Abel Differential

David Gu

Computer Science Department Stony Brook University
gu@cs.stonybrook.edu
August 10, 2022

Quad-Mesh

The number of singularities, and the layouts of separatrices are different.

Figure: Quad-meshes with different number of singularities.

Quad-Mesh

The number of singularities, and the layouts of separatrices are different.

Figure: A quad-mesh induced by a holomorphic quadratic differential.

Quad-Meshes

Aim

Establish complete mathematical theory for structural mesh.

Figure: A quad-mesh of a genus two surface with different number of singularities.

Hodge Theory and Abel Differential Theory

Smooth Manifold

Figure: A manifold.

Smooth Manifold

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets $\left\{U_{\alpha}\right\}$. A homeomorphism $\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ maps U_{α} to the Euclidean space \mathbb{R}^{n}. $\left(U_{\alpha}, \phi_{\alpha}\right)$ is called a coordinate chart of M. The set of all charts $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ form the atlas of M. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$
\phi_{\alpha \beta}=\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is a transition map.

Riemann Surface

Definition (Riemann Surface)

A two dimensional manifold S is a Riemann surface, if the chart transition maps

$$
\phi_{\alpha \beta}=\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

are biholomorphic. On each local chart $\left(U_{\alpha}, \varphi_{\alpha}\right)$, we use z_{α} to denote the local complex coordinate. The atlas $\left\{\left(U_{\alpha}, z_{\alpha}\right)\right\}$ is called a conformal structure of the surface S.

Holomorphic Differential

Figure: Holomorphic 1-form on a genus two surface.

Riemann Surface

Definition (Meromorphic Differential)

Suppose S is a Riemann surface with a conformal structure $\left\{\left(U_{\alpha}, z_{\alpha}\right)\right\}$, a complex differential 1-form ω is called a meromorphic (holomorphic) 1-form (meromorphic differential), if on each local chart $\left(U_{\alpha}, \varphi_{\alpha}\right)$, its local representation is

$$
\omega=f_{\alpha}\left(z_{\alpha}\right) d z_{\alpha}
$$

where f_{α} is a meromorphic (holomorphic) function, and on the other chart $\omega=f_{\beta}\left(z_{\beta}\right) d z_{\beta}$,

$$
f_{\alpha}\left(z_{\alpha}\right)=f_{\beta}\left(z_{\beta}\left(z_{\alpha}\right)\right) \frac{d z_{\beta}}{d z_{\alpha}}
$$

The zeros and poles of ω are those of f_{α} 's.
All the meromrophic (holomorhic) 1-forms on C is denoted as $K^{1}(C)\left(\Omega^{1}(C)\right)$.

Residue Theorem

Definition (Residue)

Let C be a Riemann surface, $\omega \in K^{1}(C), p \in C, \gamma_{p}$ is a small circle around the point p, ω has no other pole except p (p itself may be or may be not a pole). Then the residue of ω at p is defined as

$$
\operatorname{Res}_{p}(\omega)=\frac{1}{2 \pi i} \oint_{\gamma_{p}} \omega
$$

Locally, $p \in U_{j}, \gamma_{p} \subset U_{j}$, we have

$$
\operatorname{Res}_{p}(\omega)=\frac{1}{2 \pi i} \oint_{\gamma_{p}} \omega=\frac{1}{2 \pi i} \oint f_{j}\left(z_{j}\right) d z_{j}=\operatorname{Res}_{p}\left(f_{j}\left(z_{j}\right) d z_{j}\right)
$$

Residue Theorem

Theorem (Residue)

Suppose C is a compact Riemann surface, for $\omega \in K^{1}(C)$, we have

$$
\sum_{p \in C} \operatorname{Res}_{p}(\omega)=0
$$

Proof.

Since C is compact, ω has finite number of poles on C, denoted as $p_{1}, p_{2}, \ldots, p_{m}$. Choose small disks $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}$ surrounding these poles. Denote

$$
\Omega=C \backslash \bigcup_{i} \Delta_{i}, \quad \partial \Omega=-\bigcup_{i} \partial \Delta_{i}
$$

By Stokes, we have
$2 \pi i \sum_{p \in C} \operatorname{Res}_{p}(\omega)=2 \pi i \sum_{j=1}^{m} \operatorname{Res}_{p_{j}}(\omega)=\sum_{j=1}^{m} \int_{\partial \Delta_{j}} \omega=-\int_{\partial \Omega} \omega=-\int_{\Omega} d \omega=0$.

