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Smooth Manifold

Definition (Manifold)

A manifold is a topological space M covered by a set of open sets {Uα}.
A homeomorphism ϕα : Uα → Rn maps Uα to the Euclidean space Rn.
(Uα, ϕα) is called a coordinate chart of M. The set of all charts
{(Uα, ϕα)} form the atlas of M. Suppose Uα ∩ Uβ ̸= ∅, then

ϕαβ = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

is a transition map.
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Riemann Surface

Definition (Riemann Surface)

A two dimensional manifold S is a Riemann surface, if the chart transition
maps

ϕαβ = ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

are biholomorphic. On each local chart (Uα, φα), we use zα to denote the
local complex coordinate. The atlas {(Uα, zα)} is called a conformal
structure of the surface S .
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Riemann Surface

Definition (Holomorphic Function)

Suppose C is a Riemann surface, {(Ui , zi )} is a holomorphic coordinate
covering. A meromorphic (holomorphic) function on C is given by a family
of map fi : Ui → C, such that

1 If Ui ∩ Uj ̸= ∅, on Ui ∩ Uj we have

fi = fj ;

2 ∀i , fi ◦ z−1
i is a meromorphic (holomorphic) function.

All the meromorphic functions on C form a field, denoted as K (C ), called
the meromorphic function field on C .
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Riemann Surface

Definition (Zeros and Poles)

Suppose C is a compact Riemann surface, f ∈ K (C ), p ∈ C . Choose a
local coordinates z of the neighborhood of p, such that z(p) = 0, then in
the neighborhood

f (z) = zνh(z),

where h(z) is a holomorphic function, h(0) ̸= 0, ν ∈ Z. ν is called the
order of f at p, denoted as νp(f ). when νp(f ) > 0, pis called a zero of f ,
νp(f ) is called the order of the zero p; when νp(f ) < 0, p is called a pole
of f , |νp(f )| is called the order of the pole p.
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Holomorphic Differential

Figure: Holomorphic 1-form on a genus two surface.
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Riemann Surface

Definition (Meromorphic Differential)

Suppose S is a Riemann surface with a conformal structure {(Uα, zα)}, a
complex differential 1-form ω is called a meromorphic (holomorphic)
1-form (meromorphic differential), if on each local chart (Uα, φα), its local
representation is

ω = fα(zα)dzα,

where fα is a meromorphic (holomorphic) function, and on the other chart
ω = fβ(zβ)dzβ,

fα(zα) = fβ(zβ(zα))
dzβ
dzα

.

The zeros and poles of ω are those of fα’s.

All the meromrophic (holomorhic) 1-forms on C is denoted as
K 1(C )(Ω1(C )).
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Residue Theorem

Definition (Residue)

Let C be a Riemann surface, ω ∈ K 1(C ), p ∈ C , γp is a small circle
around the point p, ω has no other pole except p (p itself may be or may
be not a pole). Then the residue of ω at p is defined as

Resp(ω) =
1

2πi

∮
γp

ω.

Locally, p ∈ Uj , γp ⊂ Uj , we have

Resp(ω) =
1

2πi

∮
γp

ω =
1

2πi

∮
fj(zj)dzj = Resp(fj(zj)dzj).
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Residue Theorem

Theorem (Residue)

Suppose C is a compact Riemann surface, for ω ∈ K 1(C ), we have∑
p∈C

Resp(ω) = 0.

Proof.

Since C is compact, ω has finite number of poles on C , denoted as
p1, p2, . . . , pm. Choose small disks ∆1,∆2, . . . ,∆m surrounding these
poles. Denote

Ω = C \
⋃
i

∆i , ∂Ω = −
⋃
i

∂∆i .

By Stokes, we have

2πi
∑
p∈C

Resp(ω) = 2πi
m∑
j=1

Respj (ω) =
m∑
j=1

∫
∂∆j

ω = −
∫
∂Ω

ω = −
∫
Ω
dω = 0.
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Residue Theorem

Theorem (Meromorphic Function)

If f ∈ K (C ) is not a constant function, then∑
p∈C

νp(f ) = 0.

Proof.

Construct

ω =
df

f
∈ K 1(C ),

then the residue of ω is zero. Then means

#{zeros of f } = #{poles of f }.
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Principle Divisor

Theorem

If f ∈ K (C ) is not a constant, then

deg(f ) =
∑
p∈C

νp(f ) = 0.

