Abel-Jacobi Theory

David Gu

Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu
August 17, 2022

Abel-Jacobi Theory

Smooth Manifold

Figure: A manifold.

Smooth Manifold

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets $\left\{U_{\alpha}\right\}$. A homeomorphism $\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ maps U_{α} to the Euclidean space \mathbb{R}^{n}. $\left(U_{\alpha}, \phi_{\alpha}\right)$ is called a coordinate chart of M. The set of all charts $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ form the atlas of M. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$
\phi_{\alpha \beta}=\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is a transition map.

Riemann Surface

Definition (Riemann Surface)

A two dimensional manifold S is a Riemann surface, if the chart transition maps

$$
\phi_{\alpha \beta}=\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

are biholomorphic. On each local chart $\left(U_{\alpha}, \varphi_{\alpha}\right)$, we use z_{α} to denote the local complex coordinate. The atlas $\left\{\left(U_{\alpha}, z_{\alpha}\right)\right\}$ is called a conformal structure of the surface S.

Riemann Surface

Definition (Holomorphic Function)

Suppose C is a Riemann surface, $\left\{\left(U_{i}, z_{i}\right)\right\}$ is a holomorphic coordinate covering. A meromorphic (holomorphic) function on C is given by a family of map $f_{i}: U_{i} \rightarrow \mathbb{C}$, such that
(1) If $U_{i} \cap U_{j} \neq \emptyset$, on $U_{i} \cap U_{j}$ we have

$$
f_{i}=f_{j}
$$

(2) $\forall i, f_{i} \circ z_{i}^{-1}$ is a meromorphic (holomorphic) function.

All the meromorphic functions on C form a field, denoted as $K(C)$, called the meromorphic function field on C.

Riemann Surface

Definition (Zeros and Poles)

Suppose C is a compact Riemann surface, $f \in K(C), p \in C$. Choose a local coordinates z of the neighborhood of p, such that $z(p)=0$, then in the neighborhood

$$
f(z)=z^{\nu} h(z)
$$

where $h(z)$ is a holomorphic function, $h(0) \neq 0, \nu \in \mathbb{Z} . \nu$ is called the order of f at p, denoted as $\nu_{p}(f)$. when $\nu_{p}(f)>0$, pis called a zero of f, $\nu_{p}(f)$ is called the order of the zero p; when $\nu_{p}(f)<0, p$ is called a pole of $f,\left|\nu_{p}(f)\right|$ is called the order of the pole p.

Holomorphic Differential

Figure: Holomorphic 1-form on a genus two surface.

Riemann Surface

Definition (Meromorphic Differential)

Suppose S is a Riemann surface with a conformal structure $\left\{\left(U_{\alpha}, z_{\alpha}\right)\right\}$, a complex differential 1-form ω is called a meromorphic (holomorphic) 1-form (meromorphic differential), if on each local chart $\left(U_{\alpha}, \varphi_{\alpha}\right)$, its local representation is

$$
\omega=f_{\alpha}\left(z_{\alpha}\right) d z_{\alpha}
$$

where f_{α} is a meromorphic (holomorphic) function, and on the other chart $\omega=f_{\beta}\left(z_{\beta}\right) d z_{\beta}$,

$$
f_{\alpha}\left(z_{\alpha}\right)=f_{\beta}\left(z_{\beta}\left(z_{\alpha}\right)\right) \frac{d z_{\beta}}{d z_{\alpha}}
$$

The zeros and poles of ω are those of f_{α} 's.
All the meromrophic (holomorhic) 1-forms on C is denoted as $K^{1}(C)\left(\Omega^{1}(C)\right)$.

Residue Theorem

Definition (Residue)

Let C be a Riemann surface, $\omega \in K^{1}(C), p \in C, \gamma_{p}$ is a small circle around the point p, ω has no other pole except p (p itself may be or may be not a pole). Then the residue of ω at p is defined as

$$
\operatorname{Res}_{p}(\omega)=\frac{1}{2 \pi i} \oint_{\gamma_{p}} \omega
$$

Locally, $p \in U_{j}, \gamma_{p} \subset U_{j}$, we have

$$
\operatorname{Res}_{p}(\omega)=\frac{1}{2 \pi i} \oint_{\gamma_{p}} \omega=\frac{1}{2 \pi i} \oint f_{j}\left(z_{j}\right) d z_{j}=\operatorname{Res}_{p}\left(f_{j}\left(z_{j}\right) d z_{j}\right)
$$

Residue Theorem

Theorem (Residue)

Suppose C is a compact Riemann surface, for $\omega \in K^{1}(C)$, we have

$$
\sum_{p \in C} \operatorname{Res}_{p}(\omega)=0
$$

Proof.

Since C is compact, ω has finite number of poles on C, denoted as $p_{1}, p_{2}, \ldots, p_{m}$. Choose small disks $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}$ surrounding these poles. Denote

$$
\Omega=C \backslash \bigcup_{i} \Delta_{i}, \quad \partial \Omega=-\bigcup_{i} \partial \Delta_{i}
$$

By Stokes, we have
$2 \pi i \sum_{p \in C} \operatorname{Res}_{p}(\omega)=2 \pi i \sum_{j=1}^{m} \operatorname{Res}_{p_{j}}(\omega)=\sum_{j=1}^{m} \int_{\partial \Delta_{j}} \omega=-\int_{\partial \Omega} \omega=-\int_{\Omega} d \omega=0$.

Residue Theorem

Theorem (Meromorphic Function)

 If $f \in K(C)$ is not a constant function, then$$
\sum_{p \in C} \nu_{p}(f)=0 .
$$

Proof.

Construct

$$
\omega=\frac{d f}{f} \in K^{1}(C)
$$

then the residue of ω is zero. Then means

$$
\#\{\text { zeros of } f\}=\#\{\text { poles of } f\}
$$

Principle Divisor

Theorem

If $f \in K(C)$ is not a constant, then

$$
\operatorname{deg}(f)=\sum_{p \in C} \nu_{p}(f)=0
$$

Proof.

The meromorphic function f on C induces a conformal map $f: C \rightarrow \mathbb{S}^{2}$, suppose the mapping degree is k, then the preimages of the south pole are the zeros of f, the preimages of the north pole are the poles of f. The number of zeros equals to the mapping degree k, the number of poles equals to the mappping degree k as well.

