Abel Differential

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 10, 2022

1/44

The number of singularities, and the layouts of separatrices are different.

Figure: Quad-meshes with different number of singularities.

The number of singularities, and the layouts of separatrices are different.

Figure: A quad-mesh induced by a holomorphic quadratic differential.

Aim

Establish complete mathematical theory for structural mesh.

Figure: A quad-mesh of a genus two surface with different number of singularities.

Hodge Theory and Abel Differential Theory

∃ →

Smooth Manifold

Figure: A manifold.

< □ > < 同 >

æ

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets $\{U_{\alpha}\}$. A homeomorphism $\phi_{\alpha} : U_{\alpha} \to \mathbb{R}^{n}$ maps U_{α} to the Euclidean space \mathbb{R}^{n} . $(U_{\alpha}, \phi_{\alpha})$ is called a coordinate chart of M. The set of all charts $\{(U_{\alpha}, \phi_{\alpha})\}$ form the atlas of M. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$\phi_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$$

is a transition map.

Definition (Riemann Surface)

A two dimensional manifold S is a Riemann surface, if the chart transition maps

$$\phi_{lphaeta}=\phi_eta\circ\phi_lpha^{-1}:\phi_lpha(U_lpha\cap U_eta) o\phi_eta(U_lpha\cap U_eta)$$

are biholomorphic. On each local chart $(U_{\alpha}, \varphi_{\alpha})$, we use z_{α} to denote the local complex coordinate. The atlas $\{(U_{\alpha}, z_{\alpha})\}$ is called a conformal structure of the surface S.

Holomorphic Differential

Figure: Holomorphic 1-form on a genus two surface.

David Gu (Stony Brook University)

Computational Conformal Geometry

August 10, 2022

ヨト イヨト

Image: A matched block

Definition (Meromorphic Differential)

Suppose S is a Riemann surface with a conformal structure $\{(U_{\alpha}, z_{\alpha})\}$, a complex differential 1-form ω is called a meromorphic (holomorphic) 1-form (meromorphic differential), if on each local chart $(U_{\alpha}, \varphi_{\alpha})$, its local representation is

$$\omega=f_{\alpha}(z_{\alpha})dz_{\alpha},$$

where f_{α} is a meromorphic (holomorphic) function, and on the other chart $\omega = f_{\beta}(z_{\beta})dz_{\beta}$,

$$f_{lpha}(z_{lpha})=f_{eta}(z_{eta}(z_{lpha}))rac{dz_{eta}}{dz_{lpha}}.$$

The zeros and poles of ω are those of f_{α} 's.

All the meromrophic (holomorhic) 1-forms on C is denoted as $K^1(C)(\Omega^1(C))$.

< □ > < □ > < □ > < □ > < □ > < □ >

Definition (Residue)

Let C be a Riemann surface, $\omega \in K^1(C)$, $p \in C$, γ_p is a small circle around the point p, ω has no other pole except p (p itself may be or may be not a pole). Then the residue of ω at p is defined as

$$\operatorname{\mathsf{Res}}_p(\omega) = rac{1}{2\pi i} \oint_{\gamma_p} \omega.$$

Locally, $p \in U_j$, $\gamma_p \subset U_j$, we have

$$\operatorname{Res}_{p}(\omega) = rac{1}{2\pi i} \oint_{\gamma_{p}} \omega = rac{1}{2\pi i} \oint f_{j}(z_{j}) dz_{j} = \operatorname{Res}_{p}(f_{j}(z_{j}) dz_{j}).$$

Residue Theorem

Theorem (Residue)

Suppose C is a compact Riemann surface, for $\omega \in K^1(C)$, we have

$$\sum_{p \in C} \operatorname{Res}_p(\omega) = 0.$$

Proof.