Abel Differential

Definition (Measurable Differential)

A measurable differential form ω on a Riemann surface has local representation

$$
\omega=u(z) d z+v(z) d \bar{z},
$$

where $u(z)$ and $v(z)$ are Lebegue measurable functions.

Definition (Hodge Star)

Given a measurable differential $\omega=u(z) d z+v(z) d \bar{z}$, the Hodge star (conjugate) of ω is defined as

$$
{ }^{*} \omega=-i u(z) d z+i v(z) d \bar{z}
$$

Abelian Differential

Definition (Abelian Differential)

A differential ω on the Riemann surface is called an Abelian differential of the first kind, if it is a holomorphic differential.

Definition (Abelian Differential)

A meromorphic differential ω on the Riemann surface is called an Abelian differential of the second kind, if the residues at all poles are equal to zero. A memorphic diffrential with non-zero residues is called an Abelian differential of the third kind.

Abel Differential

Definition (Inner Product)

Given a measurable differential ω on a Riemann surface C, the norm of ω is defined as

$$
\|\omega\|^{2}:=(\omega, \omega)=\iint_{C} \omega \wedge^{\bar{*} \omega}
$$

Note that ${ }^{*} \omega={ }^{*} \bar{\omega}$,

$$
\begin{aligned}
\omega \wedge^{*^{\omega}} & =(u d z+v d \bar{z}) \wedge \overline{{ }^{(}(u d z+v d \bar{z})} \\
& =(u d z+v d \bar{z}) \wedge \overline{(-i u d z+i v d \bar{z})} \\
& =i(u \bar{u}+v \bar{v}) d z \wedge d \bar{z} \\
& =2\left(u^{2}+v^{2}\right) d x \wedge d y .
\end{aligned}
$$

Abel Differential

Definition (Measurable Differential Space)

The measurable differential space on the Riemann surface C is defined as

$$
L^{2}(C):=\left\{\omega \text { : measurable }\|\omega\|^{2}<\infty\right\}
$$

$L^{2}(C)$ is a linear space, with a norm

$$
\|\omega\|=\sqrt{(\omega, \omega)}
$$

Definition (Inner Product)

For any $\omega_{1}, \omega_{2} \in L^{2}(C), \omega_{1}=u_{1} d z+v_{1} d \bar{z}, \omega_{2}=u_{2} d z+v_{2} d \bar{z}$, define inner product as

$$
\left(\omega_{1}, \omega_{2}\right)=\iint_{C} \omega_{1} \wedge^{*} \omega_{2}=i \iint_{C}\left(u_{1} \bar{u}_{2}+v_{1} \bar{v}_{2}\right) d z \wedge d \bar{z}
$$

$L^{2}(C)$ is a Hilbert space.

Abel Differential

Properties of Inner Product in $L^{2}(C)$

$$
\left.\begin{array}{rl}
\left(\omega_{1}, \omega_{2}\right) & =\iint_{C} \omega_{1} \wedge^{*} \omega_{2}
\end{array}=\overline{\iint_{C} \omega_{2} \wedge^{*} \omega_{1}}=\overline{\left(\omega_{2}, \omega_{1}\right)}\right)
$$

Hodge Decomposition

Definition

Define subspaces E and E^{*} as the closure in $L^{2}(C)$:

$$
E:=\overline{\left\{d f: f \in C_{0}^{\infty}(C)\right\}}
$$

and

$$
E^{*}:=\overline{\left\{{ }^{*} d f: f \in C_{0}^{\infty}(C)\right\}} .
$$

Namely, $\omega \in E$ if and only there is a sequence $\left\{f_{n} \in C_{0}^{\infty}(C)\right\}$, such that

$$
\lim _{n \rightarrow \infty}\left\|\omega-d f_{n}\right\|=0
$$

By $\left\|\omega-d f_{n}\right\|=\left\|^{*} \omega-{ }^{*} d f_{n}\right\|$, we obtain $\omega \in E$ iff ${ }^{*} \omega \in E^{*}$.