Proof.

The meromorphic function f on C induces a conformal map f : C → S2,
suppose the mapping degree is k , then the preimages of the south pole are
the zeros of f , the preimages of the north pole are the poles of f . The
number of zeros equals to the mapping degree k , the number of poles
equals to the mappping degree k as well.
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Jacobi Variety

Suppose C is a g ≥ 1 compact Riemann surface. H1(C ,Z) is a rank 2g
free Abel group. Choose a canonical basis of H1(C ,Z) {γ1, γ2, · · · , γ2g},

γi · γg+i = 1, γg+i · gi = −1,

and the other algebraic intersection numbers are zeros. {ω1, ω2, · · · , ωg}
is a set of basis of Ω1C ,

Definition (Period Vector)

For each γi ,

πj =


∫
γj
ω1∫

γj
ω2

...∫
γj
ωg

 ∈ Cg (j = 1, 2, . . . , 2g)
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Hyperbolic Geodesic
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Period Matrix

Definition (Period Matrix)

The matrix
Π := (π1, π2, · · · , π2g )g×2g

is called the period matrix of the Riemann surface.

Definition (Jacobi Variety)

The period vectors generate a lattice

Λ :=


2g∑
j=1

mjπj | mj ∈ Z

 ⊂ Cg

The quotient space Cg/Λ is a g dimensional complex torus, and called the
Jacobi variety of C , denoted as J(C ).
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Riemann Bilinear Relation

Suppose γ ⊂ C is a closed loop, slice C along γ to obtain C̄ = C \ {γ}.
∂C̄ = γ+ − γ−. Set a function f : C̄ → R, such that f |γ+ = +1 and
f |γ− = 0. The ωγ = df is a closed 1-form on C , which is called the 1-form
corresponding to γ, such that for any loop τ ,

τ · γ =

∫
τ
ωγ .

Suppose {a1, b1, a2, b2, · · · , ag , bg} is a set of canonical basis of H1(C ,Z),
αk is corresponding to bk , −βk corresponding to ak , then

ak · bk =

∫
ak

αk =

∫ ∫
αk ∧ βk = 1

bk · ak = −
∫
bk

βk = −
∫ ∫

αk ∧ βk = −1

Namely, the period of αk along ak is 1, the period of βk along bk is 1.
The other integrations equal to zero.
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Riemann Bilinear Relation

Lemma

(α1, · · · , αg , β1, · · · , βg ) is a basis of H1
∆(C ,R). For any closed 1-form ω,

we have the decomposition:

ω =

g∑
i=1

Aiαi +

g∑
i=1

Biβi + df ,

where

Ai =

∫
ai

ω, Bj =

∫
bj

ω.

Lemma

Suppose θ and ω are closed 1-forms, then∫ ∫
C
θ ∧ ω =

g∑
i=1

[∫
ai

θ

∫
bi

ω −
∫
ai

ω

∫
bi

θ

]
.
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Riemann Bilinear Relation

Assume the A-period of θ is (A1, · · · ,Ag ), the B-period of θ is
(B1, · · · ,Bg ), the A-period of ω is (A′

1, · · · ,A′
g ), the B-period of ω is

(B ′
1, · · · ,B ′

g ), then

θ =

g∑
i=1

Aiαi +

g∑
j=1

Bjβj + df , ω =

g∑
i=1

A′
iαi +

g∑
j=1

B ′
jβj + dh,

Note that d(f θ) = df ∧ dθ + fd2θ and∫
C
df ∧ θ =

∫
∂C

f θ = 0

∫ ∫
C
αi ∧ βi = 1,

the others are 0, by direct computation∫ ∫
C
θ ∧ ω =

g∑
i=1

(AiB
′
i − A′

iBi ) =

g∑
i=1

[∫
ai

θ

∫
bi

ω −
∫
ai

ω

∫
bi

θ

]
.
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Riemann Bilinear Relation

Theorem (Riemann Bilinear Relation I)

Suppose φ and φ′ are holomorphic 1-forms. The A-period and B-period
for φ are Ai and Bi , those for φ′ are A′

i and B ′
i , (1 ≤ i ≤ g), then

g∑
i=1

(AiB
′
i − BiA

′
i ) = 0.