Jacobi Variety

Suppose C is a $g \geq 1$ compact Riemann surface. $H_{1}(C, \mathbb{Z})$ is a rank $2 g$ free Abel group. Choose a canonical basis of $H_{1}(C, \mathbb{Z})\left\{\gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 g}\right\}$,

$$
\gamma_{i} \cdot \gamma_{g+i}=1, \quad \gamma_{g+i} \cdot g_{i}=-1
$$

and the other algebraic intersection numbers are zeros. $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{g}\right\}$ is a set of basis of $\Omega^{1} C$,

Definition (Period Vector)

For each γ_{i},

$$
\pi_{j}=\left(\begin{array}{c}
\int_{\gamma_{j}} \omega_{1} \\
\int_{\gamma_{j}} \omega_{2} \\
\vdots \\
\int_{\gamma_{j}} \omega_{g}
\end{array}\right) \in \mathbb{C}^{g} \quad(j=1,2, \ldots, 2 g)
$$

Hyperbolic Geodesic

Period Matrix

Definition (Period Matrix)

The matrix

$$
\Pi:=\left(\pi_{1}, \pi_{2}, \cdots, \pi_{2 g}\right)_{g \times 2 g}
$$

is called the period matrix of the Riemann surface.

Definition (Jacobi Variety)

The period vectors generate a lattice

$$
\Lambda:=\left\{\sum_{j=1}^{2 g} m_{j} \pi_{j} \mid m_{j} \in \mathbb{Z}\right\} \quad \subset \mathbb{C}^{g}
$$

The quotient space \mathbb{C}^{g} / Λ is a g dimensional complex torus, and called the Jacobi variety of C, denoted as $J(C)$.

Riemann Bilinear Relation

Suppose $\gamma \subset C$ is a closed loop, slice C along γ to obtain $\bar{C}=C \backslash\{\gamma\}$. $\partial \bar{C}=\gamma^{+}-\gamma^{-}$. Set a function $f: \bar{C} \rightarrow \mathbb{R}$, such that $\left.f\right|_{\gamma^{+}}=+1$ and $\left.f\right|_{\gamma^{-}}=0$. The $\omega_{\gamma}=d f$ is a closed 1-form on C, which is called the 1-form corresponding to γ, such that for any loop τ,

$$
\tau \cdot \gamma=\int_{\tau} \omega_{\gamma}
$$

Suppose $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \cdots, a_{g}, b_{g}\right\}$ is a set of canonical basis of $H_{1}(C, \mathbb{Z})$, α_{k} is corresponding to $b_{k},-\beta_{k}$ corresponding to a_{k}, then

$$
\begin{aligned}
& a_{k} \cdot b_{k}=\int_{a_{k}} \alpha_{k}=\iint \alpha_{k} \wedge \beta_{k}=1 \\
& b_{k} \cdot a_{k}=-\int_{b_{k}} \beta_{k}=-\iint \alpha_{k} \wedge \beta_{k}=-1
\end{aligned}
$$

Namely, the period of α_{k} along a_{k} is 1 , the period of β_{k} along b_{k} is 1 . The other integrations equal to zero.

Riemann Bilinear Relation

Lemma

$\left(\alpha_{1}, \cdots, \alpha_{g}, \beta_{1}, \cdots, \beta_{g}\right)$ is a basis of $H_{\Delta}^{1}(C, \mathbb{R})$. For any closed 1-form ω, we have the decomposition:

$$
\omega=\sum_{i=1}^{g} A_{i} \alpha_{i}+\sum_{i=1}^{g} B_{i} \beta_{i}+d f
$$

where

$$
A_{i}=\int_{a_{i}} \omega, \quad B_{j}=\int_{b_{j}} \omega .
$$

Lemma

Suppose θ and ω are closed 1-forms, then

$$
\iint_{C} \theta \wedge \omega=\sum_{i=1}^{g}\left[\int_{a_{i}} \theta \int_{b_{i}} \omega-\int_{a_{i}} \omega \int_{b_{i}} \theta\right]
$$

Riemann Bilinear Relation

Assume the A-period of θ is $\left(A_{1}, \cdots, A_{g}\right)$, the B-period of θ is $\left(B_{1}, \cdots, B_{g}\right)$, the A-period of ω is $\left(A_{1}^{\prime}, \cdots, A_{g}^{\prime}\right)$, the B-period of ω is $\left(B_{1}^{\prime}, \cdots, B_{g}^{\prime}\right)$, then

$$
\theta=\sum_{i=1}^{g} A_{i} \alpha_{i}+\sum_{j=1}^{g} B_{j} \beta_{j}+d f, \omega=\sum_{i=1}^{g} A_{i}^{\prime} \alpha_{i}+\sum_{j=1}^{g} B_{j}^{\prime} \beta_{j}+d h,
$$

Note that $d(f \theta)=d f \wedge d \theta+f d^{2} \theta$ and

$$
\int_{C} d f \wedge \theta=\int_{\partial C} f \theta=0 \quad \iint_{C} \alpha_{i} \wedge \beta_{i}=1
$$

the others are 0 , by direct computation

$$
\iint_{C} \theta \wedge \omega=\sum_{i=1}^{g}\left(A_{i} B_{i}^{\prime}-A_{i}^{\prime} B_{i}\right)=\sum_{i=1}^{g}\left[\int_{a_{i}} \theta \int_{b_{i}} \omega-\int_{a_{i}} \omega \int_{b_{i}} \theta\right] .
$$

Riemann Bilinear Relation

Theorem (Riemann Bilinear Relation I)

Suppose φ and φ^{\prime} are holomorphic 1-forms. The A-period and B-period for φ are A_{i} and B_{i}, those for φ^{\prime} are A_{i}^{\prime} and $B_{i}^{\prime},(1 \leq i \leq g)$, then

$$
\sum_{i=1}^{g}\left(A_{i} B_{i}^{\prime}-B_{i} A_{i}^{\prime}\right)=0
$$

Proof.

$$
\begin{equation*}
0=\iint \varphi \wedge \varphi^{\prime}=\sum_{i=1}^{g}\left(A_{i} B_{i}^{\prime}-A_{i}^{\prime} B_{i}\right) \tag{1}
\end{equation*}
$$

Riemann Bilinear Relation

Theorem (Riemann Bilinear Relation II)

Suppose φ is a holomorphic 1-forms. The A-period and B-period for φ are A_{i} and B_{i}, then

$$
\sqrt{-1} \sum_{i=1}^{g}\left(A_{i} \bar{B}_{i}-B_{i} \bar{A}_{i}\right) \geq 0
$$

Proof.

$$
\begin{equation*}
\|\varphi\|=(\varphi, \varphi)=i \iint \varphi \wedge \bar{\varphi}=\sum_{i=1}^{g}\left(A_{i} \bar{B}_{i}-A_{i} \bar{B}_{i}\right) \geq 0 \tag{2}
\end{equation*}
$$

Period Matrix

Theorem (Period Matrix)

Suppose C is a compact Riemann surface, the period matrix Π under a canonical basis of $H_{1}(C, \mathbb{Z})$ and a basis of $\Omega^{1}(C)$ is

$$
\Pi_{g \times 2 g}=\left(A_{g \times g}, B_{g \times g}\right),
$$

then we have
(1) $A B^{T}=B A^{T}$
(2) $\sqrt{-1}\left(A \bar{B}^{T}-B \bar{A}^{T}\right)$ is a Hermite positive definite matrix.

