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Quad-Mesh

The number of singularities, and the layouts of separatrices are different.

Figure: Quad-meshes with different number of singularities.
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Quad-Mesh

The number of singularities, and the layouts of separatrices are different.

Figure: A quad-mesh induced by a holomorphic quadratic differential.
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Quad-Meshes

Aim

Establish complete mathematical theory for structural mesh.

Figure: A quad-mesh of a genus two surface with different number of singularities.
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Hodge Theory and Abel Differential Theory
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Smooth Manifold

Uα Uβ

φα
φβ

φαβ

zα zβ

Figure: A manifold.
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Smooth Manifold

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets {Uα}.
A homeomorphism ϕα : Uα → Rn maps Uα to the Euclidean space Rn.
(Uα, ϕα) is called a coordinate chart of M. The set of all charts
{(Uα, ϕα)} form the atlas of M. Suppose Uα ∩ Uβ ̸= ∅, then

ϕαβ = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

is a transition map.
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Riemann Surface

Definition (Riemann Surface)

A two dimensional manifold S is a Riemann surface, if the chart transition
maps

ϕαβ = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

are biholomorphic. On each local chart (Uα, φα), we use zα to denote the
local complex coordinate. The atlas {(Uα, zα)} is called a conformal
structure of the surface S .
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Holomorphic Differential

Figure: Holomorphic 1-form on a genus two surface.
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Riemann Surface

Definition (Meromorphic Differential)

Suppose S is a Riemann surface with a conformal structure {(Uα, zα)}, a
complex differential 1-form ω is called a meromorphic (holomorphic)
1-form (meromorphic differential), if on each local chart (Uα, φα), its local
representation is

ω = fα(zα)dzα,

where fα is a meromorphic (holomorphic) function, and on the other chart
ω = fβ(zβ)dzβ,

fα(zα) = fβ(zβ(zα))
dzβ
dzα

.

The zeros and poles of ω are those of fα’s.

All the meromrophic (holomorhic) 1-forms on C is denoted as
K 1(C )(Ω1(C )).
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Residue Theorem

Definition (Residue)

Let C be a Riemann surface, ω ∈ K 1(C ), p ∈ C , γp is a small circle
around the point p, ω has no other pole except p (p itself may be or may
be not a pole). Then the residue of ω at p is defined as

Resp(ω) =
1

2πi

∮
γp

ω.

Locally, p ∈ Uj , γp ⊂ Uj , we have

Resp(ω) =
1

2πi

∮
γp

ω =
1

2πi

∮
fj(zj)dzj = Resp(fj(zj)dzj).

David Gu (Stony Brook University) Computational Conformal Geometry August 10, 2022 11 / 44



Residue Theorem

Theorem (Residue)

Suppose C is a compact Riemann surface, for ω ∈ K 1(C ), we have∑
p∈C

Resp(ω) = 0.

Proof.

Since C is compact, ω has finite number of poles on C , denoted as
p1, p2, . . . , pm. Choose small disks ∆1,∆2, . . . ,∆m surrounding these
poles. Denote

Ω = C \
⋃
i

∆i , ∂Ω = −
⋃
i

∂∆i .

By Stokes, we have

2πi
∑
p∈C

Resp(ω) = 2πi
m∑
j=1

Respj (ω) =
m∑
j=1

∫
∂∆j

ω = −
∫
∂Ω
ω = −

∫
Ω
dω = 0.
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Abel Differential

Definition (Measurable Differential)

A measurable differential form ω on a Riemann surface has local
representation

ω = u(z)dz + v(z)dz̄ ,

where u(z) and v(z) are Lebegue measurable functions.

Definition (Hodge Star)

Given a measurable differential ω = u(z)dz + v(z)dz̄ , the Hodge star
(conjugate) of ω is defined as

∗ω = −iu(z)dz + iv(z)dz̄ .
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Abelian Differential

Definition (Abelian Differential)

A differential ω on the Riemann surface is called an Abelian differential of
the first kind, if it is a holomorphic differential.

