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Homology and Cohomology Groups

Figure: v is the generator of Hi(M,Z), w is the generator of H(M,R).

dw = 0 but fyw = 18, so w is closed but not exact.
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Brouwer Fixed Point

0 9(p)

Figure: Brouwer fixed point.
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Brouwer Fixed Point

Theorem (Brouwer Fixed Point)

Suppose Q2 C R" s a compact convex set, f : Q — Q is a continous map,
then there exists a point p € Q, such that f(p) = p.

Proof.

Assume f : Q — Q has no fixed point, namely Vp € Q, f(p) # p. We
construct g : Q — 09, a ray starting from f(p) through p and intersect
0Q at g(p), glaq = id. i is the inclusion map, (g o i) : 92 — 0Q is the
identity,

090 —— 0 —£ o0
(goi)y: Hi—1(0Q,Z) = Hp—1(09Q,Z) is z — z. But H,_1(Q,Z) =0,
then g = 0. Contradiction. Ol

v
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Lefschetz Fixed Point

Definition (Index of Fixed Point)

Suppose M is an n-dimensional topological space, p is a fixed point of
f: M — M. Choose a neighborhood p € U C M,
fi Hn_1(8U,Z) = H,,_1(8U,Z),

fi 12— 7L,z — Az,

where A is an integer, the algebraic index of p, Ind(f,p) = A.
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Lefschetz Fixed Point

Given a compact topological space M, and a continuous automorophism
f: M — M, it induces homomorphisms

ﬁkk : Hk(Maz) — Hk(Maz)v

each f, is represented as a matrix.

Definition (Lefschetz Number)

The Lefschetz number of the automorphism f : M — M is given by

N(F) = (~1)FTr(fk|H(M, Z)).
k

David Gu (Stony Brook University) Computational Conformal Geometry July 6, 2022 7/42



Lefschetz Fixed Point

Theorem (Lefschetz Fixed Point)

Given a continuous automorphism of a compact topological space
f: M — M, if its Lefschetz number is non-zero, then there is a point

pEM,f(p)=np.

Triangulate M, use a simplicial map to approximate f, then
D (FLFTr(f| C) = Y (—1)* Tr(flHi) = (). (1)
k k

If A(f) #0, Jo € C, f(o) C o, from Brouwer fixed point theorem, there
is a fixed point p € 0. O

v
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Lefschetz Fixed Point

> (DR Tr(f| Ce) = (=1  Tr(felHe) = A(F).

k k

Cx = Cx/Zk ® Zx, Zk is the closed chain space; Zx = By & Hy, By is the
exact chain space, Hy is the homology group. Oy : Cx/Zx — Bk_1 is
isomorphic.

Ci/ Zk SN Ci/ Zk

akl J/Bk

fi—1
Bk1 —— Bk-1
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Lefschetz Fixed Point

S (DR TH(f|Ce) = Y (=1  Tr(filHe) = A(F).
k

k

The left hand side depends on the triangulation, the right hand side is
independent.

8/( o fk o 8,(_1 = fk—lr Tr(fk\Ck/Zk) = Tr(fk_1|Bk_1),

Tr(fk\Ck) = Tr(fk]Ck/Zk) + Tr(fk\Zk)
= Tr(fk_1|Bk_1) + Tr(fk|Bk) + Tr(fk|Hk)
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Euler Number

Lemma

Suppose M is a compact oriented surface with genus g, f : M — M is a
continuous automorphism of M, f is homotopic to the identity map of M,
then the Lefschetz number of f equals to the Euler characteristic number
of M,

Proof.

We construct a triangulation of M and use a simplicial map to
approximate the automorphism. Then

A(f) = A(Id) = [V] + |F| = [E[ = x(5)-
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Poincaré-Hopf Theorem |
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Isolated Zero Point

Figure: Islated zero point.

Definition (Isolated Zero)
Given a smooth tangent vector field v: S — TS on a smooth surface S,

p € S is called a zero point, if v(p) = 0. If there is a neighborhood U(p),
such that p is the unique zero in U(p), then p is an isolated zero point.

= = = et

July 6, 2022
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Zero Index

. This map induces a homomorphism

@y m(0B) — m1(SY), pu(z) = kz, where the integer k is called the
index of the zero.

T mid = = oy
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Zero Index

source +1 saddle —1 sink +1

Figure: Indices of zero points.
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Poincaré-Hopf

Theorem (Poincaré-Hopf Index)

Assume S is a compact, oriented smooth surface, v is a smooth tangent
vector field with isolated zeros. If S has boundaries, then v point along
the exterior normal direction, then we have

Z Indexy(v) = x(S),

pEZ(v)

where Z(v) is the set of all zeros, x(S) is the Euler characteristic number
of 5.
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Poincaré-Hopf Theorem

Given two vector fields v; and v» with different isolated zeros. We
construct a triangulation T, such that each face contains at most one
zero. Define two 2-forms, Q7 and Q5.