Hodge Decomposition

Definition (Orthogonal Complementary Space)

Define the orthogonal complementary subspaces E^{\perp} and $\left(E^{*}\right)^{\perp}$ as :

$$
E^{\perp}:=\left\{\omega \in L^{2}(C):(\omega, \varphi)=0, \forall \varphi \in E\right\}
$$

and

$$
\left(E^{*}\right)^{\perp}:=\left\{\omega \in L^{2}(C):(\omega, \varphi)=0, \forall \varphi \in E^{*}\right\}
$$

Definition (Harmonic Differential Space)

Define the harmonic differential subspace as :

$$
H:=E^{\perp} \cap\left(E^{*}\right)^{\perp},
$$

namely

$$
H=\left\{\omega \in L^{2}(C):(, d f)=0,\left(\omega,{ }^{*} d f\right)=0, \forall f \in C_{0}^{\infty}(C)\right\}
$$

Hodge Decomposition

Theorem (Hodge Decomposition)

E, E^{*} and H are pairwise orthogonal, and with decomposition

$$
\begin{equation*}
L^{2}(C)=E \oplus E^{*} \oplus H \tag{1}
\end{equation*}
$$

Proof.

First, we show $E \perp E^{*}$. Suppose $\gamma \in E, \pi \in E^{*}$, by definition, there is a sequence $f_{n}, g_{n} \in C_{0}^{\infty}(C)$, such that in $L^{2}(C)$,

$$
\lim _{n \rightarrow \infty} d f_{n}=\gamma, \quad \lim _{n \rightarrow \infty}{ }^{*} d g_{n}=\pi
$$

By the continuity of the inner product
$(\gamma, \pi)=\lim _{n \rightarrow \infty}\left(d f_{n},{ }^{*} d g_{n}\right)=\lim _{n \rightarrow \infty} \iint_{C} d f_{n} \wedge^{\overline{* *} d g_{n}}=-\lim _{n \rightarrow \infty} \iint_{G_{n}} d f_{n} \wedge d \bar{g}_{n}$

Hodge Decomposition

Proof.

$$
\begin{aligned}
(\gamma, \pi) & =-\lim _{n \rightarrow \infty} \iint_{G_{n}} d f_{n} \wedge d \bar{g}_{n} \\
& =-\lim _{n \rightarrow \infty}\left(\int_{\partial G_{n}} f_{n} d \bar{g}_{n}-\iint_{G_{n}} f_{n} d^{2} \bar{g}_{n}\right)=0
\end{aligned}
$$

where we use Stokes, $G_{n} \subset W$ are relatively compact domain and $f_{n}=0$, $g_{n}=0$ on the boundary ∂G_{n}. Hence $E \perp E^{*}$.
Because $E \oplus E^{*}$ is a sublinear space of $L^{2}(C)$, we have the decomposition

$$
L^{2}(C)=E \oplus E^{*} \oplus\left(E \oplus E^{*}\right)^{\perp}
$$

Next, we want to prove

$$
\left(E \oplus E^{*}\right)^{\perp}=E^{\perp} \cap\left(E^{*}\right)^{\perp} .
$$

Hodge Decomposition

Proof.

Next, we want to prove

$$
\left(E \oplus E^{*}\right)^{\perp}=E^{\perp} \cap\left(E^{*}\right)^{\perp}
$$

If $\omega \in E^{\perp} \cap\left(E^{*}\right)^{\perp}$, then for any $\gamma \in E$ and $\pi \in E^{*}$, we have

$$
\begin{equation*}
(\omega, \gamma+\pi)=(\omega, \gamma)+(\omega, \pi)=0 \tag{2}
\end{equation*}
$$

therefore $\omega \in\left(E \oplus E^{*}\right)^{\perp}$, namely $E^{\perp} \cap\left(E^{*}\right)^{\perp} \subset\left(E \oplus E^{*}\right)^{\perp}$. Reversely, if $\omega \in\left(E \oplus E^{*}\right)^{\perp}$, then for any $\gamma \in E$ and $\pi \in E^{*}$, we have $(\omega, \gamma+\pi)=0$, especially

$$
(\omega, \gamma)=0, \quad(\omega, \pi)=0
$$

hence $\omega \in E^{\perp}$ and $\omega \in\left(E^{*}\right)^{\perp}$, then $\omega \in E^{\perp} \cap\left(E^{*}\right)^{\perp}$, namely $\left(E \oplus E^{*}\right)^{\perp} \subset E^{\perp} \cap\left(E^{*}\right)^{\perp}$. Therefore Eqn. (2) holds.