Definition (Abelian Differential)

A meromorphic differential ω on the Riemann surface is called an Abelian
differential of the second kind, if the residues at all poles are equal to zero.
A memorphic diffrential with non-zero residues is called an Abelian
differential of the third kind.
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Abel Differential

Definition (Inner Product)

Given a measurable differential ω on a Riemann surface C , the norm of ω
is defined as

∥ω∥2 := (ω, ω) =

∫ ∫
C
ω ∧ ∗ω.

Note that ∗ω = ∗ω,

ω ∧ ∗ω = (udz + vdz̄) ∧ ∗(udz + vdz̄)

= (udz + vdz̄) ∧ ( − iudz + ivdz̄)

= i(uū + v v̄)dz ∧ dz̄

= 2(u2 + v2)dx ∧ dy .
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Abel Differential

Definition (Measurable Differential Space)

The measurable differential space on the Riemann surface C is defined as

L2(C ) := {ω : measurable ∥ω∥2 <∞}.

L2(C ) is a linear space, with a norm

∥ω∥ =
√
(ω, ω).

Definition (Inner Product)

For any ω1, ω2 ∈ L2(C ), ω1 = u1dz + v1dz̄ , ω2 = u2dz + v2dz̄ , define
inner product as

(ω1, ω2) =

∫ ∫
C
ω1 ∧ ∗ω2 = i

∫ ∫
C
(u1ū2 + v1v̄2)dz ∧ dz̄ ,

L2(C ) is a Hilbert space.
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Abel Differential

Properties of Inner Product in L2(C )

(ω1, ω2) =

∫ ∫
C
ω1 ∧ ∗ω2 =

∫ ∫
C
ω2 ∧ ∗ω1 = (ω2, ω1)

(∗ω1,
∗ω2) =

∫ ∫
∗ω ∧ −ω2 =

∫ ∫
ω ∧ ∗ω1 = (ω2, ω1) = (ω1, ω2)
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Hodge Decomposition

Definition

Define subspaces E and E ∗ as the closure in L2(C ):

E := {df : f ∈ C∞
0 (C )}

and
E ∗ := {∗df : f ∈ C∞

0 (C )}.

Namely, ω ∈ E if and only there is a sequence {fn ∈ C∞
0 (C )}, such that

lim
n→∞

∥ω − dfn∥ = 0.

By ∥ω − dfn∥ = ∥∗ω − ∗dfn∥, we obtain ω ∈ E iff ∗ω ∈ E ∗.
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Hodge Decomposition

Definition (Orthogonal Complementary Space)

Define the orthogonal complementary subspaces E⊥ and (E ∗)⊥ as :

E⊥ := {ω ∈ L2(C ) : (ω, φ) = 0, ∀φ ∈ E}

and
(E ∗)⊥ := {ω ∈ L2(C ) : (ω, φ) = 0,∀φ ∈ E ∗}

Definition (Harmonic Differential Space)

Define the harmonic differential subspace as :

H := E⊥ ∩ (E ∗)⊥,

namely

H = {ω ∈ L2(C ) : (, df ) = 0, (ω, ∗df ) = 0, ∀f ∈ C∞
0 (C )}.
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Hodge Decomposition

Theorem (Hodge Decomposition)

E , E ∗ and H are pairwise orthogonal, and with decomposition

L2(C ) = E ⊕ E ∗ ⊕ H. (1)

Proof.

First, we show E ⊥ E ∗. Suppose γ ∈ E , π ∈ E ∗, by definition, there is a
sequence fn, gn ∈ C∞

0 (C ), such that in L2(C ),

lim
n→∞

dfn = γ, lim
n→∞

∗dgn = π.

By the continuity of the inner product

(γ, π) = lim
n→∞

(dfn,
∗dgn) = lim

n→∞

∫ ∫
C
dfn∧∗∗dgn = − lim

n→∞

∫ ∫
Gn

dfn∧dḡn
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Hodge Decomposition

Proof.

(γ, π) = − lim
n→∞

∫ ∫
Gn

dfn ∧ dḡn

= − lim
n→∞

(∫
∂Gn

fndḡn −
∫ ∫

Gn

fnd
2ḡn

)
= 0

where we use Stokes, Gn ⊂ W are relatively compact domain and fn = 0,
gn = 0 on the boundary ∂Gn. Hence E ⊥ E ∗.
Because E ⊕ E ∗ is a sublinear space of L2(C ), we have the decomposition

L2(C ) = E ⊕ E ∗ ⊕ (E ⊕ E ∗)⊥.