Proof.

0 =

∫ ∫
φ ∧ φ′ =

g∑
i=1

(AiB
′
i − A′

iBi ). (1)
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Riemann Bilinear Relation

Theorem (Riemann Bilinear Relation II)

Suppose φ is a holomorphic 1-forms. The A-period and B-period for φ are
Ai and Bi , then

√
−1

g∑
i=1

(Ai B̄i − Bi Āi ) ≥ 0.

Proof.

∥φ∥ = (φ,φ) = i

∫ ∫
φ ∧ φ̄ =

g∑
i=1

(Ai B̄i − Ai B̄i ) ≥ 0. (2)
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Period Matrix

Theorem (Period Matrix)

Suppose C is a compact Riemann surface, the period matrix Π under a
canonical basis of H1(C ,Z) and a basis of Ω1(C ) is

Πg×2g = (Ag×g ,Bg×g ) ,

then we have

1 ABT = BAT

2
√
−1(AB̄T − BĀT ) is a Hermite positive definite matrix.
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Period Matrix

Proof.

A =


∫
a1
φ1

∫
a2
φ1 · · ·

∫
ag
φ1∫

a1
φ2

∫
a2
φ2 · · ·

∫
ag
φ2

...
...

...∫
a1
φg

∫
a2
φg · · ·

∫
ag
φg

B =


∫
b1
φ1

∫
b2
φ1 · · ·

∫
bg

φ1∫
b1
φ2

∫
b2
φ2 · · ·

∫
bg

φ2

...
...

...∫
b1
φg

∫
b2
φg · · ·

∫
bg

φg


(ABT )i ,j =

g∑
k=1

∫
ak

φi

∫
bk

φj (BAT )i ,j =

g∑
k=1

∫
bk

φi

∫
ak

φj

By Riemann bilinear relation:

g∑
k=1

(∫
ak

φi

∫
bk

φj −
∫
bk

φi

∫
ak

φj

)
= 0,

hence ABT = BAT .
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Period Matrix

Proof.

Let ω = λ1φ1 + λ2φ2 + · · ·+ λgφg , then

(ω, ω) =
√
−1

∫
ω ∧ ω̄ =

=
(
λ1 λ2 · · · λg

)√
−1(AB̄T − BĀT )


λ̄1

λ̄2
...
λ̄g


≥ 0.

Hence
√
−1(AB̄T − BĀT ) ≥ 0.
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Period Matrix

We can change the basis of Ω1(C ) by A−T to obtain the normalized
period matrix

Π = (Ig Z )

then the Riemann bilinear relation becomes

1 Z = ZT ;

2 The imginary part of Z Img(Z ) is a real positive definite matrix.
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Period Matrix

Theorem (Torelli)

Two compact Riemann surfaces C and C ′ are conformal equivalent, if and
only if they share the same normalized period matrix under approproate
canonical homology basis.

Problem (Schotty)

Suppose Z = ZT , and the imaginary part of Z is positive definite, under
what other conditions such that (Ig Z ) is a period matrix of some
Riemann surface ?
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Divisor

Definition (Divisor)

Suppose C is a compact Riemann surface, a divisor is a finite form of sum

D = m1p1 +m2p2 + · · ·+mlpl ,

where mj ∈ Z, pj ∈ C (j = 1, 2, . . . , l). The degree of D is defined as

deg(D) =
l∑

j=1

mj .

All the divisors under the addition form an Abelian group, the so-called
divisor group.
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Principle Divisor

Definition (Principle Divisor)

Suppose C is a compact Riemann surface, f ∈ K (C ) is a meromorphic
function, the divisor of f is defined by

(f ) =
∑
p∈C

νp(f )p

which is called a principle divisor.