Period Matrix

Proof.

$$
\begin{array}{r}
A=\left(\begin{array}{cccc}
\int_{a_{1}} \varphi_{1} & \int_{a_{2}} \varphi_{1} & \cdots & \int_{a_{g}} \varphi_{1} \\
\int_{a_{1}} \varphi_{2} & \int_{a_{2}} \varphi_{2} & \cdots & \int_{a_{g}} \varphi_{2} \\
\vdots & \vdots & & \vdots \\
\int_{a_{1}} \varphi_{g} & \int_{a_{2}} \varphi_{g} & \cdots & \int_{a_{g}} \varphi_{g}
\end{array}\right) B=\left(\begin{array}{cccc}
\int_{b_{1}} \varphi_{1} & \int_{b_{2}} \varphi_{1} & \cdots & \int_{b_{g}} \varphi_{1} \\
\int_{b_{1}} \varphi_{2} & \int_{b_{2}} \varphi_{2} & \cdots & \int_{b_{g}} \varphi_{2} \\
\vdots & \vdots & & \vdots \\
\int_{b_{1}} \varphi_{g} & \int_{b_{2}} \varphi_{g} & \cdots & \int_{b_{g}} \varphi_{g}
\end{array}\right) \\
\left(A B^{T}\right)_{i, j}=\sum_{k=1}^{g} \int_{a_{k}} \varphi_{i} \int_{b_{k}} \varphi_{j} \quad\left(B A^{T}\right)_{i, j}=\sum_{k=1}^{g} \int_{b_{k}} \varphi_{i} \int_{a_{k}} \varphi_{j}
\end{array}
$$

By Riemann bilinear relation:

$$
\sum_{k=1}^{g}\left(\int_{a_{k}} \varphi_{i} \int_{b_{k}} \varphi_{j}-\int_{b_{k}} \varphi_{i} \int_{a_{k}} \varphi_{j}\right)=0,
$$

Period Matrix

Proof.

Let $\omega=\lambda_{1} \varphi_{1}+\lambda_{2} \varphi_{2}+\cdots+\lambda_{g} \varphi_{g}$, then

$$
\begin{aligned}
(\omega, \omega) & =\sqrt{-1} \int \omega \wedge \bar{\omega}= \\
& =\left(\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{g}
\end{array}\right) \sqrt{-1}\left(A \bar{B}^{T}-B \bar{A}^{T}\right)\left(\begin{array}{c}
\bar{\lambda}_{1} \\
\bar{\lambda}_{2} \\
\vdots \\
\bar{\lambda}_{g}
\end{array}\right) \\
& \geq 0 .
\end{aligned}
$$

Hence $\sqrt{-1}\left(A \bar{B}^{T}-B \bar{A}^{T}\right) \geq 0$. \square

Period Matrix

We can change the basis of $\Omega^{1}(C)$ by A^{-T} to obtain the normalized period matrix

$$
\Pi=(\lg Z)
$$

then the Riemann bilinear relation becomes
(1) $Z=Z^{T}$;
(2) The imginary part of $Z \operatorname{lmg}(Z)$ is a real positive definite matrix.

Period Matrix

Theorem (Torelli)

Two compact Riemann surfaces C and C^{\prime} are conformal equivalent, if and only if they share the same normalized period matrix under approproate canonical homology basis.

Problem (Schotty)

Suppose $Z=Z^{\top}$, and the imaginary part of Z is positive definite, under what other conditions such that $\left(I_{g} Z\right)$ is a period matrix of some Riemann surface ?

Divisor

Definition (Divisor)

Suppose C is a compact Riemann surface, a divisor is a finite form of sum

$$
D=m_{1} p_{1}+m_{2} p_{2}+\cdots+m_{l} p_{l}
$$

where $m_{j} \in \mathbb{Z}, p_{j} \in C(j=1,2, \ldots, l)$. The degree of D is defined as

$$
\operatorname{deg}(D)=\sum_{j=1}^{\prime} m_{j}
$$

All the divisors under the addition form an Abelian group, the so-called divisor group.

Principle Divisor

Definition (Principle Divisor)

Suppose C is a compact Riemann surface, $f \in K(C)$ is a meromorphic function, the divisor of f is defined by

$$
(f)=\sum_{p \in C} \nu_{p}(f) p
$$

which is called a principle divisor.

Definition (Zero Degree Divisor Group)

Suppose C is a compact Riemann surface, $\operatorname{Div}(C)$ is the divisor group of C, then

$$
\operatorname{Div}^{0}(C):=\{D \in \operatorname{Div}(C): \operatorname{deg} D=0\}
$$

Abel-Jacobi Map

Definition (Abel-Jacobi Map)

Suppose C is a compact Riemann surface, choose a base point $q \in C$, the Abel-Jacobi map

$$
\mu: \operatorname{Div}(C) \rightarrow J(C)
$$

is given by

$$
\mu(D)=\left(\begin{array}{c}
\sum_{i=1}^{k} \int_{q}^{p_{i}} \omega_{1} \\
\sum_{i=1}^{k} \int_{q}^{p_{i}} \omega_{2} \\
\vdots \\
\sum_{i=1}^{k} \int_{q}^{p_{i}} \omega_{g-1} \\
\sum_{i=1}^{k} \int_{q}^{p_{i}} \omega_{g}
\end{array}\right) / \Lambda
$$

where $D=\sum_{i=1}^{k} n_{i} p_{i} \in \operatorname{Div}(C)$.

Abel-Jacobi Theorem

Theorem (Abel)

The homomorphism sequence

$$
K^{*}(C) \xrightarrow{()} \operatorname{Div}^{0}(C) \xrightarrow{\mu} J(C) \longrightarrow 0
$$

is exact, namely

$$
\operatorname{Img}()=\operatorname{Ker} \mu
$$

and μ is surjective.