Next, we want to prove

(E ⊕ E ∗)⊥ = E⊥ ∩ (E ∗)⊥.
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Hodge Decomposition

Proof.

Next, we want to prove

(E ⊕ E ∗)⊥ = E⊥ ∩ (E ∗)⊥.

If ω ∈ E⊥ ∩ (E ∗)⊥, then for any γ ∈ E and π ∈ E ∗, we have

(ω, γ + π) = (ω, γ) + (ω, π) = 0, (2)

therefore ω ∈ (E ⊕ E ∗)⊥, namely E⊥ ∩ (E ∗)⊥ ⊂ (E ⊕ E ∗)⊥. Reversely, if
ω ∈ (E ⊕ E ∗)⊥, then for any γ ∈ E and π ∈ E ∗, we have (ω, γ + π) = 0,
especially

(ω, γ) = 0, (ω, π) = 0,

hence ω ∈ E⊥ and ω ∈ (E ∗)⊥, then ω ∈ E⊥ ∩ (E ∗)⊥, namely
(E ⊕ E ∗)⊥ ⊂ E⊥ ∩ (E ∗)⊥. Therefore Eqn. (2) holds.
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Hodge Decomposition

E

E∗

H

dω = 0

d∗ω = 0

Figure: Hodge Decomposition.
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Hodge Decomposition

Lemma

Suppose ω ∈ C 1(C ), then

1 ω ∈ (E ∗)⊥ ⇐⇒ dω = 0, namely ω is closed;

2 ω ∈ E⊥ ⇐⇒ d∗ω = 0, namely ω is co-closed.

Proof.

ω ∈ (E ∗)⊥ if and only if for any f ∈ C∞
0 (C ), we have (ω, ∗df ) = 0, namely

(ω, ∗df ) = −
∫ ∫

C
ω ∧ df̄ =

∫ ∫
C
f̄ dω = 0,

because f ∈ C∞
0 (C ) is arbitrary, hence we must have dω = 0.
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Hodge Decomposition

Theorem (Harmonic Differential)

Suppose ω ∈ C 1(C ), then

ω ∈ H ⇐⇒ dω = 0, d∗ω = 0,

namely ω is a harmonic differential (derivative of a harmonic function).
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Regularity Theory
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Mollifier

Definition (Mollifier)

Suppose a function

χ(z) = χ(|z |) :=

{
1
k e

− 1
1−|z|2 , |z | < 1

0, |z | ≥ 1

χ(z) ∈ C∞
0 (C), χ(z) > 0 on the unit disk D = {|z | < 1}, k is chosen such

that ∫ ∫
C
χ(z)dσz = 1,

where dσz = dxdy .
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Mollifier

Definition (Smoothing Operator)

For any ε > 0, let

χε(z) =
1

ε2
χ
(z
ε

)
χε(z) ∈ C∞

0 (C), χε(z) > 0 on the unit disk Dε = {|z | < ε} and∫ ∫
C
χε(z)dxdy = 1.

For f ∈ L2(D), f = 0 outside the unit disk D1, define the convolution

(Mεf )(z) =

∫ ∫
C
f (ζ)χε(ζ − z)dσζ .

(Mεf ) is zero outside D1+ε, or equivalently

(Mεf )(z) =

∫ ∫
C
f (z + ζ)χε(ζ)dσζ .
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Mollifier

Lemma (Mollifier)

1 (Mεf ) ∈ C∞
0 (C);

2 if f ∈ C 1(D), then on D1−ε = {|z | < 1− ε}, we have

∂Mεf

∂x
= Mε

(
∂f

∂x

)
,
∂Mεf

∂y
= Mε

(
∂f

∂y

)
.

3 when ε→ 0, ∥Mεf − f ∥L2(D) → 0.

4 if f is harmonic on D1, then on D1−ε, Mεf = f .