Hodge Decomposition

Figure: Hodge Decomposition.

Hodge Decomposition

Lemma

Suppose $\omega \in C^{1}(C)$, then
(1) $\omega \in\left(E^{*}\right)^{\perp} \Longleftrightarrow d \omega=0$, namely ω is closed;
(2) $\omega \in E^{\perp} \Longleftrightarrow d^{*} \omega=0$, namely ω is co-closed.

Proof.

$\omega \in\left(E^{*}\right)^{\perp}$ if and only if for any $f \in C_{0}^{\infty}(C)$, we have $\left(\omega,{ }^{*} d f\right)=0$, namely

$$
\left(\omega,{ }^{*} d f\right)=-\iint_{C} \omega \wedge d \bar{f}=\iint_{C} \bar{f} d \omega=0
$$

because $f \in C_{0}^{\infty}(C)$ is arbitrary, hence we must have $d \omega=0$.

Hodge Decomposition

Theorem (Harmonic Differential)

Suppose $\omega \in C^{1}(C)$, then

$$
\omega \in H \Longleftrightarrow d \omega=0, \quad d^{*} \omega=0
$$

namely ω is a harmonic differential (derivative of a harmonic function).

Regularity Theory

Mollifier

Definition (Mollifier)

Suppose a function

$$
\chi(z)=\chi(|z|):= \begin{cases}\frac{1}{k} e^{-\frac{1}{1-|z|^{2}},} & |z|<1 \\ 0, & |z| \geq 1\end{cases}
$$

$\chi(z) \in C_{0}^{\infty}(\mathbb{C}), \chi(z)>0$ on the unit disk $D=\{|z|<1\}, k$ is chosen such that

$$
\iint_{\mathbb{C}} \chi(z) d \sigma_{z}=1
$$

where $d \sigma_{z}=d x d y$.

Mollifier

Definition (Smoothing Operator)

For any $\varepsilon>0$, let

$$
\chi_{\varepsilon}(z)=\frac{1}{\varepsilon^{2}} \chi\left(\frac{z}{\varepsilon}\right)
$$

$\chi_{\varepsilon}(z) \in C_{0}^{\infty}(\mathbb{C}), \chi_{\varepsilon}(z)>0$ on the unit disk $D_{\varepsilon}=\{|z|<\varepsilon\}$ and

$$
\iint_{\mathbb{C}} \chi_{\varepsilon}(z) d x d y=1
$$

For $f \in L^{2}(D), f=0$ outside the unit disk D_{1}, define the convolution

$$
\left(M_{\varepsilon} f\right)(z)=\iint_{C} f(\zeta) \chi_{\varepsilon}(\zeta-z) d \sigma_{\zeta}
$$

($M_{\varepsilon} f$) is zero outside $D_{1+\varepsilon}$, or equivalently

$$
\left(M_{\varepsilon} f\right)(z)=\iint_{C} f(z+\zeta) \chi_{\varepsilon}(\zeta) d \sigma_{\zeta}
$$

Mollifier

Lemma (Mollifier)

(1) $\left(M_{\varepsilon} f\right) \in C_{0}^{\infty}(\mathbb{C})$;
(2) if $f \in C^{1}(D)$, then on $D_{1-\varepsilon}=\{|z|<1-\varepsilon\}$, we have

$$
\frac{\partial M_{\varepsilon} f}{\partial x}=M_{\varepsilon}\left(\frac{\partial f}{\partial x}\right), \frac{\partial M_{\varepsilon} f}{\partial y}=M_{\varepsilon}\left(\frac{\partial f}{\partial y}\right)
$$

(3) when $\varepsilon \rightarrow 0,\left\|M_{\varepsilon} f-f\right\|_{L^{2}(D)} \rightarrow 0$.
(9) if f is harmonic on D_{1}, then on $D_{1-\varepsilon}, M_{\varepsilon} f=f$.
(5) for any $\varphi \in L^{2}(D), \varphi$ is zero outside D_{1}, then

$$
\iint_{D}\left(M_{\varepsilon} f\right) \varphi d \sigma_{z}=\iint_{D} f\left(M_{\varepsilon} \varphi\right) d \sigma_{z}
$$

(6) $M_{\delta} M_{\varepsilon} f=M_{\varepsilon} M_{\delta} f$.