Abel-Jacobi Theorem

Definition (Picard variety)

The quotient group

$$
\operatorname{Pic}(C):=\frac{\operatorname{Div}^{0}(C)}{\operatorname{lmg}()}
$$

is called the Picard variety of C.
Theorem (Abel)
The Abel-Jacobi map μ induces an isomorphism

$$
\operatorname{Pic}(C) \xrightarrow{\sim} J(C) .
$$

Abel-Jacobi Theorem

Lemma

$\operatorname{Img}() \subset$ Ker μ, namely, for any $f \in K^{*}(C)$, denote $D=(f)$, then

$$
\mu(D)=0
$$

Lemma

ker $\mu \subset \operatorname{Img}()$, namely, if $\mu(D)=0$, where $D \in \operatorname{Div}^{0}(C)$, then there exists an $f \in K^{*}(C)$, such that

$$
(f)=D
$$

Lemma

The Abel-Jacobi map $\mu: \operatorname{Div}^{0}(C) \rightarrow J(C)$ is surjective.

Proof for $\mu((f))=0$

Assume $f \in K^{*}(C)$, for any $t \in \mathbb{C} \cup\{\infty\}$, let

$$
D_{t}=f^{-1}(t) \in \operatorname{Div}(C)
$$

Obvious

$$
D=(f)=f^{-1}(0)-f^{-1}(\infty)=D_{0}-D_{\infty}
$$

we are going to prove $\mu\left(D_{t}\right)=$ const, $\in \mathbb{C} \cup\{\infty\}$, then

$$
\mu(D)=\mu\left(D_{0}\right)-\mu\left(D_{\infty}\right)=0
$$

this proves the lemma. In order to prove $\mu\left(D_{t}\right)=$ const, we consider its derivative

$$
\frac{d}{d t} \mu\left(D_{t}\right)=\frac{d}{d t}\left(\begin{array}{c}
\sum_{j=1} \int_{q}^{p_{j}(t)} \omega_{1} \\
\vdots \\
\sum_{j=1} \int_{q}^{p_{j}(t)} \omega_{g}
\end{array}\right)
$$

Proof for $\mu((f))=0$

Figure: Proof for $\mu((f))=0$

Proof for $\mu((f))=0$

For $t_{0} \in \mathbb{S}^{2}$, if $f^{-1}\left(t_{0}\right)$ has no branching point, then there exists a disk $\Delta \subset \mathbb{S}^{2}$ surrounding t_{0}, and n disks $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n} \subset C$ surrounding $p_{1}\left(t_{0}\right), p_{2}\left(t_{0}\right), \cdots, p_{n}\left(t_{0}\right)$, such that for any $j=1,2, \cdots, n$,

$$
f: \Delta_{j} \rightarrow \Delta
$$

is biholomorphic. So we can use $z(p)=f(p)$ as the local coordinates of Δ_{j}. Assume in this coordinates,

$$
\omega_{\alpha}=h_{\alpha} j(z) d z
$$

then

$$
\begin{aligned}
\frac{d}{d t} \int_{q}^{p_{j}(t)} \omega_{\alpha} & =\frac{d}{d t} \int_{q}^{p_{j}\left(t_{0}\right)} \omega_{\alpha}+\frac{d}{d t} \int_{p_{j}\left(t_{0}\right)}^{p_{j}(t)} \omega_{\alpha} \\
& =\frac{d}{d t} \int_{q}^{p_{j}\left(t_{0}\right)} \omega+\frac{d}{d t} \int_{t_{0}}^{t} h_{\alpha j}(z) d z=h_{\alpha}(t) .
\end{aligned}
$$

Proof for $\mu((f))=0$

For $t_{0} \in \mathbb{S}^{2}$, if $f^{-1}\left(t_{0}\right)$ has no branching point, then there exists a disk $\Delta \subset \mathbb{S}^{2}$ surrounding t_{0}, and n disks $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n} \subset C$ surrounding $p_{1}\left(t_{0}\right), p_{2}\left(t_{0}\right), \cdots, p_{n}\left(t_{0}\right)$, such that for any $j=1,2, \cdots, n$,

$$
f: \Delta_{j} \rightarrow \Delta
$$

is biholomorphic. So we can use $z(p)=f(p)$ as the local coordinates of Δ_{j}. Assume in this coordinates,

$$
\omega_{\alpha}=h_{\alpha} j(z) d z
$$

then

$$
\begin{aligned}
\frac{d}{d t} \int_{q}^{p_{j}(t)} \omega_{\alpha} & =\frac{d}{d t} \int_{q}^{p_{j}\left(t_{0}\right)} \omega_{\alpha}+\frac{d}{d t} \int_{p_{j}\left(t_{0}\right)}^{p_{j}(t)} \omega_{\alpha} \\
& =\frac{d}{d t} \int_{q}^{p_{j}\left(t_{0}\right)} \omega+\frac{d}{d t} \int_{t_{0}}^{t} h_{\alpha j}(z) d z=h_{\alpha}(t) .
\end{aligned}
$$

Proof for $\mu((f))=0$

On the other hand, in the neighborhood of $p_{j}(t)$, on the selected local coordinates on Δ_{j}, we construct the meromorophic 1-form:

$$
\frac{\omega_{\alpha}}{f-t}=\frac{h_{\alpha j}(z) d z}{z-t}
$$

By direct computation

$$
2 \pi \sqrt{-1} \operatorname{Res}_{p_{j}(t)} \frac{\omega_{\alpha}}{f-t}=\oint_{\partial \Delta_{j}} \frac{\omega_{\alpha}}{f-t}=\oint_{\partial \Delta_{j}} \frac{h_{\alpha j}(z) d z}{z-t}=2 \pi \sqrt{-1} h_{\alpha j}(t)
$$

By the meromorphic differential residue theorem, we have

$$
\frac{d}{d t} \mu\left(D_{t}\right)=\frac{d}{d t} \sum_{j=1}^{n} \int_{q}^{p_{j}(t)} \omega_{\alpha}=\sum_{j=1}^{n} h_{\alpha j}(t)=\sum_{j=1}^{n} \operatorname{Res}_{p_{j}(t)} \frac{\omega_{\alpha}}{f-t}=0
$$