Since C is compact, ω has finite number of poles on C, denoted as p_1, p_2, \ldots, p_m . Choose small disks $\Delta_1, \Delta_2, \ldots, \Delta_m$ surrounding these poles. Denote

$$\Omega = C \setminus \bigcup_i \Delta_i, \quad \partial \Omega = -\bigcup_i \partial \Delta_i.$$

By Stokes, we have

$$2\pi i \sum_{p \in C} \operatorname{Res}_{p}(\omega) = 2\pi i \sum_{j=1}^{m} \operatorname{Res}_{p_{j}}(\omega) = \sum_{j=1}^{m} \int_{\partial \Delta_{j}} \omega = -\int_{\partial \Omega} \omega = -\int_{\Omega} d\omega = 0$$

David Gu (Stony Brook University)

Computational Conformal Geometry

Definition (Measurable Differential)

A measurable differential form ω on a Riemann surface has local representation

$$\omega = u(z)dz + v(z)d\bar{z},$$

where u(z) and v(z) are Lebegue measurable functions.

Definition (Hodge Star)

Given a measurable differential $\omega = u(z)dz + v(z)d\overline{z}$, the Hodge star (conjugate) of ω is defined as

$$^{*}\omega = -iu(z)dz + iv(z)dar{z}.$$

Definition (Abelian Differential)

A differential ω on the Riemann surface is called an Abelian differential of the first kind, if it is a holomorphic differential.

Definition (Abelian Differential)

A meromorphic differential ω on the Riemann surface is called an Abelian differential of the second kind, if the residues at all poles are equal to zero. A memorphic diffrential with non-zero residues is called an Abelian differential of the third kind.

Definition (Inner Product)

Given a measurable differential ω on a Riemann surface C, the norm of ω is defined as

$$\|\omega\|^2 := (\omega, \omega) = \int \int_C \omega \wedge \overline{*\omega}.$$

Note that $\overline{*\omega} = *\overline{\omega}$,

$$\omega \wedge \overline{*\omega} = (udz + vd\overline{z}) \wedge \overline{*(udz + vd\overline{z})}$$
$$= (udz + vd\overline{z}) \wedge \overline{(-iudz + ivd\overline{z})}$$
$$= i(u\overline{u} + v\overline{v})dz \wedge d\overline{z}$$
$$= 2(u^2 + v^2)dx \wedge dy.$$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Definition (Measurable Differential Space)

The measurable differential space on the Riemann surface C is defined as

$$L^2(C) := \{ \omega : \text{measurable } \|\omega\|^2 < \infty \}.$$

 $L^{2}(C)$ is a linear space, with a norm

$$\|\omega\| = \sqrt{(\omega, \omega)}.$$

Definition (Inner Product)

For any $\omega_1, \omega_2 \in L^2(C)$, $\omega_1 = u_1 dz + v_1 d\overline{z}$, $\omega_2 = u_2 dz + v_2 d\overline{z}$, define inner product as

$$(\omega_1,\omega_2)=\int\int_C\omega_1\wedge\overline{^*\omega_2}=i\int\int_C(u_1ar{u}_2+v_1ar{v}_2)dz\wedge dar{z},$$

 $L^{2}(C)$ is a Hilbert space.

David Gu (Stony Brook University)

Properties of Inner Product in $L^2(C)$

$$(\omega_1, \omega_2) = \int \int_C \omega_1 \wedge \overline{*\omega_2} = \overline{\int \int_C \omega_2 \wedge *\omega_1} = \overline{(\omega_2, \omega_1)}$$
$$(*\omega_1, *\omega_2) = \overline{\int \int *\omega \wedge -\overline{\omega_2}} = \int \int \overline{\omega \wedge \overline{*\omega_1}} = \overline{(\omega_2, \omega_1)} = (\omega_1, \omega_2)$$

3 N 3

17 / 44

Definition

Define subspaces *E* and E^* as the closure in $L^2(C)$:

$$\Xi := \overline{\{df : f \in C_0^\infty(C)\}}$$

and

$$E^*:=\overline{\{^*df:f\in C_0^\infty(C)\}}.$$

Namely, $\omega \in E$ if and only there is a sequence $\{f_n \in C_0^{\infty}(C)\}$, such that

$$\lim_{n\to\infty}\|\omega-df_n\|=0.$$

By $\|\omega - df_n\| = \|^*\omega - {}^*df_n\|$, we obtain $\omega \in E$ iff ${}^*\omega \in E^*$.