Definition (Zero Degree Divisor Group)

Suppose C is a compact Riemann surface, Div(C ) is the divisor group of
C , then

Div0(C ) := {D ∈ Div(C ) : degD = 0}
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Abel-Jacobi Map

Definition (Abel-Jacobi Map)

Suppose C is a compact Riemann surface, choose a base point q ∈ C , the
Abel-Jacobi map

µ : Div(C ) → J(C )

is given by

µ(D) =



∑k
i=1

∫ pi
q ω1∑k

i=1

∫ pi
q ω2

...∑k
i=1

∫ pi
q ωg−1∑k

i=1

∫ pi
q ωg

 /Λ

where D =
∑k

i=1 nipi ∈ Div(C ).
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Abel-Jacobi Theorem

Theorem (Abel)

The homomorphism sequence

K ∗(C )
()−−−−→ Div0(C )

µ−−−−→ J(C ) −−−−→ 0

is exact, namely
Img( ) = Ker µ

and µ is surjective.
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Abel-Jacobi Theorem

Definition (Picard variety)

The quotient group

Pic(C ) :=
Div0(C )

Img ()

is called the Picard variety of C .

Theorem (Abel)

The Abel-Jacobi map µ induces an isomorphism

Pic(C )
∼−−−−→ J(C ).
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Abel-Jacobi Theorem

Lemma

Img() ⊂ Kerµ, namely, for any f ∈ K ∗(C ), denote D = (f ), then

µ(D) = 0

.

Lemma

kerµ ⊂ Img(), namely, if µ(D) = 0, where D ∈ Div0(C ), then there exists
an f ∈ K ∗(C ), such that

(f ) = D

.

Lemma

The Abel-Jacobi map µ : Div0(C ) → J(C ) is surjective.
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Proof for µ((f )) = 0

Assume f ∈ K ∗(C ), for any t ∈ C ∪ {∞}, let

Dt = f −1(t) ∈ Div(C ).

Obvious
D = (f ) = f −1(0)− f −1(∞) = D0 − D∞

we are going to prove µ(Dt) = const, ∈ C ∪ {∞}, then

µ(D) = µ(D0)− µ(D∞) = 0,

this proves the lemma. In order to prove µ(Dt) = const, we consider its
derivative

d

dt
µ(Dt) =

d

dt


∑

j=1

∫ pj (t)
q ω1

...∑
j=1

∫ pj (t)
q ωg
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Proof for µ((f )) = 0

(∆, t)

(∆j , pj(t))

f

(∆1, p1(t))

(∆2, p2(t))

(∆3, p3(t))

(∆n, pn(t))

Figure: Proof for µ((f )) = 0

.
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Proof for µ((f )) = 0

For t0 ∈ S2, if f −1(t0) has no branching point, then there exists a disk
∆ ⊂ S2 surrounding t0, and n disks ∆1,∆2, · · · ,∆n ⊂ C surrounding
p1(t0), p2(t0), · · · , pn(t0), such that for any j = 1, 2, · · · , n,

f : ∆j → ∆

is biholomorphic. So we can use z(p) = f (p) as the local coordinates of
∆j . Assume in this coordinates,

ωα = hα j(z)dz ,

then

d

dt

∫ pj (t)

q
ωα =

d

dt

∫ pj (t0)

q
ωα +

d

dt

∫ pj (t)

pj (t0)
ωα

=
d

dt

∫ pj (t0)

q
ω +

d

dt

∫ t

t0

hα j(z)dz = hα j(t).
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Proof for µ((f )) = 0
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Proof for µ((f )) = 0

On the other hand, in the neighborhood of pj(t), on the selected local
coordinates on ∆j , we construct the meromorophic 1-form:

ωα

f − t
=

hα j(z)dz

z − t

By direct computation

2π
√
−1Respj (t)

ωα

f − t
=

∮
∂∆j

ωα

f − t
=

∮
∂∆j

hα j(z)dz

z − t
= 2π

√
−1hα j(t).

By the meromorphic differential residue theorem, we have

d

dt
µ(Dt) =

d

dt

n∑
j=1

∫ pj (t)

q
ωα =

n∑
j=1

hα j(t) =
n∑

j=1

Respj (t)
ωα

f − t
= 0.
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Proof for µ((f )) = 0

We use R to represent the set of the branching points of f , then µ(Dt) is
holomorphic outside the finite set f (R), and

d

dt
µ(Dt) = 0.