Proof for $\mu((f))=0$

We use R to represent the set of the branching points of f, then $\mu\left(D_{t}\right)$ is holomorphic outside the finite set $f(R)$, and

$$
\frac{d}{d t} \mu\left(D_{t}\right)=0
$$

It is obvious that $\mathbb{S}^{2} \backslash f(R)$ is connected, therefore at $t \in \mathbb{S}^{2} \backslash f(R)$ we have

$$
\mu\left(D_{t}\right)=\text { const }
$$

by Riemann extension theorem, we have $\mu\left(D_{t}\right)=$ const on the whole sphere $\mathbb{S}^{2}=\mathbb{P}^{1}$, hence

$$
\mu((f))=\mu\left(D_{0}\right)-\mu\left(D_{\infty}\right)=0 .
$$

Proof for Ker $\mu \subset \operatorname{Img}()$

If $D \in \operatorname{Div}^{0}(C), \mu(D)=0$, we would like to find a meromorphic function $f \in K^{*}(C)$, such that $(f)=D$. Assume

$$
D=\sum_{i=1}^{k} n_{i} p_{i} \in \operatorname{Div}^{0}(C)
$$

if there is $f \in K^{*}(C)$, such that $(f)=D$, let

$$
\varphi=\frac{1}{2 \pi \sqrt{-1}} \frac{d f}{f} \in K^{1}(C)
$$

Then φ must satisfiy
a) $(\varphi)_{\infty}=\sum_{i=1}^{k} p_{i}, \varphi$ only has simple poles
b) $\operatorname{Res}_{p_{i}} \varphi=\frac{n_{i}}{2 \pi \sqrt{-1}}, \quad n_{i} \in \mathbb{Z}$;
c) $\int_{\gamma_{i}} \varphi \in \mathbb{Z}$

Proof for Ker $\mu \subset \operatorname{Img}()$

Eqn. (3) item c) holds, since

$$
\int_{\gamma_{i}} \varphi=\frac{1}{2 \pi \sqrt{-1}} \int_{\gamma_{i}} \frac{d f}{f}=\frac{1}{2 \pi \sqrt{-1}} \int d(\sqrt{-1} \arg f) \in Z
$$

Lemma (Meromorphic Differential)

If $\varphi \in K^{1}(C)$, satisfying Eqn. (3). Assume q is a fixed based point on C, let

$$
f(p)=\exp \left(2 \sqrt{-1} \pi \int_{q}^{p} \varphi\right)
$$

the integration path doesn't go through any pole of φ, then f is a meromorphic function on C, satisfying

$$
(f)=\sum_{i=1}^{k} n_{i} p_{i}=D
$$

where p_{i}, n_{i} are given in Eqn. (3) a) and b).

Proof for Ker $\mu \subset \operatorname{Img}()$

Note that, based on Residue theorem $\sum_{i=1}^{k} n_{i}=0$, namely $D \in \operatorname{Div}^{0}(C)$.

Proof.

Choose two paths γ and γ^{\prime} from q to p, such that

$$
\gamma-\gamma^{\prime}=\sum_{i=1}^{2 g} n_{i} \gamma_{i}
$$

therefore

$$
\int_{\gamma} \varphi-\int_{\gamma^{\prime}} \varphi=\sum_{i=1}^{2 g} n_{i} \int_{\gamma_{i}} \varphi \in \mathbb{Z}
$$

therefore

$$
\exp \left(2 \pi \sqrt{-1} \int_{\gamma} \varphi\right)=\exp \left(2 \pi \sqrt{-1} \int_{\gamma^{\prime}} \varphi\right)
$$

therefore $f(p)$ is independent of the choice of the integration path, $f(p)$ is a well defined function on C.

Proof for Ker $\mu \subset \operatorname{Img}()$

continued.

Since φ satisfies Eqn (3) a), f is holomorphic on C excepts on p_{i} 's. In a neighborhood of p_{i} with local coordinates $z, z\left(p_{i}\right)=0$, then

$$
\varphi(z)=\frac{n_{i}}{2 \pi \sqrt{-1}} \frac{d z}{z}+h(z) d z
$$

where $h(z)$ is holomorphic. Choose another point $p_{0}\left(p_{0} \neq p_{i}\right)$ in the neighborhood of p_{i}, suppose $z\left(p_{0}\right)=z_{0}$, then

$$
\begin{aligned}
f(z) & =\exp \left(2 \sqrt{-1} \pi \int_{q}^{p} \varphi\right)=\exp \left(2 \sqrt{-1} \pi\left(\int_{q}^{p_{0}} \varphi+\int_{p_{0}}^{p} \varphi\right)\right) \\
& =\exp \left(2 \sqrt{-1} \pi\left(\int_{q}^{p_{0}} \varphi+\int_{z_{0}}^{z} \frac{n_{i}}{2 \sqrt{-1} \pi} \frac{d z}{z}+\int_{z_{0}}^{z} h(z) d z\right)\right)
\end{aligned}
$$

Proof for Ker $\mu \subset \operatorname{Img}()$

continued.

$=\exp \left(2 \sqrt{-1} \pi\left(\int_{q}^{p_{0}} \varphi-\frac{n_{i}}{2 \sqrt{-1} \pi} \ln z_{0}+-\frac{n_{i}}{2 \sqrt{-1} \pi} \ln z+\int_{z_{0}}^{z} h(z) d z\right)\right)$
$=c z^{n_{i}} H(z)$,
where

$$
c=\exp \left(2 \sqrt{-1} \pi\left(\int_{q}^{p_{0}} \varphi-\frac{n_{i}}{2 \sqrt{-1} \pi} \ln z_{0}\right)\right)
$$

is a non-zero constant,

$$
H(z)=\exp \left(2 \sqrt{-1} \pi \int_{z_{0}}^{z} h(z) d z\right)
$$

is a non-zero holomorphic function. Hence $(f)=\sum_{i=1}^{k} n_{i} p_{i}=D$.

Proof for Ker $\mu \subset \operatorname{Img}()$

Definition (Abelian Differential of The Third Kind)

If $\varphi \in K^{1}(C)$ has at most simple poles, then φ is called a third type of differential. For any $p, q \in C, p \neq q, \varphi=\varphi_{p q} \in K^{1}(C)$ is called a third type of elementary differential, if

$$
(\varphi)_{\infty}=p+q
$$

and

$$
\operatorname{Res}_{p} \varphi=\frac{1}{2 \sqrt{-1} \pi}, \quad \operatorname{Res}_{q} \varphi=-\frac{1}{2 \sqrt{-1} \pi} .
$$

Theorem (Existence of Abelian Differential of the Third Kind)

For any $p, q \in C, p \neq q$, there is a normal Abelian differential of the third kind $\varphi_{p q} \in K^{1}(C)$, such that $(\varphi)_{\infty}=p+q$ and

$$
\operatorname{Res}_{p} \varphi=(2 \sqrt{-1} \pi)^{-1}, \quad \operatorname{Res}_{q} \varphi=-(2 \sqrt{-1} \pi)^{-1} .
$$

Abel Differential of the Third Type

Proof.

Set the divisor $D=-p-q$, then by Riemann-Roch formula

$$
\operatorname{dim} /(-D)=\operatorname{dimi}(D)+d(D)+1-g,
$$

$-D \geq 0$, so $f \in I(-D)$ must be holomorphic, therefore $f \equiv$ const, $(f)=0$, but $0+D<0$, hence $\operatorname{dim} /(-D)=0$. Therefore

$$
0=\operatorname{dim} i(D)-2+1-g \Longrightarrow \operatorname{dim} i(D)=g+1
$$

Therefore we can pick $\omega \in i(D)$, then ω has poles at p and q only.