3

Definition (Orthogonal Complementary Space)

Define the orthogonal complementary subspaces E^{\perp} and $(E^*)^{\perp}$ as :

$$\mathsf{E}^{\perp} := \{\omega \in \mathsf{L}^2(\mathsf{C}) : (\omega, arphi) = \mathsf{0}, orall arphi \in \mathsf{E}\}$$

and

$$(E^*)^{\perp} := \{ \omega \in L^2(C) : (\omega, \varphi) = 0, \forall \varphi \in E^* \}$$

Definition (Harmonic Differential Space)

Define the harmonic differential subspace as :

$$H:=E^{\perp}\cap (E^*)^{\perp},$$

namely

$$H = \{\omega \in L^2(\mathcal{C}) : (, df) = 0, \ (\omega, {}^*df) = 0, \forall f \in C_0^\infty(\mathcal{C})\}.$$

Theorem (Hodge Decomposition)

E, E^* and H are pairwise orthogonal, and with decomposition

$$L^2(C) = E \oplus E^* \oplus H.$$

Proof.

First, we show $E \perp E^*$. Suppose $\gamma \in E$, $\pi \in E^*$, by definition, there is a sequence $f_n, g_n \in C_0^{\infty}(C)$, such that in $L^2(C)$,

$$\lim_{n\to\infty} df_n = \gamma, \quad \lim_{n\to\infty} {}^* dg_n = \pi.$$

By the continuity of the inner product

$$(\gamma,\pi) = \lim_{n\to\infty} (df_n, {}^*dg_n) = \lim_{n\to\infty} \int \int_C df_n \wedge \overline{{}^{**}dg_n} = -\lim_{n\to\infty} \int \int_{G_n} df_n \wedge d\bar{g}_n$$

(1)

Hodge Decomposition

Proof.

$$(\gamma, \pi) = -\lim_{n \to \infty} \int \int_{G_n} df_n \wedge d\bar{g}_n$$

= $-\lim_{n \to \infty} \left(\int_{\partial G_n} f_n d\bar{g}_n - \int \int_{G_n} f_n d^2 \bar{g}_n \right) = 0$

where we use Stokes, $G_n \subset W$ are relatively compact domain and $f_n = 0$, $g_n = 0$ on the boundary ∂G_n . Hence $E \perp E^*$. Because $E \oplus E^*$ is a sublinear space of $L^2(C)$, we have the decomposition

$$L^2(C) = E \oplus E^* \oplus (E \oplus E^*)^{\perp}.$$

Next, we want to prove

$$(E\oplus E^*)^{\perp}=E^{\perp}\cap (E^*)^{\perp}.$$

Hodge Decomposition

Proof.

Next, we want to prove

$$(E\oplus E^*)^{\perp}=E^{\perp}\cap (E^*)^{\perp}.$$

If $\omega \in E^{\perp} \cap (E^*)^{\perp}$, then for any $\gamma \in E$ and $\pi \in E^*$, we have

$$(\omega, \gamma + \pi) = (\omega, \gamma) + (\omega, \pi) = 0, \qquad (2)$$

therefore $\omega \in (E \oplus E^*)^{\perp}$, namely $E^{\perp} \cap (E^*)^{\perp} \subset (E \oplus E^*)^{\perp}$. Reversely, if $\omega \in (E \oplus E^*)^{\perp}$, then for any $\gamma \in E$ and $\pi \in E^*$, we have $(\omega, \gamma + \pi) = 0$, especially

$$(\omega, \gamma) = 0, \quad (\omega, \pi) = 0,$$

hence $\omega \in E^{\perp}$ and $\omega \in (E^*)^{\perp}$, then $\omega \in E^{\perp} \cap (E^*)^{\perp}$, namely $(E \oplus E^*)^{\perp} \subset E^{\perp} \cap (E^*)^{\perp}$. Therefore Eqn. (2) holds.

