x y \\
2 x y & y^{2}-x^{2}
\end{array}\right]
$$

Gluing Map

Construct the unit tangent bundle of the sphere. The unit tangent bundle of the upper hemisphere is a solid torus, the unit tangent bundle of the lower hemisphere is also a solid torus. The unit tangent bundle of the equator is a torus, $\varphi:(z, d z) \mapsto(w, d w), z=e^{i \theta}, d z=e^{i \tau}$,

$$
\varphi:(z, d z) \mapsto\left(\frac{1}{z},-\frac{1}{z^{2}} d z\right),(\theta, \tau) \mapsto(-\theta, \pi-2 \theta+\tau)
$$

Automorphism of the Torus

$$
\varphi:(\tau, \theta) \mapsto(\tau-2 \theta+\pi,-\theta)
$$

φ	(τ, θ)	$\left(\tau^{\prime}, \theta^{\prime}\right)$
A	$(0,0)$	$(\pi, 0)$
B	$(2 \pi, 0)$	$(3 \pi, 0)$
C	$(2 \pi, 2 \pi)$	$(-\pi,-2 \pi)$
D	$(0,2 \pi)$	$(-3 \pi,-2 \pi)$

Table: Corresponding corner points.

Torus Automorphism on UCS

Figure: Torus automorophism.

This induces an automorphism of the fundamental group of the torus, $\varphi_{\#}: \pi_{1}\left(T^{2}\right) \rightarrow \pi_{1}\left(T^{2}\right)$,

$$
\varphi_{\#}: a \mapsto a, \quad b \mapsto a^{-2} b^{-1}
$$

Torus Automorphism on UCS

Figure: Torus automorophism.

This induces an automorphism of the fundamental group of the torus, $\varphi_{\#}: \pi_{1}\left(T^{2}\right) \rightarrow \pi_{1}\left(T^{2}\right)$,

$$
\varphi_{\#}: a \mapsto a, \quad b \mapsto a^{-2} b^{-1}
$$

Torus Automorphism on UCS

$\pi_{1}\left(M_{1}\right)=\left\langle a_{1}\right\rangle, \pi_{1}\left(M_{2}\right)=\left\langle a_{2}\right\rangle, M_{1} \cap M_{2}=T^{2}, \pi_{1}\left(T^{2}\right)=\langle a, b \mid[a, b]\rangle$, then the π_{1} of the unit tangent bundle is

$$
\pi_{1}\left(M_{1} \cup M_{2}\right)=\left\langle a_{1}, a_{2} \mid a_{1} a_{2}, a_{2}^{-2} b_{2}^{-1}\right\rangle=\mathbb{Z}_{2}
$$

Obstruction Class

Figure: Local obstruction.

Obstruction Class

The topological obstruction for the existence of global section $\varphi: \mathbb{S}^{2} \rightarrow U T M\left(\mathbb{S}^{2}\right)$ is constructed as follows:
(1) Construct a triangulation \mathcal{T}, which is refined enough such that the fiber bundle of each face is trivial (direct product).
(2) For each vertex v_{i}, choose a point on its fiber, $\varphi\left(v_{i}\right) \in F\left(v_{i}\right)$
(3) For each edge $\left[v_{i}, v_{j}\right]$, choose a curve connecting $\varphi\left(v_{i}\right)$ and $\varphi\left(v_{j}\right)$ in the restiction of the UTM on $\left[v_{i}, v_{j}\right]$, which is annulus;
(9) For each face $\Delta, \varphi(\partial \Delta)$ is a loop in the fiber bundle of $\Delta,[\varphi(\partial \Delta)]$ is an integer, an element in $\pi_{1}(\operatorname{UTM}(\Delta))$, this gives a 2-form Ω on the original surface M,

$$
\Omega(\Delta)=[\varphi(\partial \Delta)]
$$

(5) If Ω is zero, then global section exists. Otherwise doesn't exists.
(0) Different constructions get different Ω 's, but all of them are cohomological. Therefore $[\Omega] \in H^{2}(M, \mathbb{R})$ is the characteristic class of fiber bundle.

Obstruction Class

Lemma

Given two sections $\varphi, \bar{\varphi}: \mathbb{S} \rightarrow \operatorname{UTM}(S)$, they incudes two 2-forms $\Omega_{2}, \bar{\Omega}_{2}$. Then there exists a 1-form h, such that

$$
\forall \sigma^{2}, \quad \delta h\left(\sigma^{2}\right)=\Omega^{2}\left(\sigma^{2}\right)-\bar{\Omega}^{2}\left(\sigma^{2}\right) .
$$

Proof.

$\forall \sigma_{a}^{0} \in B^{(0)}$, construct a path in the fiber $p_{a}:[0,1] \rightarrow F$, such that

$$
p_{a}(0)=\bar{\varphi}\left(\sigma_{a}^{0}\right), \quad p_{a}(1)=\varphi\left(\sigma_{a}^{0}\right)
$$

Given a 1-simplex σ_{a}^{1}, with boundary $\partial \sigma_{a}^{1}=\sigma_{j}^{0}-\sigma_{i}^{0}$, construct a loop

$$
I_{a}=p_{i} \varphi\left(\sigma_{a}^{1}\right) p_{j}^{-1} \bar{\varphi}\left(\sigma_{a}^{1}\right)^{-1}
$$

Obstruction Class

Figure: Denote $a=\varphi\left(\sigma_{a}^{1}\right), b=\varphi\left(\sigma_{b}^{1}\right)$ and $c=\varphi\left(\sigma_{c}^{1}\right)$.

$$
\begin{aligned}
& I_{a}:=p_{i} \varphi\left(\sigma_{a}^{1}\right) p_{j}^{-1} \bar{\varphi}\left(\sigma_{a}^{1}\right)^{-1}=p_{i} a p_{j}^{-1} \bar{a}^{-1} \\
& I_{b}:=p_{j} b p_{k}^{-1} \bar{b}^{-1} \sim \bar{a} p_{j} b p_{k}^{-1} \bar{b}^{-1} \bar{a}^{-1} \\
& I_{c}:=p_{k} c p_{i}^{-1} \bar{c}^{-1} \sim \bar{a} \bar{b} p_{k} c p_{i}^{-1} \bar{c}^{-1} \bar{b}^{-1} \bar{a}^{-1}
\end{aligned}
$$

Obstruction Class

continued

$$
\begin{aligned}
{\left[I_{a}\right]\left[I_{b}\right]\left[I_{c}\right] } & =\left(i a j^{-1} \bar{a}^{-1}\right)\left(\bar{a} j b k^{-1} \bar{b}^{-1} \bar{a}^{-1}\right)\left(\bar{a} \bar{b} k c i^{-1} \bar{c}^{-1} \bar{b}^{-1} \bar{a}^{-1}\right) \\
& =i a j^{-1} j b k^{-1} k c i^{-1} \bar{c}^{-1} \bar{b}^{-1} \bar{z}^{-1} \\
& =\left(i a b c i^{-1}\right)\left(\bar{c}^{-1} \bar{b}^{-1} \bar{a}^{-1}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
\delta h\left(\sigma^{2}\right) & =\left[I_{a}\right]\left[I_{b}\right]\left[I_{c}\right] \\
& =\left[i a b c i^{-1}\right]\left[\bar{c}^{-1} \bar{b}^{-1} \bar{a}^{-1}\right] \\
& =[a b c][(\bar{a} \bar{b} \bar{c})]^{-1} \\
& =C_{2}\left(\sigma^{2}\right)\left(\bar{C}\left(\sigma^{2}\right)\right)^{-1}
\end{aligned}
$$