5 for any φ ∈ L2(D), φ is zero outside D1, then∫ ∫
D
(Mεf )φdσz =

∫ ∫
D
f (Mεφ)dσz

6 MδMεf = MεMδf .
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Mollifier

Definition (Mollifier for Differentials)

Suppose the differential ω ∈ L2(D) is defined on D, assume

ω = p(z)dx + q(z)dy ,

where p, q ∈ L2(D), define

Mεω = (Mεp)dx + (Mεq)dy .
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Mollifier

Lemma (Mollifier for Differentials)

1 (Mεω) is a C∞
0 differential, zero outside D1+ε;

2 if ω is a C 1 differential, then

dMεω = Mεdω.

3 when ε→ 0, ∥Mεω − ω∥L2(D) → 0.

4 if ω is a harmonic differential, then Mεω = ω.

5 for any differential γ ∈ L2(D), γ is zero outside D1−ε, then

(Mεω, γ)L2(D) = (ω,Mεγ)L2(D).

6 on D MδMεω = MεMδω.
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Weyl’s Lemma

Weyl’s lemma shows weak solutions to the elliptic differential operators are
classical solutions.

Lemma (Weyl)

Suppose ω ∈ L2(D), D = {|z | < 1}, and for any f ∈ C∞
0 (D), we have

(ω, df )L2(D) = (ω, d∗ω)L2(D) = 0,

then ω is (possibly after modification on an measure zero set)
automatically in C 1(D), hence ω is a harmonic 1-form.
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Weyl’s Lemma

Proof.

Consider Mεω, by lemma of millifier on differentials, we have

(Mεω, df )L2(D) = (ω,Mεdf )L2(D) = (ω, dMεf )L2(D) = 0,

(Mεω, d
∗f )L2(D) = (ω,Mεd

∗f )L2(D) = (ω, d∗Mεf )L2(D) = 0,

Mεω is C∞
0 , Mεω ∈ E⊥ ∩ (E ∗)⊥, Mεω is a harmonic differential. By the

millifier lemma 4),

MδMεω = Mεω, MεMδω = Mδω

by lemma 6)
MδMεω = MεMδω =⇒ Mδω = Mεω.
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Weyl’s Lemma

Proof.

By lemma 3), when ε < δ, ε→ 0,

∥Mδω − ω∥L2(D) = ∥Mεω − ω∥L2(D) → 0.

therefore ∥Mδω − ω∥L2(D) = 0. Therefore on D, ω = Mδω almost
everywhere, therefore possibly after modification on an measure zero set ω
is a C 1(D) differential.
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Weyl’s Lemma

Theorem

The space
H = E⊥ ∩ (E ∗)⊥

is the space of harmonic differentials.

Proof.

Suppose ω ∈ H, on any local parameter disk V , the local parameter map
φ(p) = z maps V to the disk D = {|z | < 1}, for any f ∈ C∞

0 (V ), in
L2(D) we have

(ω, df ) = (ω, d∗f ) = 0.

By Weyl’s lemma, ω is harmonic (in the classical sense, ω is C∞
0 ) in V ,

hence ω is harmonic on the whole Riemann surface C .
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Hodge Decomposition

Theorem (Hodge Decomposition)

For any ω ∈ C 3(C ) ∩ L2(C ), ω has a unique decomposition

ω = ωh + df + ∗dg

where f , g ∈ C 2(C ), ωh ∈ H and d∗g ∈ E ∗.
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Abel Differential of The Third Type

Theorem

Given a Riemann surface C , there is a differential ω satisfying

1 ω is harmonic on C − {q0, q1};
2 on a local parameter disk D,

ω − d log
z − a

z − b

is harmonic, where z is the local parameter;

3 for any h ∈ C∞
0 (C ), h = 0 outside D, we have

(ω, dh) = (ω, d∗h) = 0,

4 ω is an exact harmonic differential on C − D, and ω − d
(
log z−a

z−b

)
is

an exact harmonic differential on D.
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Abel Differential of The Third Type

proof: Construct a C 4
0 (D) function,

e(z) =


1 |z | ≤ r ,

e
1

(r1−r)6
− 1

(r1−r)6−(|z|−r)6 r < |z | < r1,
0 |z | ≥ r1.

construct a differential

ψ(p) =

{
d
(
e(z) log z−a

z−b

)
, p ∈ D1, z = z(p),

0 p ̸∈ D1.