・ロト ・四ト ・ヨト ・ヨト

э

Hodge Decomposition

David Gu (Stony Brook University)

Computational Conformal Geometry

August 10, 2022

э

Lemma

Suppose $\omega \in C^1(C)$, then • $\omega \in (E^*)^{\perp} \iff d\omega = 0$, namely ω is closed; • $\omega \in E^{\perp} \iff d^*\omega = 0$, namely ω is co-closed.

Proof.

 $\omega \in (E^*)^{\perp}$ if and only if for any $f \in C_0^\infty(C)$, we have $(\omega, {}^*df) = 0$, namely

$$(\omega, {}^*df) = -\int \int_C \omega \wedge d\bar{f} = \int \int_C \bar{f} d\omega = 0,$$

because $f \in C_0^\infty(C)$ is arbitrary, hence we must have $d\omega = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Harmonic Differential)

Suppose $\omega \in C^1(C)$, then

$$\omega \in H \iff d\omega = 0, \quad d^*\omega = 0,$$

namely ω is a harmonic differential (derivative of a harmonic function).

25 / 44

Regularity Theory

< ∃⇒

æ

Definition (Mollifier)

Suppose a function

$$\chi(z) = \chi(|z|) := \begin{cases} \frac{1}{k} e^{-\frac{1}{1-|z|^2}}, & |z| < 1 \\ 0, & |z| \ge 1 \end{cases}$$

 $\chi(z) \in C_0^{\infty}(\mathbb{C}), \ \chi(z) > 0$ on the unit disk $D = \{|z| < 1\}, \ k$ is chosen such that

$$\int \int_{\mathbb{C}} \chi(z) d\sigma_z = 1,$$

where $d\sigma_z = dxdy$.

(日)

2

Mollifier

Definition (Smoothing Operator)

For any $\varepsilon > 0$, let

$$\chi_{\varepsilon}(z) = \frac{1}{\varepsilon^2} \chi\left(\frac{z}{\varepsilon}\right)$$

 $\chi_{arepsilon}(z)\in C_0^\infty(\mathbb{C}),\ \chi_{arepsilon}(z)>0$ on the unit disk $D_arepsilon=\{|z|<arepsilon\}$ and

$$\int\int_{\mathbb{C}}\chi_{arepsilon}(z)dxdy=1.$$

For $f \in L^2(D)$, f = 0 outside the unit disk D_1 , define the convolution

$$(M_{\varepsilon}f)(z) = \int \int_{C} f(\zeta)\chi_{\varepsilon}(\zeta-z)d\sigma_{\zeta}.$$

 $(M_{arepsilon}f)$ is zero outside $D_{1+arepsilon}$, or equivalently

$$(M_{\varepsilon}f)(z) = \int \int_{C} f(z+\zeta)\chi_{\varepsilon}(\zeta)d\sigma_{\zeta}.$$

Mollifier

Lemma (Mollifier)

 $(M_{\varepsilon}f) \in C_0^{\infty}(\mathbb{C});$ 2) if $f \in C^1(D)$, then on $D_{1-\varepsilon} = \{|z| < 1-\varepsilon\}$, we have $\frac{\partial M_{\varepsilon}f}{\partial x} = M_{\varepsilon}\left(\frac{\partial f}{\partial x}\right), \frac{\partial M_{\varepsilon}f}{\partial y} = M_{\varepsilon}\left(\frac{\partial f}{\partial y}\right).$ 3 when $\varepsilon \to 0$, $||M_{\varepsilon}f - f||_{L^2(D)} \to 0$. • if f is harmonic on D_1 , then on $D_{1-\varepsilon}$, $M_{\varepsilon}f = f$. **5** for any $\varphi \in L^2(D)$, φ is zero outside D_1 , then $\int \int_{D} (M_{\varepsilon}f)\varphi d\sigma_{z} = \int \int_{D} f(M_{\varepsilon}\varphi) d\sigma_{z}$