Proof for Ker $\mu \subset \operatorname{Img}()$

Proof.

For any divisor

$$
D=\sum_{i=1}^{k} p_{i}-\sum_{i=1}^{k} q_{i} \in \operatorname{Div}^{0}(C)
$$

(p_{i} or q_{i} may be repeated), there are k normal Abelian differentials of the 3rd kind $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{k}$, where φ_{i} has simple poles at p_{i} and q_{i} with residues

$$
\operatorname{Res}_{p_{i}} \varphi_{i}=(2 \sqrt{-1} \pi)^{-1} \quad \operatorname{Res}_{q_{i}} \varphi_{i}=-(2 \sqrt{-1} \pi)^{-1} .
$$

Let

$$
\varphi=\varphi_{1}+\varphi_{2}+\cdots+\varphi_{k} .
$$

Choose canonical basis of $H_{1}(C, \mathbb{Z}) \gamma_{1}, \gamma_{2}, \cdots, \gamma_{2 g}$, which do not go through any pole of $\varphi ; \omega_{1}, \omega_{2}, \cdots, \omega_{g}$ is a basis of $\Omega^{1}(C)$, such that the period matrix is normalized to be (I Z).

Proof for Ker $\mu \subset \operatorname{Img}()$

continued.

Let

$$
\varphi^{\prime}=\varphi-\sum_{\alpha=1}^{g}\left(\int_{\gamma_{\alpha}} \varphi\right) \omega_{\alpha}
$$

Then φ^{\prime} has the same poles and residues as φ, and the periods of φ^{\prime} on γ_{j} 's are zeros, $\pi_{j}\left(\varphi^{\prime}\right)=0$, for $j=1,2, \cdots, g$.

Bilinear Relation between I and III Abel Differentials

Lemma (Bilinear Relation between I and III Abel Differentials)

Suppose $\omega \in \Omega^{1}(C)$ is a holomorphic 1-form, then

$$
\begin{equation*}
\sum_{i=1}^{k} \int_{q_{i}}^{p_{i}} \omega=\sum_{i=1}^{g} \pi_{i}(\omega) \pi_{g+i}\left(\varphi^{\prime}\right) \tag{4}
\end{equation*}
$$

Proof.

Suppose the fundamental polygon is

$$
\Omega=C-\bigcup_{i=1}^{2 g} \gamma_{i}
$$

choose a base point $b \in \Omega$, define a holomorphic function by integrating ω inside Ω,

$$
\nu(p):=\int_{b}^{p} \omega \quad(p \in \Omega) .
$$

Bilinear Relation between I and III Abel Differentials

continued.

Then $\nu \varphi^{\prime}$ is a meromorphic differential, whose poles are the same as φ^{\prime}, by Residue theorem

$$
2 \sqrt{-1} \pi \sum_{i=1}^{k}\left(\operatorname{Res}_{p_{i}}\left(\nu \varphi^{\prime}\right)+\operatorname{Res}_{q_{i}}\left(\nu \varphi^{\prime}\right)\right)=\int_{\partial \Omega} \nu \varphi^{\prime}
$$

The left hand side equals to

$$
\sum_{i=1}^{k}\left(\nu\left(p_{i}\right)-\nu\left(q_{i}\right)\right)=\sum_{i=1}^{k} \int_{q_{i}}^{p_{i}} \omega
$$

The right hand side is $\left(\pi_{i}\left(\varphi^{\prime}\right)=0, i=1, \ldots, g\right)$

$$
\int_{\partial \Omega} \nu \varphi^{\prime}=\sum_{i=1}^{g}\left(\pi_{i}(\omega) \pi_{g+i}\left(\varphi^{\prime}\right)-\pi_{i}\left(\phi^{\prime}\right) \pi_{g+i}(\omega)\right)=\sum_{i=1}^{g} \pi_{i}(\omega) \pi_{g+i}\left(\varphi^{\prime}\right)
$$

Bilinear Relation between I and III Abel Differentials

Figure: $\int_{a_{1}} \nu \varphi+\int_{a_{1}^{-1}} \nu \varphi=-\pi_{b_{1}}(\omega) \pi_{a_{1}}(\varphi), \nu=\int \omega$.

Bilinear Relation between I and III Abel Differentials

continued.

$$
\int_{\partial \Omega} \nu \varphi^{\prime}=\sum_{i=1}^{g}\left(\int_{\gamma_{i}} \nu \varphi^{\prime}+\int_{\gamma_{i}^{-1}} \nu \varphi^{\prime}+\int_{\gamma_{g+i}} \nu \varphi^{\prime}+\int_{\gamma_{g+i}^{-1}} \nu \varphi^{\prime}\right) .
$$

Choose $p \in \gamma_{i}$, the same point $p^{\prime} \in \gamma_{i}^{-1}$, then

$$
\begin{gathered}
\int_{\gamma_{i}} \nu \varphi^{\prime}+\int_{\gamma_{i}^{-1}} \nu \varphi^{\prime}=\int_{\gamma_{i}}\left(\nu(p)-\nu\left(p^{\prime}\right)\right) \varphi^{\prime}=-\pi_{g+i}(\omega) \pi_{i}\left(\varphi^{\prime}\right) . \\
\nu(p)-\nu\left(p^{\prime}\right)=\int_{p^{\prime}}^{p} \omega=\int_{p^{\prime}}^{q} \omega-\int_{\gamma_{g+i}} \omega+\int_{q}^{p} \omega=-\int_{\gamma_{g+i}} \omega=-\pi_{g+i}(\omega) .
\end{gathered}
$$

similarly

$$
\int_{\gamma_{g+i}} \nu \varphi^{\prime}+\int_{\gamma_{g+i}^{-1}} \nu \varphi^{\prime}=\int_{\gamma_{g+i}}\left(\nu(p)-\nu\left(p^{\prime}\right)\right) \varphi^{\prime}=\pi_{i}(\omega) \pi_{g+i}\left(\varphi^{\prime}\right)
$$

Proof for Ker $\mu \subset \operatorname{Img}()$

continued.