Mollifier

Definition (Mollifier for Differentials)

Suppose the differential $\omega \in L^{2}(D)$ is defined on D, assume

$$
\omega=p(z) d x+q(z) d y
$$

where $p, q \in L^{2}(D)$, define

$$
M_{\varepsilon} \omega=\left(M_{\varepsilon} p\right) d x+\left(M_{\varepsilon} q\right) d y
$$

Mollifier

Lemma (Mollifier for Differentials)

(1) $\left(M_{\varepsilon} \omega\right)$ is a C_{0}^{∞} differential, zero outside $D_{1+\varepsilon}$;
(2) if ω is a C^{1} differential, then

$$
d M_{\varepsilon} \omega=M_{\varepsilon} d \omega .
$$

(3) when $\varepsilon \rightarrow 0,\left\|M_{\varepsilon} \omega-\omega\right\|_{L^{2}(D)} \rightarrow 0$.
(9) if ω is a harmonic differential, then $M_{\varepsilon} \omega=\omega$.
(5) for any differential $\gamma \in L^{2}(D), \gamma$ is zero outside $D_{1-\varepsilon}$, then

$$
\left(M_{\varepsilon} \omega, \gamma\right)_{L^{2}(D)}=\left(\omega, M_{\varepsilon} \gamma\right)_{L^{2}(D)}
$$

(0) on $D M_{\delta} M_{\varepsilon} \omega=M_{\varepsilon} M_{\delta} \omega$.

Weyl's Lemma

Weyl's lemma shows weak solutions to the elliptic differential operators are classical solutions.

Lemma (Weyl)

Suppose $\omega \in L^{2}(D), D=\{|z|<1\}$, and for any $f \in C_{0}^{\infty}(D)$, we have

$$
(\omega, d f)_{L^{2}(D)}=\left(\omega, d^{*} \omega\right)_{L^{2}(D)}=0
$$

then ω is (possibly after modification on an measure zero set) automatically in $C^{1}(D)$, hence ω is a harmonic 1-form.

Weyl's Lemma

Proof.

Consider $M_{\varepsilon} \omega$, by lemma of millifier on differentials, we have

$$
\begin{aligned}
\left(M_{\varepsilon} \omega, d f\right)_{L^{2}(D)} & =\left(\omega, M_{\varepsilon} d f\right)_{L^{2}(D)}
\end{aligned}=\left(\omega, d M_{\varepsilon} f\right)_{L^{2}(D)}=0, ~\left(M_{\varepsilon} \omega, d^{*} f\right)_{L^{2}(D)}=\left(\omega, M_{\varepsilon} d^{*} f\right)_{L^{2}(D)}=\left(\omega, d^{*} M_{\varepsilon} f\right)_{L^{2}(D)}=0, ~ l
$$

$M_{\varepsilon} \omega$ is $C_{0}^{\infty}, M_{\varepsilon} \omega \in E^{\perp} \cap\left(E^{*}\right)^{\perp}, M_{\varepsilon} \omega$ is a harmonic differential. By the millifier lemma 4),

$$
M_{\delta} M_{\varepsilon} \omega=M_{\varepsilon} \omega, \quad M_{\varepsilon} M_{\delta} \omega=M_{\delta} \omega
$$

by lemma 6)

$$
M_{\delta} M_{\varepsilon} \omega=M_{\varepsilon} M_{\delta} \omega \Longrightarrow M_{\delta} \omega=M_{\varepsilon} \omega
$$

Weyl's Lemma

Proof.

By lemma 3), when $\varepsilon<\delta, \varepsilon \rightarrow 0$,

$$
\left\|M_{\delta} \omega-\omega\right\|_{L^{2}(D)}=\left\|M_{\varepsilon} \omega-\omega\right\|_{L^{2}(D)} \rightarrow 0
$$

therefore $\left\|M_{\delta} \omega-\omega\right\|_{L^{2}(D)}=0$. Therefore on $D, \omega=M_{\delta} \omega$ almost everywhere, therefore possibly after modification on an measure zero set ω is a $C^{1}(D)$ differential.