It is obvious that S2 \ f (R) is connected, therefore at t ∈ S2 \ f (R) we have

µ(Dt) = const,

by Riemann extension theorem, we have µ(Dt) = const on the whole
sphere S2 = P1, hence

µ((f )) = µ(D0)− µ(D∞) = 0.
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Proof for Kerµ ⊂ Img()

If D ∈ Div0(C ), µ(D) = 0, we would like to find a meromorphic function
f ∈ K ∗(C ), such that (f ) = D. Assume

D =
k∑

i=1

nipi ∈ Div0(C ),

if there is f ∈ K ∗(C ), such that (f ) = D, let

φ =
1

2π
√
−1

df

f
∈ K 1(C ).

Then φ must satisfiy

a) (φ)∞ =
k∑

i=1

pi , φ only has simple poles

b) Respiφ =
ni

2π
√
−1

, ni ∈ Z;

c)

∫
γi

φ ∈ Z

(3)
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Proof for Kerµ ⊂ Img()

Eqn. (3) item c) holds, since∫
γi

φ =
1

2π
√
−1

∫
γi

df

f
=

1

2π
√
−1

∫
d(

√
−1argf ) ∈ Z .

Lemma (Meromorphic Differential)

If φ ∈ K 1(C ), satisfying Eqn. (3). Assume q is a fixed based point on C ,
let

f (p) = exp

(
2
√
−1π

∫ p

q
φ

)
,

the integration path doesn’t go through any pole of φ, then f is a
meromorphic function on C , satisfying

(f ) =
k∑

i=1

nipi = D,

where pi , ni are given in Eqn. (3) a) and b).
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Proof for Kerµ ⊂ Img()

Note that, based on Residue theorem
∑k

i=1 ni = 0, namely D ∈ Div0(C ).

Proof.

Choose two paths γ and γ′ from q to p, such that

γ − γ′ =

2g∑
i=1

niγi ,

therefore ∫
γ
φ−

∫
γ′
φ =

2g∑
i=1

ni

∫
γi

φ ∈ Z,

therefore

exp

(
2π

√
−1

∫
γ
φ

)
= exp

(
2π

√
−1

∫
γ′
φ

)
,

therefore f (p) is independent of the choice of the integration path, f (p) is
a well defined function on C .
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Proof for Kerµ ⊂ Img()

continued.

Since φ satisfies Eqn (3) a), f is holomorphic on C excepts on pi ’s. In a
neighborhood of pi with local coordinates z , z(pi ) = 0, then

φ(z) =
ni

2π
√
−1

dz

z
+ h(z)dz ,

where h(z) is holomorphic. Choose another point p0 (p0 ̸= pi ) in the
neighborhood of pi , suppose z(p0) = z0, then

f (z) = exp

(
2
√
−1π

∫ p

q
φ

)
= exp

(
2
√
−1π

(∫ p0

q
φ+

∫ p

p0

φ

))
= exp

(
2
√
−1π

(∫ p0

q
φ+

∫ z

z0

ni

2
√
−1π

dz

z
+

∫ z

z0

h(z)dz

))
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Proof for Kerµ ⊂ Img()

continued.

= exp

(
2
√
−1π

(∫ p0

q
φ− ni

2
√
−1π

ln z0 +− ni

2
√
−1π

ln z +

∫ z

z0

h(z)dz

))
= czniH(z),

where

c = exp

(
2
√
−1π

(∫ p0

q
φ− ni

2
√
−1π

ln z0

))
is a non-zero constant,

H(z) = exp

(
2
√
−1π

∫ z

z0

h(z)dz

)
is a non-zero holomorphic function. Hence (f ) =

∑k
i=1 nipi = D.
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Proof for Kerµ ⊂ Img()

Definition (Abelian Differential of The Third Kind)

If φ ∈ K 1(C ) has at most simple poles, then φ is called a third type of
differential. For any p, q ∈ C , p ̸= q, φ = φpq ∈ K 1(C ) is called a third
type of elementary differential, if

(φ)∞ = p + q

and

Respφ =
1

2
√
−1π

, Resqφ = − 1

2
√
−1π

.

Theorem (Existence of Abelian Differential of the Third Kind)

For any p, q ∈ C , p ̸= q, there is a normal Abelian differential of the third
kind φpq ∈ K 1(C ), such that (φ)∞ = p + q and

Respφ = (2
√
−1π)−1, Resqφ = −(2

√
−1π)−1.
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Abel Differential of the Third Type

Proof.