By Eqn. (4), let $\omega=\omega_{\alpha}, \alpha=1,2, \cdots, g$

$$
\sum_{i=1}^{k} \int_{q_{i}}^{p_{i}} \omega_{\alpha}=\sum_{i=\beta}^{g} \pi_{\beta}\left(\omega_{\alpha}\right) \pi_{g+\beta}\left(\varphi^{\prime}\right)
$$

Since the period matrix id $(I Z), \pi_{\beta}\left(\omega_{\alpha}\right)=\delta_{\alpha \beta}$, the right hand side is $\pi_{g+\alpha}\left(\varphi^{\prime}\right)$. The left hand side is

$$
(\mu(D))_{\alpha}=\sum_{i=1}^{g} \int_{q}^{p_{i}} \omega_{\alpha}-\sum_{i=1}^{g} \int_{q}^{q_{i}} \omega_{\alpha}=\sum_{i=1}^{g} \int_{q_{i}}^{p_{i}} \omega_{\alpha}=0(\bmod \wedge)
$$

We obtain left hand side becomes $(\alpha=1,2, \cdots, g)$

$$
\sum_{\beta=1}^{g}\left(m_{\beta} \int_{\gamma_{\beta}} \omega_{\alpha}+m_{g+\beta} \int_{\gamma_{g+\beta}} \omega_{\alpha}\right)=m_{\alpha}+\sum_{\beta=1}^{g} m_{g+\beta} \int_{\gamma_{g+\beta}} \omega_{\alpha}
$$

Proof for Ker $\mu \subset \operatorname{Img}()$

continued.

where $m_{\beta}, \beta=1,2, \cdots, 2 g$ are integers independent of α. By Riemann bilinear relation $Z^{T}=Z$, we have

$$
\int_{\gamma_{g+\beta}} \omega_{\alpha}=\int_{\gamma_{g+\alpha}} \omega_{\beta} .
$$

The LHS becomes $m_{\alpha}+\sum_{\beta=1}^{g} m_{g+\beta} \int_{\gamma_{g+\alpha}} \omega_{\beta}$, the RHS is $\pi_{g+\alpha}\left(\varphi^{\prime}\right)$, hence

$$
\pi_{g+\alpha}\left(\varphi^{\prime}\right)=m_{\alpha}+\sum_{\beta=1}^{g} m_{g+\beta} \int_{\gamma_{g+\alpha}} \omega_{\beta}
$$

Then we define

$$
\varphi^{\prime \prime}:=\varphi^{\prime}-\sum_{\beta=1}^{g} m_{g+\beta} \omega_{\beta},
$$

Proof for Ker $\mu \subset \operatorname{Img}()$

Proof.

The $\varphi^{\prime \prime}$ has the same poles and residues as φ^{\prime}, so as φ,

$$
\left(\varphi^{\prime \prime}\right)_{\infty}=\sum_{i=1}^{k} p_{i} \quad \operatorname{Res}_{p_{i}} \varphi^{\prime \prime}=\frac{n_{i}}{2 \sqrt{-1 \pi}} .
$$

Now $\alpha=1,2, \cdots, g$

$$
\begin{aligned}
\pi_{\alpha}\left(\varphi^{\prime \prime}\right) & =\pi_{\alpha}\left(\varphi^{\prime}\right)-\sum_{\beta=1}^{g} m_{g+\beta} \pi_{\alpha}\left(\omega_{\beta}\right) \\
& =0-\sum_{\beta=1}^{g} m_{g+\beta} \delta_{\alpha \beta}=-m_{g+\alpha} \\
\pi_{g+\alpha}\left(\varphi^{\prime \prime}\right) & =\pi_{g+\alpha}\left(\varphi^{\prime}\right)-\sum_{\beta=1}^{g} m_{g+\beta} \pi_{g+\alpha}\left(\omega_{\beta}\right)=m_{\alpha}
\end{aligned}
$$

Proof for Ker $\mu \subset \operatorname{Img}()$

continued.

Since $\varphi^{\prime \prime}$ satisfies all three conditions in Eqn. (4), by the lemma of Meromrophic differential, we construct the meromorphic function

$$
f(p)=\exp \left(2 \sqrt{-1} \pi \int_{q}^{p} \varphi^{\prime \prime}\right)
$$

then

$$
(f)=D
$$

Hence $\operatorname{Ker} \mu \subset \operatorname{Img}()$. Therefore $\operatorname{Ker} \mu=\operatorname{Img}()$.

Jacobi Theorem

Lemma (Special Holomorphic Differential Basis)

Suppose C is a compact genus g Riemann surface, (U, z) is a local coordinate chart of C, then there are g distinct points $p_{1}, p_{2}, \cdots, p_{g}$ in U, and a basis of $\Omega^{1}(C)$ holomorphic differentials, such that the matrix

$$
\left(\begin{array}{cccc}
f_{1}\left(p_{1}\right) & f_{1}\left(p_{2}\right) & \cdots & f_{1}\left(p_{g}\right) \\
f_{2}\left(p_{1}\right) & f_{2}\left(p_{2}\right) & \cdots & f_{2}\left(p_{g}\right) \\
\vdots & \vdots & & \vdots \\
f_{g}\left(p_{1}\right) & f_{g}\left(p_{2}\right) & \cdots & f_{g}\left(p_{g}\right)
\end{array}\right)
$$

is non-degenerated, where $f_{i} d z$ is the local representation of φ_{i}.

Jacobi Theorem

Lemma (Special Holomorphic Differential Basis)

Suppose C is a compact genus g Riemann surface, (U, z) is a local coordinate chart of C, then there are g distinct points $p_{1}, p_{2}, \cdots, p_{g}$ in U, and a basis of $\Omega^{1}(C)$ holomorphic differentials, such that the matrix

$$
\left(\begin{array}{cccc}
f_{1}\left(p_{1}\right) & f_{1}\left(p_{2}\right) & \cdots & f_{1}\left(p_{g}\right) \\
f_{2}\left(p_{1}\right) & f_{2}\left(p_{2}\right) & \cdots & f_{2}\left(p_{g}\right) \\
\vdots & \vdots & & \vdots \\
f_{g}\left(p_{1}\right) & f_{g}\left(p_{2}\right) & \cdots & f_{g}\left(p_{g}\right)
\end{array}\right)
$$

is non-degenerated, where $f_{i} d z$ is the local representation of φ_{i}.

Jacobi Theorem

Proof.

Choose a non-zero holomorphic 1 -form φ_{1}, since $\varphi_{1} \not \equiv 0$ in U, there is a point $p_{1} \in U$, such that $\varphi_{1}\left(p_{1}\right) \neq 0$. By Riemann-Roch, let $D=p_{1}$

$$
\operatorname{dim} /\left(-p_{1}\right)=\operatorname{dimi}\left(p_{1}\right)+\operatorname{deg}\left(p_{1}\right)+1-g,
$$

suppose $f \in K(C),(f) \geq-p_{1}$. Any meromorphic (non-holomorphic) function must have multiple poles, so f is holomorphic, $f \equiv$ const, so $I\left(-p_{1}\right)=1$.

$$
1=i\left(p_{1}\right)+1+1-g \Longrightarrow \operatorname{dimi}\left(p_{1}\right)=g-1
$$

We can choose a holomorphic 1-form $\varphi_{2} \in i\left(p_{1}\right)$, such that at some point $p_{2} \in U$,

$$
\varphi_{2}\left(p_{2}\right) \neq 0
$$

Jacobi Theorem

continued.