Weyl's Lemma

Theorem

The space

$$
H=E^{\perp} \cap\left(E^{*}\right)^{\perp}
$$

is the space of harmonic differentials.

Proof.

Suppose $\omega \in H$, on any local parameter disk V, the local parameter map $\varphi(p)=z$ maps V to the disk $D=\{|z|<1\}$, for any $f \in C_{0}^{\infty}(V)$, in $L^{2}(D)$ we have

$$
(\omega, d f)=\left(\omega, d^{*} f\right)=0
$$

By Weyl's lemma, ω is harmonic (in the classical sense, ω is C_{0}^{∞}) in V, hence ω is harmonic on the whole Riemann surface C.

Hodge Decomposition

Theorem (Hodge Decomposition)
For any $\omega \in C^{3}(C) \cap L^{2}(C)$, ω has a unique decomposition

$$
\omega=\omega_{h}+d f+{ }^{*} d g
$$

where $f, g \in C^{2}(C), \omega_{h} \in H$ and $d^{*} g \in E^{*}$.

Abel Differential of The Third Type

Theorem

Given a Riemann surface C, there is a differential ω satisfying
(1) ω is harmonic on $C-\left\{q_{0}, q_{1}\right\}$;
(2) on a local parameter disk D,

$$
\omega-d \log \frac{z-a}{z-b}
$$

is harmonic, where z is the local parameter;
(3) for any $h \in C_{0}^{\infty}(C), h=0$ outside D, we have

$$
(\omega, d h)=\left(\omega, d^{*} h\right)=0
$$

(9) ω is an exact harmonic differential on $C-D$, and $\omega-d\left(\log \frac{z-a}{z-b}\right)$ is an exact harmonic differential on D.

Abel Differential of The Third Type

proof: Construct a $C_{0}^{4}(D)$ function,

$$
e(z)= \begin{cases}1 & |z| \leq r, \\ e^{\frac{1}{\left.r_{1}-r\right)^{6}}-\frac{1}{\left(r_{1}-r\right)^{6}-(|z|-r)^{6}}} & r<|z|<r_{1}, \\ 0 & |z| \geq r_{1} .\end{cases}
$$

construct a differential

$$
\psi(p)= \begin{cases}d\left(e(z) \log \frac{z-a}{z-b}\right), & p \in D_{1}, z=z(p) \\ 0 & p \notin D_{1} .\end{cases}
$$

Then ψ is C_{0}^{3} on $C-\left\{q_{0}, q_{1}\right\}$, and on D

$$
\psi=d\left(\log \frac{z-a}{z-b}\right)=\frac{d z}{z-a}-\frac{d z}{z-b},
$$

ψ is holomorphic on $D-\left\{q_{0}, q_{1}\right\}$, therefore ${ }^{*} \psi=-i \psi$, namely $i^{*} \psi=\psi$.

Abel Differential of The Third Type

Proof.

Therefore $\psi-i^{*} \psi=0$ on D, therefore $\psi-i^{*} \psi$ is a differential on C, and $\psi-i^{*} \psi \in C_{0}^{3}(C) \cap L^{2}(C)$. By Hodge decomposition,

$$
\psi-i^{*} \psi=\omega_{h}+d f+{ }^{*} d g
$$

where $\omega_{h} \in H, f, g \in C^{2}(C)$, $d f \in E, d^{*} g \in E^{*}$. Define

$$
\omega:=\psi-d f=i^{*} \psi+\omega_{h}+{ }^{*} d g .
$$

then ω satisfies all the conditions:

1. From $\omega \in C^{1}\left(C-\left\{q_{0}, q_{1}\right\}\right)$ and ψ is exact on $\left.C-\left\{q_{0}, q_{1}\right\}\right)$, we know $\omega=\psi-d f$ is exact on $C-\left\{q_{0}, q_{1}\right\}, d \omega=0$, and

$$
d^{*} \omega=d^{*} i^{*} \psi+d^{*} \omega_{h}+d^{* *} d g=-i d \psi+d^{*} \omega_{h}-d^{2} g=0 .
$$

therefore ω is harmonic on $C-\left\{q_{0}, q_{1}\right\}$.