Qi(A) = Indexp(vi), peANZ(w), k=1,2.

Along ~(t), 6(t) is the angle from vy o y(t) to vo 0(t). Define a one form,
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Relation with Fixed Point Theorem

Given a smooth tangent vector field v, we can define a one parameter
family of automorphisms, ¢(p, t),

Then f; : p— ¢(p, t) is an automorophism homotopic to the identity.
According to lemma 7, the total index of fixed points of f; is x(S). The
fixed points of f; corresponds to the zeros of v with the sample index.
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Poincaré-Hopf Theorem

continued.

Given a triangle A, then the relative rotation of v» about v; is given by
w(0A) = dw(A)

then we get
Q — Q1 = dw.

Therefore 1 and 2> are cohomological. The total index of zeros of a

vector field
g Indexp(vk):/Qk
DE Vi S




Poincaré-Hopf Theorem

continued.

We construct a special vector field, then the total index of all the zeros is

Z Index,(v) = |V| + |F| — |E| = x(S).
pEZ(v)
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Unit Tangent Bundle of the Sphere |
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Smooth Manifold

@ LD

Figure: A manifold.
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Smooth Manifold

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets {U,}.
A homeomorphism ¢, : U, — R"” maps U, to the Euclidean space R".
(Uas ¢o) is called a coordinate chart of M. The set of all charts

{(Ua, ¢a)} form the atlas of M. Suppose U, N Uz # 0, then

$as = $30 b5 : da(Ua N Us) = ¢p(Us N Up)

is a transition map.

If all transition maps ¢ € C*°(R") are smooth, then the manifold is a
differential manifold or a smooth manifold.
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Tangent Space

Definition (Tangent Vector)

A tangent vector £ at the point p is an association to every coordinate
chart (x!,x2,--- ,x") at p an n-tuple (£1,€2,---,£") of real numbers,
such that if (51,52, e ,E”) is associated with another coordinate system
(%1, %2,--- ,%"), then it satisfies the transition rule
noo
=i aX’ g
§' = ' W(P)SJ-
j=1

A smooth vector field £ assigns a tangent vector for each point of M, it
has local representation
’ 0
1.2 Z 1.2
f(X7X"”7Xn):i_1£i(x,X,"',Xn)a)(i.

{%} represents the vector fields of the velocities of iso-parametric curves

on M. They form a basis of all vector fields.
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Push forward

Definition (Push-forward)

Suppose ¢ : M — N is a differential map from M to N, v : (—€,¢) — M is
a curve, ¥(0) = p, 7/(0) =v € T,M, then ¢ o~ is a curve on N,

¢ 0y(0) = ¢(p), we define the tangent vector

P+ (v) = (¢ 07)'(0) € Typ)N,

as the push-forward tangent vector of v induced by ¢.
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Unit Tangent Bundle

Definition (UTM)
The unit tangent bundle of the unit sphere is the manifold

UTM(S) :=={(p,v)|p € S,v € Ty(S),|v|g = 1}.

The unit tangent bundle of a surface is a 3-dimensional manifold. We
want to compute its triangulation and its fundamental group.
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Figure: Stereo-graphic projection

X =
Y 1—X371—X3

r(x,y) = (x1,x2,x3) = (

2x 2y —14x%2+y?
1+ x2+4+y2" 14+ x2+y2" 14+ x2+y2
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2 2 2
rxzaxzm(l—x +y ,—2xy,2x)
2
r, =0, = m (—2xy,1 + x? —y2,2y)
4
4
<ay=ay> - (1+X2 +y2)2
<8X78}/> =
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Unit Tangent Bundble of the Sphere

Figure: Unit tangent bundle.

A tangent vector at r(x,y) is given by: dr(x,y) = r«(x,y)dx +r,(x,y)dy.
On the equator

((x,y), (dx,dy)) = ((cosb,sinB), (cos T,sinT)).
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Unit Tangent Bundble of the Sphere

Figure: Unit tangent bundle.

The unit tangent bundle of a hemisphere is a direct product S x D?,
where S! is the fiber of each point, D? is the hemisphere. The boundary of
the UTM of the hemisphere is a torus S x 9D?.