 $M_{\delta} M_{\varepsilon} f = M_{\varepsilon} M_{\delta} f.$

< □ > < 同 > < 回 > < 回 > < 回 >

э

Definition (Mollifier for Differentials)

Suppose the differential $\omega \in L^2(D)$ is defined on D, assume

$$\omega = p(z)dx + q(z)dy,$$

where $p, q \in L^2(D)$, define

$$M_{\varepsilon}\omega = (M_{\varepsilon}p)dx + (M_{\varepsilon}q)dy.$$

< ∃⇒

э

30 / 44

Lemma (Mollifier for Differentials)

- $(M_{\varepsilon}\omega)$ is a C_0^{∞} differential, zero outside $D_{1+\varepsilon}$;
- 2 if ω is a C^1 differential, then

$$dM_{\varepsilon}\omega = M_{\varepsilon}d\omega.$$

3 when
$$\varepsilon \to 0$$
, $\|M_{\varepsilon}\omega - \omega\|_{L^2(D)} \to 0$.

- if ω is a harmonic differential, then $M_{\varepsilon}\omega = \omega$.
- **5** for any differential $\gamma \in L^2(D)$, γ is zero outside $D_{1-\varepsilon}$, then

$$(M_{\varepsilon}\omega,\gamma)_{L^{2}(D)}=(\omega,M_{\varepsilon}\gamma)_{L^{2}(D)}.$$

) on D
$$M_{\delta}M_{arepsilon}\omega=M_{arepsilon}M_{\delta}\omega.$$

э

Weyl's lemma shows weak solutions to the elliptic differential operators are classical solutions.

Lemma (Weyl)

Suppose $\omega \in L^2(D)$, $D = \{|z| < 1\}$, and for any $f \in C_0^{\infty}(D)$, we have

$$(\omega, df)_{L^2(D)} = (\omega, d^*\omega)_{L^2(D)} = 0,$$

then ω is (possibly after modification on an measure zero set) automatically in $C^{1}(D)$, hence ω is a harmonic 1-form.

32 / 44

Proof.

Consider $M_{\varepsilon}\omega$, by lemma of millifier on differentials, we have

$$(M_{\varepsilon}\omega, df)_{L^{2}(D)} = (\omega, M_{\varepsilon}df)_{L^{2}(D)} = (\omega, dM_{\varepsilon}f)_{L^{2}(D)} = 0,$$

$$(M_{\varepsilon}\omega, d^{*}f)_{L^{2}(D)} = (\omega, M_{\varepsilon}d^{*}f)_{L^{2}(D)} = (\omega, d^{*}M_{\varepsilon}f)_{L^{2}(D)} = 0,$$

 $M_{\varepsilon}\omega$ is C_0^{∞} , $M_{\varepsilon}\omega \in E^{\perp} \cap (E^*)^{\perp}$, $M_{\varepsilon}\omega$ is a harmonic differential. By the millifier lemma 4),

$$M_{\delta}M_{\varepsilon}\omega = M_{\varepsilon}\omega, \quad M_{\varepsilon}M_{\delta}\omega = M_{\delta}\omega$$

by lemma 6)

$$M_{\delta}M_{\varepsilon}\omega = M_{\varepsilon}M_{\delta}\omega \implies M_{\delta}\omega = M_{\varepsilon}\omega.$$

イロト イポト イヨト イヨト

3

Proof.