Abel Differential of The Third Type

Proof.

2. On D,

$$
\psi=i^{*} \psi=d\left(\log \frac{z-a}{z-b}\right)
$$

then

$$
\omega-d\left(\log \frac{z-a}{z-b}\right)=-d f=\omega_{h}+{ }^{*} d g
$$

Hence

$$
\begin{gathered}
d\left(\omega-d\left(\log \frac{z-a}{z-b}\right)\right)=-d^{2} f=0 \\
d^{*}\left(\omega-d\left(\log \frac{z-a}{z-b}\right)\right)=d^{*} \omega_{h}+d^{* *} d g=0
\end{gathered}
$$

therefore $\omega-d\left(\log \frac{z-a}{z-b}\right)$ is harmonic on $C-\left\{q_{0}, q_{1}\right\}$.

Abel Differential of The Third Type

Proof.

3. Suppose $h \in C_{0}^{\infty}(C), h=0$ in a neighborhood of q_{0} and a neighborhood of q_{1}, then

$$
(\omega, d h)=i\left({ }^{*} \psi, d h\right)+\left(\omega_{h}, d h\right)+(* d g, d h)=0,
$$

because $d h \in E, H \perp E,\left(\omega_{h}, d h\right)=0 ; E \perp E^{*},\left({ }^{*} d g, d h\right)=0$. By Stokes

$$
\left({ }^{*} \psi, d h\right)=-\iint \psi \wedge d \bar{h}=\iint \bar{h} d \psi=0
$$

Similarly, we can obtain

$$
\left(\omega,{ }^{*} d h\right)=\left(\psi,{ }^{*} d h\right)+\left(d f,{ }^{*} d h\right)=0
$$

Abel Differential of The Third Type

Theorem

Suppose q_{0} and q_{1} are two points on a Riemann surface C, then there exists a meromorphic differential ω with q_{0} and q_{1} as holes, the singular part at q_{0} is $\frac{d z}{z}$, and that at q_{1} is $-\frac{d z}{z}$.

Proof.

Draw a path $\sigma:[0,1] \rightarrow C$ connecting q_{0} and $q_{1}, \sigma(0)=q_{0}, \sigma(1)=q_{1}$. Define a subdivision of σ :

$$
[0,1]=\cup_{i=0}^{n}\left[t_{i}, t_{i+1}\right], t_{0}=0, t_{i}<t_{i+1}, t_{n+1}=1
$$

such that $\sigma\left(\left[t_{i}, t_{i+1}\right]\right.$ is contained by a parameter disk D_{i}. For every $i(0 \leq i \leq n)$, there is a meromorphic differential ω_{i} with poles at $\sigma\left(t_{i}\right)$ and $\sigma\left(t_{i+1}\right)$, and singular parts $\frac{d z}{z}$ and $-\frac{d z}{z}$ respectively. Then let

$$
\omega=\omega_{1}+\omega_{2}+\cdots+\omega_{n}
$$

Abelian Differential of the First Type

Algorithm

Input: A genus g closed triangle mesh M;
Output: Holomorphic 1-form group basis $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{g}\right\}$;
(1) Compute the homology group basis $H_{1}(M, \mathbb{Z})$;

$$
\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 g}\right\}
$$

(2) Compute the dual cohomology graph basis $H^{1}(M, \mathbb{R})$;

$$
\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{2 g}\right\}
$$

(3) Compute the harmonic 1-form group basis $H_{\Delta}^{1}(M, \mathbb{R})$;

$$
\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{2 g}\right\}
$$

(9) Compute the holomorphic 1-form group basis $\Omega^{1}(M)$.

Abelian Differential of the First Type

(1) τ_{i} and γ_{j} are dual to each other:

$$
\gamma \cdot \gamma_{k}=\int_{\gamma} \tau_{k}, \forall \gamma, k=1,2, \ldots, 2 g
$$

(2) harmonic form ω_{k} is homologous to τ_{k}

$$
\omega_{k}=\tau_{k}+d f_{k}, \delta \omega_{k}=0
$$

(3) The holomorhic 1-form

$$
\omega_{k}+\sqrt{-1}^{*} \omega_{k}
$$