Set the divisor D = −p − q, then by Riemann-Roch formula

diml(−D) = dimi(D) + d(D) + 1− g ,

−D ≥ 0, so f ∈ l(−D) must be holomorphic, therefore f ≡ const,
(f ) = 0, but 0 + D < 0, hence diml(−D) = 0. Therefore

0 = dimi(D)− 2 + 1− g =⇒ dimi(D) = g + 1.

Therefore we can pick ω ∈ i(D), then ω has poles at p and q only.
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Proof for Kerµ ⊂ Img()

Proof.

For any divisor

D =
k∑

i=1

pi −
k∑

i=1

qi ∈ Div0(C )

(pi or qi may be repeated), there are k normal Abelian differentials of the
3rd kind φ1, φ2, · · · , φk , where φi has simple poles at pi and qi with
residues

Respiφi = (2
√
−1π)−1 Resqiφi = −(2

√
−1π)−1.

Let
φ = φ1 + φ2 + · · ·+ φk .

Choose canonical basis of H1(C ,Z) γ1, γ2, · · · , γ2g , which do not go
through any pole of φ; ω1, ω2, · · · , ωg is a basis of Ω1(C ), such that the
period matrix is normalized to be (I Z ).
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Proof for Kerµ ⊂ Img()

continued.

Let

φ′ = φ−
g∑

α=1

(∫
γα

φ

)
ωα

Then φ′ has the same poles and residues as φ, and the periods of φ′ on
γj ’s are zeros, πj(φ

′) = 0, for j = 1, 2, · · · , g .
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Bilinear Relation between I and III Abel Differentials

Lemma (Bilinear Relation between I and III Abel Differentials)

Suppose ω ∈ Ω1(C ) is a holomorphic 1-form, then

k∑
i=1

∫ pi

qi

ω =

g∑
i=1

πi (ω)πg+i (φ
′). (4)

Proof.

Suppose the fundamental polygon is

Ω = C −
2g⋃
i=1

γi ,

choose a base point b ∈ Ω, define a holomorphic function by integrating ω
inside Ω,

ν(p) :=

∫ p

b
ω (p ∈ Ω).

Extend ν to the boundary of the fundamental polygon ∂Ω.David Gu (Stony Brook University) Computational Conformal Geometry August 17, 2022 48 / 64



Bilinear Relation between I and III Abel Differentials

continued.

Then νφ′ is a meromorphic differential, whose poles are the same as φ′, by
Residue theorem

2
√
−1π

k∑
i=1

(Respi (νφ
′) + Resqi (νφ

′)) =

∫
∂Ω

νφ′

The left hand side equals to

k∑
i=1

(ν(pi )− ν(qi )) =
k∑

i=1

∫ pi

qi

ω

The right hand side is (πi (φ
′) = 0, i = 1, . . . , g)∫

∂Ω
νφ′ =

g∑
i=1

(πi (ω)πg+i (φ
′)− πi (ϕ

′)πg+i (ω)) =

g∑
i=1

πi (ω)πg+i (φ
′)
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Bilinear Relation between I and III Abel Differentials

a1

b1

a−11

b−11

a2

b2

a−12

b−12 p

p′

q

q

Figure:
∫
a1
νφ+

∫
a−1
1

νφ = −πb1(ω)πa1(φ), ν =
∫
ω.
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Bilinear Relation between I and III Abel Differentials

continued.∫
∂Ω

νφ′ =

g∑
i=1

(∫
γi

νφ′ +

∫
γ−1
i

νφ′ +

∫
γg+i

νφ′ +

∫
γ−1
g+i

νφ′

)
.

Choose p ∈ γi , the same point p′ ∈ γ−1
i , then∫

γi

νφ′ +

∫
γ−1
i

νφ′ =

∫
γi

(ν(p)− ν(p′))φ′ = −πg+i (ω)πi (φ
′).

ν(p)− ν(p′) =

∫ p

p′
ω =

∫ q

p′
ω −

∫
γg+i

ω +

∫ p

q
ω = −

∫
γg+i

ω = −πg+i (ω).

similarly∫
γg+i

νφ′ +

∫
γ−1
g+i

νφ′ =

∫
γg+i

(ν(p)− ν(p′))φ′ = πi (ω)πg+i (φ
′).
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Proof for Kerµ ⊂ Img()

continued.