By lemma 3), when $\varepsilon < \delta$, $\varepsilon \rightarrow 0$,

$$\|M_{\delta}\omega-\omega\|_{L^{2}(D)}=\|M_{\varepsilon}\omega-\omega\|_{L^{2}(D)}\to 0.$$

therefore $||M_{\delta}\omega - \omega||_{L^2(D)} = 0$. Therefore on D, $\omega = M_{\delta}\omega$ almost everywhere, therefore possibly after modification on an measure zero set ω is a $C^1(D)$ differential.

Theorem

The space

$$H = E^{\perp} \cap (E^*)^{\perp}$$

is the space of harmonic differentials.

Proof.

Suppose $\omega \in H$, on any local parameter disk V, the local parameter map $\varphi(p) = z$ maps V to the disk $D = \{|z| < 1\}$, for any $f \in C_0^{\infty}(V)$, in $L^2(D)$ we have

$$(\omega, df) = (\omega, d^*f) = 0.$$

By Weyl's lemma, ω is harmonic (in the classical sense, ω is C_0^{∞}) in V, hence ω is harmonic on the whole Riemann surface C.

Theorem (Hodge Decomposition)

For any $\omega \in C^3(C) \cap L^2(C)$, ω has a unique decomposition

$$\omega = \omega_h + df + {}^*dg$$

where $f, g \in C^2(C)$, $\omega_h \in H$ and $d^*g \in E^*$.

Theorem

Given a Riemann surface C, there is a differential ω satisfying

•
$$\omega$$
 is harmonic on $C - \{q_0, q_1\}$;

on a local parameter disk D,

$$\omega - d \log rac{z-a}{z-b}$$

is harmonic, where z is the local parameter;

• for any $h \in C_0^{\infty}(C)$, h = 0 outside D, we have

$$(\omega, dh) = (\omega, d^*h) = 0,$$

• ω is an exact harmonic differential on C - D, and $\omega - d\left(\log \frac{z-a}{z-b}\right)$ is an exact harmonic differential on D.

< □ > < 同 >

Abel Differential of The Third Type

proof: Construct a $C_0^4(D)$ function,

$$e(z) = \begin{cases} 1 & |z| \leq r, \\ e^{\frac{1}{(r_1 - r)^6} - \frac{1}{(r_1 - r)^6 - (|z| - r)^6}} & r < |z| < r_1, \\ 0 & |z| \geq r_1. \end{cases}$$

construct a differential

$$\psi(p) = \begin{cases} d\left(e(z)\log\frac{z-a}{z-b}\right), & p \in D_1, z = z(p), \\ 0 & p \notin D_1. \end{cases}$$

Then ψ is C_0^3 on $C - \{q_0, q_1\}$, and on D

$$\psi = d\left(\log rac{z-a}{z-b}
ight) = rac{dz}{z-a} - rac{dz}{z-b},$$

 ψ is holomorphic on $D - \{q_0, q_1\}$, therefore $^*\psi = -i\psi$, namely $i^*\psi = \psi$.

Abel Differential of The Third Type

Proof.

Therefore $\psi - i^*\psi = 0$ on D, therefore $\psi - i^*\psi$ is a differential on C, and $\psi - i^*\psi \in C_0^3(C) \cap L^2(C)$. By Hodge decomposition,

$$\psi - i^* \psi = \omega_h + df + {}^* dg,$$

where $\omega_h \in H$, $f, g \in C^2(C)$, $df \in E$, $d^*g \in E^*$. Define

$$\omega := \psi - df = i^* \psi + \omega_h + {}^* dg.$$

then ω satisfies all the conditions:

1. From $\omega \in C^1(C - \{q_0, q_1\})$ and ψ is exact on $C - \{q_0, q_1\}$, we know $\omega = \psi - df$ is exact on $C - \{q_0, q_1\}$, $d\omega = 0$, and

$$d^*\omega = d^*i^*\psi + d^*\omega_h + d^{**}dg = -id\psi + d^*\omega_h - d^2g = 0.$$

therefore ω is harmonic on $C - \{q_0, q_1\}$.