Since $\operatorname{dimi}\left(p_{1}\right)=\operatorname{dimi}\left(p_{2}\right)=g-1$, and $\operatorname{dim} \Omega^{1}(C)=g$, we have

$$
\Longrightarrow \operatorname{dimi}\left(p_{1}\right) \cap i\left(p_{2}\right)=i\left(p_{1}+p_{2}\right)=(g-1)+(g-1)-g=g-2 .
$$

This shows $\operatorname{dimi}\left(p_{1}+p_{2}\right)=g-2$, we can choose another holomorphic 1-form $\varphi_{3} \in i\left(p_{1}+p_{2}\right)$, such that φ_{3} is non-zero at some point $p_{3} \in U$, $\varphi_{3}\left(p_{3}\right) \neq 0$. By repeating this procedure, we can obtain g points $p_{1}, p_{2}, \cdots, p_{g} \in U$ and g non-zero holomorphic 1-forms $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{g}$, such that

$$
\varphi_{i}\left(p_{j}\right)=0, j=1,2, \cdots, i-1 ; \varphi_{i}\left(p_{i}\right) \neq 0
$$

If in $U, \varphi_{i}=f_{i} d z(i=1,2, \cdots, g)$, then the matrix

$$
\left(f_{i}\left(p_{j}\right)\right)_{g \times g}
$$

is triangular, and the diagonal elements are non-zeros. Therefore the matrix is non-degenerated, $\left\{\varphi_{i}\right\}$ form a basis of $\Omega^{1}(C)$.

Special Holomorphic Differential Basis

$$
\left(\begin{array}{cccccc}
f_{1}\left(p_{1}\right) & f_{1}\left(p_{2}\right) & f_{1}\left(p_{3}\right) & \cdots & f_{1}\left(p_{g-1}\right) & f_{1}\left(p_{g}\right) \\
0 & f_{2}\left(p_{2}\right) & f_{2}\left(p_{3}\right) & \cdots & f_{2}\left(p_{g-1}\right) & f_{2}\left(p_{g}\right) \\
0 & 0 & f_{3}\left(p_{3}\right) & \cdots & f_{3}\left(p_{g-1}\right) & f_{3}\left(p_{g}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & f_{g}\left(p_{g}\right)
\end{array}\right)
$$

Jacobi Theorem

Suppose $p_{1}, p_{2}, \cdots, p_{g}$ are g points in the lemma of special holomorphic differential basis, $C^{g}:=C \times C \times, \cdots, \times C$, define

$$
\Psi: C^{g} \rightarrow \operatorname{Pic}(C), \quad \Psi\left(x_{1}, x_{2}, \cdots, x_{g}\right)=\sum_{i=1}^{g}\left(x_{i}-p_{i}\right) \quad \bmod \mathcal{P}
$$

where \mathcal{P} is the set of principle divisors. Denote the composition map $\mu \circ \Psi$ as J.

$$
J: C^{g} \xrightarrow{\psi} \operatorname{Pic}(C) \xrightarrow{\mu} J(C) .
$$

Theorem (Jacobi)

The map $\Psi: C^{g} \rightarrow \operatorname{Pic}(C)$ is surjective, $\mu: \operatorname{Pic}(C) \rightarrow J(C)$ is an isomorphism, hence $J: C^{g} \rightarrow J(C)$ is surjective.

Jacobi Theorem

Proof.

Suppose D is a zero degree divisor. Consider the degree g divisor,

$$
D^{\prime}=D+p_{1}+p_{2}+\cdots+p_{g}
$$

By Riemann-Roch formula, we have

$$
\operatorname{dim} /\left(-D^{\prime}\right)=\operatorname{dim} i\left(D^{\prime}\right)+d\left(D^{\prime}\right)+1-g \geq d\left(D^{\prime}\right)+1-g=1
$$

therefore there is a non-zero meromorphic function $f \in I\left(-D^{\prime}\right)$, $(f)+D^{\prime} \geq 0 . \operatorname{deg}\left((f)+D^{\prime}\right)=\operatorname{deg}((f))+\operatorname{deg}(D)+g=g$, hence

$$
(f)+D^{\prime}=x_{1}+x_{2}+\cdots+x_{g}, \quad x_{i} \in C, i=1,2, \cdots, g
$$

Namely $(f)+D=\sum_{i=1}^{g}\left(x_{i}-p_{i}\right)=\Psi\left(x_{1}, x_{2}, \cdots, x_{g}\right)$. This means $\Psi\left(x_{1}, x_{2}, \cdots, x_{g}\right)=[D] \in \operatorname{Pic}(C)$, namely Ψ is surjective.

Jacobi Theorem

continued.

By Abel theorem, μ is injective. In order to show μ is isomorphic, it is surficient to show the image of μ contains an open set of $[0] \in J(C)$, in turn, we only need to show the image of $J=\mu \circ \Psi$ contains such an open set. Select $\left\{\varphi_{i}\right\}$ as the set of holomorphic 1 -form basis in lemma of special holomorphic differential basis. Choose disjoint small disks $B_{i} \subset U$ centered at p_{i}, the local coordinate on B_{i} is z. In each B_{i}, choose $z_{i} \in B_{i}$, then

$$
\lambda=\left(z_{1}, z_{2}, \cdots, z_{g}\right) \in C^{g} .
$$

The local representation of J is

$$
J\left(z_{1}, z_{2}, \cdots, z_{g}\right)=\left(\sum_{j=1}^{g} \int_{p_{j}}^{z_{j}} f_{1} d z, \sum_{j=1}^{g} \int_{p_{j}}^{z_{j}} f_{2} d z, \cdots, \sum_{j=1}^{g} \int_{p_{j}}^{z_{j}} f_{g} d z\right)
$$

where the integration paths are contained in each disk B_{i} 's.

Jacobi Theorem

continued.

The i-th component of F is F_{i}, then

$$
\frac{\partial F_{i}}{\partial z_{j}}=f_{i}\left(z_{j}\right)
$$

According to lemma of special holomorphic differential basis, the Jacobi matrix of J at $\left(p_{1}, p_{2}, \cdots, p_{g}\right)$ is non-degenerated. By inverse mapping theorem, we know the image of J contains an open set. This completes the proof.