By Eqn. (4), let ω = ωα, α = 1, 2, · · · , g

k∑
i=1

∫ pi

qi

ωα =

g∑
i=β

πβ(ωα)πg+β(φ
′),

Since the period matrix id (I Z ), πβ(ωα) = δαβ, the right hand side is
πg+α(φ

′). The left hand side is

(µ(D))α =

g∑
i=1

∫ pi

q
ωα −

g∑
i=1

∫ qi

q
ωα =

g∑
i=1

∫ pi

qi

ωα = 0 ( mod Λ)

We obtain left hand side becomes (α = 1, 2, · · · , g)
g∑

β=1

(
mβ

∫
γβ

ωα +mg+β

∫
γg+β

ωα

)
= mα +

g∑
β=1

mg+β

∫
γg+β

ωα
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Proof for Kerµ ⊂ Img()

continued.

where mβ, β = 1, 2, · · · , 2g are integers independent of α. By Riemann
bilinear relation ZT = Z , we have∫

γg+β

ωα =

∫
γg+α

ωβ.

The LHS becomes mα+
∑g

β=1mg+β

∫
γg+α

ωβ, the RHS is πg+α(φ
′), hence

πg+α(φ
′) = mα +

g∑
β=1

mg+β

∫
γg+α

ωβ

Then we define

φ′′ := φ′ −
g∑

β=1

mg+βωβ,
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Proof for Kerµ ⊂ Img()

Proof.

The φ′′ has the same poles and residues as φ′, so as φ,

(φ′′)∞ =
k∑

i=1

pi Respiφ
′′ =

ni

2
√
−1π

.

Now α = 1, 2, · · · , g

πα(φ
′′) = πα(φ

′)−
g∑

β=1

mg+βπα(ωβ)

= 0−
g∑

β=1

mg+βδαβ = −mg+α.

πg+α(φ
′′) = πg+α(φ

′)−
g∑

β=1

mg+βπg+α(ωβ) = mα

Hence φ′′ is the desired meromorphic differential.David Gu (Stony Brook University) Computational Conformal Geometry August 17, 2022 54 / 64



Proof for Kerµ ⊂ Img()

continued.

Since φ′′ satisfies all three conditions in Eqn. (4), by the lemma of
Meromrophic differential, we construct the meromorphic function

f (p) = exp

(
2
√
−1π

∫ p

q
φ′′
)
,

then
(f ) = D.

Hence Kerµ ⊂ Img(). Therefore Kerµ = Img().
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Jacobi Theorem

Lemma (Special Holomorphic Differential Basis)

Suppose C is a compact genus g Riemann surface, (U, z) is a local
coordinate chart of C , then there are g distinct points p1, p2, · · · , pg in U,
and a basis of Ω1(C ) holomorphic differentials, such that the matrix

f1(p1) f1(p2) · · · f1(pg )
f2(p1) f2(p2) · · · f2(pg )

...
...

...
fg (p1) fg (p2) · · · fg (pg )


is non-degenerated, where fidz is the local representation of φi .
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Jacobi Theorem

Lemma (Special Holomorphic Differential Basis)

Suppose C is a compact genus g Riemann surface, (U, z) is a local
coordinate chart of C , then there are g distinct points p1, p2, · · · , pg in U,
and a basis of Ω1(C ) holomorphic differentials, such that the matrix

f1(p1) f1(p2) · · · f1(pg )
f2(p1) f2(p2) · · · f2(pg )

...
...

...
fg (p1) fg (p2) · · · fg (pg )


is non-degenerated, where fidz is the local representation of φi .
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Jacobi Theorem

Proof.

Choose a non-zero holomorphic 1-form φ1, since φ1 ̸≡ 0 in U, there is a
point p1 ∈ U, such that φ1(p1) ̸= 0. By Riemann-Roch, let D = p1

diml(−p1) = dimi(p1) + deg(p1) + 1− g ,

suppose f ∈ K (C ), (f ) ≥ −p1. Any meromorphic (non-holomorphic)
function must have multiple poles, so f is holomorphic, f ≡ const, so
l(−p1) = 1.

1 = i(p1) + 1 + 1− g =⇒ dimi(p1) = g − 1.

We can choose a holomorphic 1-form φ2 ∈ i(p1), such that at some point
p2 ∈ U,

φ2(p2) ̸= 0.
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Jacobi Theorem

continued.