Abel Differential of The Third Type

Proof.

2. On D,

$$\psi = i^* \psi = d\left(\log \frac{z-a}{z-b}\right),$$

then

$$\omega - d\left(\log \frac{z-a}{z-b}\right) = -df = \omega_h + *dg$$

Hence

$$d\left(\omega - d\left(\log\frac{z-a}{z-b}\right)\right) = -d^2f = 0.$$
$$d^*\left(\omega - d\left(\log\frac{z-a}{z-b}\right)\right) = d^*\omega_h + d^{**}dg = 0.$$

therefore $\omega - d\left(\log \frac{z-a}{z-b}\right)$ is harmonic on $C - \{q_0, q_1\}$.

イロト イポト イヨト イヨト

э

Proof.

3. Suppose $h \in C_0^{\infty}(C)$, h = 0 in a neighborhood of q_0 and a neighborhood of q_1 , then

$$(\omega, dh) = i(*\psi, dh) + (\omega_h, dh) + (*dg, dh) = 0$$

because $dh \in E$, $H \perp E$, $(\omega_h, dh) = 0$; $E \perp E^*$, (*dg, dh) = 0. By Stokes

$$(^{*}\psi, dh) = -\int\int \psi \wedge d\bar{h} = \int\int \bar{h}d\psi = 0.$$

Similarly, we can obtain

$$(\omega, {}^*dh) = (\psi, {}^*dh) + (df, {}^*dh) = 0.$$

э

41/44

Theorem

Suppose q_0 and q_1 are two points on a Riemann surface C, then there exists a meromorphic differential ω with q_0 and q_1 as holes, the singular part at q_0 is $\frac{dz}{z}$, and that at q_1 is $-\frac{dz}{z}$.

Proof.

Draw a path $\sigma : [0,1] \to C$ connecting q_0 and q_1 , $\sigma(0) = q_0$, $\sigma(1) = q_1$. Define a subdivision of σ :

$$[0,1] = \bigcup_{i=0}^{n} [t_i, t_{i+1}], t_0 = 0, t_i < t_{i+1}, t_{n+1} = 1.$$

such that $\sigma([t_i, t_{i+1}])$ is contained by a parameter disk D_i . For every $i(0 \le i \le n)$, there is a meromorphic differential ω_i with poles at $\sigma(t_i)$ and $\sigma(t_{i+1})$, and singular parts $\frac{dz}{z}$ and $-\frac{dz}{z}$ respectively. Then let

$$\omega = \omega_1 + \omega_2 + \cdots + \omega_n.$$

Algorithm

Input: A genus g closed triangle mesh M; Output: Holomorphic 1-form group basis $\{\omega_1, \omega_2, \cdots, \omega_g\}$;

• Compute the homology group basis $H_1(M, \mathbb{Z})$;

 $\{\gamma_1, \gamma_2, \cdots, \gamma_{2g}\}$

2 Compute the dual cohomology graph basis $H^1(M, \mathbb{R})$;

 $\{\tau_1, \tau_2, \cdots, \tau_{2g}\}$

Sompute the harmonic 1-form group basis $H^1_{\Delta}(M,\mathbb{R})$;

 $\{\omega_1, \omega_2, \cdots, \omega_{2g}\}$

• Compute the holomorphic 1-form group basis $\Omega^1(M)$.

⇒ + ≤ ⇒

1 τ_i and γ_j are dual to each other:

$$\gamma \cdot \gamma_k = \int_{\gamma} \tau_k, \forall \gamma, k = 1, 2, \dots, 2g;$$

2 harmonic form ω_k is homologous to τ_k

$$\omega_k = \tau_k + df_k, \delta \omega_k = 0.$$

The holomorhic 1-form

$$\omega_k + \sqrt{-1}^* \omega_k.$$