David Gu (Stony Brook University) Computational Conformal Geometry July 6, 2022



V)=
Y 1+X3’ 1+X3

2u —2v 1—u?— 2
Huv)=laves) = (T s T 2 v 11 22

2
r,=0,= m(l — u? +v2 2uv, —2u)
2 2., .2
r, =20, = m(—2uv, —1—u"+ v, -2v)
4
O ) = 2 4y
4
O, 0v) = = ">v
< ) (14 u24v2)?
(Ou,0v) =0
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Chart transition

Let z=x+ iy and w = u+ iv, Then

1 X — Iy X1 — iXp X12 + X22 X1 — iXo
—_ = = . = = W.
z x2+y2 1—x3 (1—X3)2 14 x3
Therefore dw = —%dz,
du | | ux uy dx
dv | | w v dy
this gives the Jacobi matrix,
ux uy | 1 y2—x%>  —2xy
e vy | (x2+y2)2 2xy  y? —x?
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Gluing Map

Construct the unit tangent bundle of the sphere. The unit tangent bundle
of the upper hemisphere is a solid torus, the unit tangent bundle of the
lower hemisphere is also a solid torus. The unit tangent bundle of the
equator is a torus, ¢ : (z,dz) — (w,dw), z = e/, dz = €™,

o (2, dz) (i —ledz) (0,7) > (—0,7 — 20+ 7)
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Automorphism of the Torus

w:(7,0)— (1 —20+m, —0)

’ ‘ (7,0) ‘ (7,6 ‘

'
A1 (0,00 |(m0)
B
C

(2m,0) | (37,0)
2m,27) | (—m, —2m)
D | (0,2m) | (—3m, —27)

Table: Corresponding corner points.
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Torus Automorphism on UCS

A 9,
¢(A4)
-3 —T T 27 3w )
« oo g /@(B,)
o L =27
¢(D) ¢(C)

Figure: Torus automorophism.

This induces an automorphism of the fundamental group of the torus,
P - 7T1(T2) — 7T1(T2),

oy arra, brra bl
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Torus Automorphism on UCS

o(b) = a2t

Figure: Torus automorophism.

This induces an automorphism of the fundamental group of the torus,
i m(T?) — m(T?),

oy arra, brra bl
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Torus Automorphism on UCS

o) =a 2!

7r1(/\/71) = <81>, 7T1(M2) = <32>, Ml N M2 = T2, 7T1(T2) = (a, b\[a, b]>,
then the 71 of the unit tangent bundle is

(M1 U M) = (a1, ap|a1a2, a5 2 by ) = Zo.
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Obstruction Class

Figure: Local obstruction.
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Obstruction Class

The topological obstruction for the existence of global section
¢ :S? — UTM(S?) is constructed as follows:

2]
o

Construct a triangulation 7, which is refined enough such that the
fiber bundle of each face is trivial (direct product).

For each vertex v;, choose a point on its fiber, ¢(v;) € F(v;)

For each edge [v;, vj], choose a curve connecting ¢(v;) and ¢(v;) in
the restiction of the UTM on [v;, vj], which is annulus;

For each face A, p(0A) is a loop in the fiber bundle of A, [p(9A)] is
an integer, an element in 71 (UTM(A)) , this gives a 2-form 2 on the

original surface M,
Q(A) = [p(04)].

If Q is zero, then global section exists. Otherwise doesn't exists.

Different constructions get different Q's, but all of them are
cohomological. Therefore [Q] € H?(M,R) is the characteristic class
of fiber bundle.

David Gu (Stony Brook University) Computational Conformal Geometry July 6, 2022 39 /42



Obstruction Class

Lemma

Given two sections ¢, @ : S — UTM(S), they incudes two 2-forms Qa, Q».
Then there exists a 1-form h, such that

Vo2,  6h(0?) = Q%(0?) — Q%(c?).

Proof.
Vo0 € B(O), construct a path in the fiber p, : [0,1] — F, such that

pa(0) = $(03),  pa(l) = p(03)

Given a 1-simplex a;, with boundary 8(7; = UJQ — a?, construct a loop

l = pi(a3)p; " @(03) "
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Obstruction Class

Figure: Denote a = ¢(02), b= ¢(o}) and ¢ = ¢(a})

L= pip(03)p; " @(0}) "t = piap; ta !

Iy = pjpr?lB*l ~ épjbp,?ll_flé*l

le = pkcpflf_l ~ éEpkcpfl(_"_lt_;_lé_l
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Obstruction Class

continued

(L[] = (iaj~ta 1) (ajbktb~1a 1) (abkci~te1h 13 1)
= jaj Yjbk lkci~te lp1z 7!

= (iabci~1)(e71h71a 1)

Then
5h(o?) = (][] [/e]
= [iabci~Y)[e7 b 1371
= [abc][(abe)]
= G(0?)(C(a?)) !
O
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