Since dimi(p1) = dimi(p2) = g − 1, and dimΩ1(C ) = g , we have

=⇒ dimi(p1) ∩ i(p2) = i(p1 + p2) = (g − 1) + (g − 1)− g = g − 2.

This shows dimi(p1 + p2) = g − 2, we can choose another holomorphic
1-form φ3 ∈ i(p1 + p2), such that φ3 is non-zero at some point p3 ∈ U,
φ3(p3) ̸= 0. By repeating this procedure, we can obtain g points
p1, p2, · · · , pg ∈ U and g non-zero holomorphic 1-forms φ1, φ2, · · · , φg ,
such that

φi (pj) = 0, j = 1, 2, · · · , i − 1; φi (pi ) ̸= 0.

If in U, φi = fidz (i = 1, 2, · · · , g), then the matrix

(fi (pj))g×g

is triangular, and the diagonal elements are non-zeros. Therefore the
matrix is non-degenerated, {φi} form a basis of Ω1(C ).
David Gu (Stony Brook University) Computational Conformal Geometry August 17, 2022 59 / 64



Special Holomorphic Differential Basis


f1(p1) f1(p2) f1(p3) · · · f1(pg−1) f1(pg )
0 f2(p2) f2(p3) · · · f2(pg−1) f2(pg )
0 0 f3(p3) · · · f3(pg−1) f3(pg )
...

...
...

. . .
...

...
0 0 0 · · · 0 fg (pg )
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Jacobi Theorem

Suppose p1, p2, · · · , pg are g points in the lemma of special holomorphic
differential basis, C g := C × C×, · · · ,×C , define

Ψ : C g → Pic(C ), Ψ(x1, x2, · · · , xg ) =
g∑

i=1

(xi − pi ) mod P,

where P is the set of principle divisors. Denote the composition map µ ◦Ψ
as J.

J : C g Ψ−−−−→ Pic(C )
µ−−−−→ J(C ).

Theorem (Jacobi)

The map Ψ : C g → Pic(C ) is surjective, µ : Pic(C ) → J(C ) is an
isomorphism, hence J : C g → J(C ) is surjective.
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Jacobi Theorem

Proof.

Suppose D is a zero degree divisor. Consider the degree g divisor,

D ′ = D + p1 + p2 + · · ·+ pg .

By Riemann-Roch formula, we have

diml(−D ′) = dimi(D ′) + d(D ′) + 1− g ≥ d(D ′) + 1− g = 1,

therefore there is a non-zero meromorphic function f ∈ l(−D ′),
(f ) + D ′ ≥ 0. deg((f ) + D ′) = deg((f )) + deg(D) + g = g , hence

(f ) + D ′ = x1 + x2 + · · ·+ xg , xi ∈ C , i = 1, 2, · · · , g .

Namely (f ) + D =
∑g

i=1(xi − pi ) = Ψ(x1, x2, · · · , xg ). This means
Ψ(x1, x2, · · · , xg ) = [D] ∈ Pic(C ), namely Ψ is surjective.
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Jacobi Theorem

continued.

By Abel theorem, µ is injective. In order to show µ is isomorphic, it is
surficient to show the image of µ contains an open set of [0] ∈ J(C ), in
turn, we only need to show the image of J = µ ◦Ψ contains such an open
set. Select {φi} as the set of holomorphic 1-form basis in lemma of special
holomorphic differential basis. Choose disjoint small disks Bi ⊂ U centered
at pi , the local coordinate on Bi is z . In each Bi , choose zi ∈ Bi , then

λ = (z1, z2, · · · , zg ) ∈ C g .

The local representation of J is

J(z1, z2, · · · , zg ) =

 g∑
j=1

∫ zj

pj

f1dz ,

g∑
j=1

∫ zj

pj

f2dz , · · · ,
g∑

j=1

∫ zj

pj

fgdz

 ,

where the integration paths are contained in each disk Bi ’s.
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Jacobi Theorem

continued.

The i-th component of F is Fi , then

∂Fi
∂zj

= fi (zj).

According to lemma of special holomorphic differential basis, the Jacobi
matrix of J at (p1, p2, · · · , pg ) is non-degenerated. By inverse mapping
theorem, we know the image of J contains an open set. This completes
the proof.
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