Then ψ is C 3
0 on C − {q0, q1}, and on D

ψ = d

(
log

z − a

z − b

)
=

dz

z − a
− dz

z − b
,

ψ is holomorphic on D − {q0, q1}, therefore ∗ψ = −iψ, namely i∗ψ = ψ.
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Abel Differential of The Third Type

Proof.

Therefore ψ − i∗ψ = 0 on D, therefore ψ − i∗ψ is a differential on C , and
ψ − i∗ψ ∈ C 3

0 (C ) ∩ L2(C ). By Hodge decomposition,

ψ − i∗ψ = ωh + df + ∗dg ,

where ωh ∈ H, f , g ∈ C 2(C ), df ∈ E , d∗g ∈ E ∗. Define

ω := ψ − df = i∗ψ + ωh +
∗dg .

then ω satisfies all the conditions:
1. From ω ∈ C 1(C − {q0, q1}) and ψ is exact on C − {q0, q1}), we know
ω = ψ − df is exact on C − {q0, q1}, dω = 0, and

d∗ω = d∗i∗ψ + d∗ωh + d∗∗dg = −idψ + d∗ωh − d2g = 0.

therefore ω is harmonic on C − {q0, q1}.
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Abel Differential of The Third Type

Proof.

2. On D,

ψ = i∗ψ = d

(
log

z − a

z − b

)
,

then

ω − d

(
log

z − a

z − b

)
= −df = ωh +

∗dg ,

Hence

d

(
ω − d

(
log

z − a

z − b

))
= −d2f = 0.

d∗
(
ω − d

(
log

z − a

z − b

))
= d ∗ωh + d∗∗dg = 0.

therefore ω − d
(
log z−a

z−b

)
is harmonic on C − {q0, q1}.
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Abel Differential of The Third Type

Proof.

3. Suppose h ∈ C∞
0 (C ), h = 0 in a neighborhood of q0 and a

neighborhood of q1, then

(ω, dh) = i(∗ψ, dh) + (ωh, dh) + ( ∗ dg , dh) = 0,

because dh ∈ E , H ⊥ E , (ωh, dh) = 0; E ⊥ E ∗, (∗dg , dh) = 0. By Stokes

(∗ψ, dh) = −
∫ ∫

ψ ∧ dh̄ =

∫ ∫
h̄dψ = 0.

Similarly, we can obtain

(ω, ∗dh) = (ψ, ∗dh) + (df , ∗dh) = 0.
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Abel Differential of The Third Type

Theorem

Suppose q0 and q1 are two points on a Riemann surface C , then there
exists a meromorphic differential ω with q0 and q1 as holes, the singular
part at q0 is dz

z , and that at q1 is −dz
z .

Proof.

Draw a path σ : [0, 1] → C connecting q0 and q1, σ(0) = q0, σ(1) = q1.
Define a subdivision of σ:

[0, 1] = ∪n
i=0[ti , ti+1], t0 = 0, ti < ti+1, tn+1 = 1.

such that σ([ti , ti+1] is contained by a parameter disk Di . For every
i(0 ≤ i ≤ n), there is a meromorphic differential ωi with poles at σ(ti ) and
σ(ti+1), and singular parts dz

z and −dz
z respectively. Then let

ω = ω1 + ω2 + · · ·+ ωn.
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Abelian Differential of the First Type

Algorithm

Input: A genus g closed triangle mesh M;
Output: Holomorphic 1-form group basis {ω1, ω2, · · · , ωg};

1 Compute the homology group basis H1(M,Z);

{γ1, γ2, · · · , γ2g}

2 Compute the dual cohomology graph basis H1(M,R);

{τ1, τ2, · · · , τ2g}

3 Compute the harmonic 1-form group basis H1
∆(M,R);

{ω1, ω2, · · · , ω2g}

4 Compute the holomorphic 1-form group basis Ω1(M).
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Abelian Differential of the First Type

1 τi and γj are dual to each other:

γ · γk =

∫
γ
τk , ∀γ, k = 1, 2, . . . , 2g ;

2 harmonic form ωk is homologous to τk

ωk = τk + dfk , δωk = 0.

3 The holomorhic 1-form

ωk +
√
−1∗ωk .

David Gu (Stony Brook University) Computational Conformal Geometry August 10, 2022 44 / 44


