Riemann-Roch Theorem

David Gu
Computer Science Department Stony Brook University
gu@cs.stonybrook.edu

August 17, 2022

Abel Differential

An Abel differential has local Laurent series:

$$
=\omega_{2}+\omega_{3}+\omega_{1}
$$

where

$$
\begin{array}{ll}
\text { Type 1: } & \omega_{1}=\left(a_{0}+a_{1}+\cdots+a_{k} z^{k}+\cdots\right) d z \\
\text { Type 2 }: & \omega_{2}=\left(\frac{a_{-n}}{z^{n}}+\frac{a_{-(n-1)}}{z^{n-1}}+\cdots+\frac{a_{-2}}{z^{2}}\right) d z \\
\text { Type 3: } & \omega_{3}=\left(\frac{a_{-1}}{z-p}-\frac{a_{-1}}{z-q}\right) d z
\end{array}
$$

Hyperbolic Geodesic

Bilinear Relation

Definition (Normalized Abel Differential)

Suppose C is a genus g compact Riemann surface, $\left\{a_{1}, b_{1}, \cdots, a_{g}, b_{g}\right\}$ is a set of canonical basis of $\pi_{1}(C, p),\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{g}\right\}$ is a set of basis of $\Omega^{1}(C)$, the period matrix is ($\left./ Z\right)$. Suppose ω is an meromorphic differential. The normalization of ω is given by

$$
\omega_{0}=\omega-\left(A_{1} \varphi_{1}+A_{2} \varphi_{2}+\cdots+A_{g} \varphi_{g}\right)
$$

where $A_{k}=\int_{a_{k}} \omega$ is the A-period of ω on $a_{k}, k=1,2, \cdots, g$.

Bilinear Relation

Theorem (Bilinear Relation)

Suppose ω_{1} is a holomorphic differential (Abel differential of the first type), the A-periods of ω_{1} are $A_{1}, A_{2}, \cdots, A_{g}, B$-periods are $B_{1}, B_{2}, \cdots, B_{g} ; \omega_{3}$ is an Abel differential of the third type, ω_{3} is with simple poles at $p_{1}, p_{2}, \cdots, p_{m}$ and corresponding residues $c_{1}, c_{2}, \cdots, c_{m}$, namely the principle part of ω_{3} at p_{k} is $\frac{c_{k}}{z} d z(1 \leq k \leq m)$, the A-periods are $A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{g}^{\prime}$, the B-periods are $B_{1}^{\prime}, B_{2}, \cdots, B_{g}^{\prime}$. Suppose Ω is a fundamental polygon of C,

$$
\partial \Omega=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}
$$

the boundary of Ω doesn't go through any $p_{k},(1 \leq k \leq m)$. Select a base point $p_{0} \in \Omega, I_{k}$ is the path connecting p_{0} and p_{k}, then

$$
\sum_{i=1}^{g}\left(A_{i} B i^{\prime}-A_{i}^{\prime} B_{i}\right)=2 \pi \sqrt{-1} \sum_{k=1}^{m} c_{k} \int_{l_{k}} \omega_{1}
$$

Hyperbolic Geodesic

homology basis on surface

fundamental polygon

Bilinear Relation

Proof.

Ω is simply connected, define a holomorphic function

$$
f(p)=\int_{p_{0}}^{p} \omega_{1}
$$

the integration path is any analytic path inside Ω connecting p_{0} and p. For each point $p \in a_{j}$, the corresponding point is $p^{\prime} \in a_{j}^{-1}$,

$$
\begin{aligned}
f\left(p^{\prime}\right) & =\int_{p_{0}}^{p^{\prime}} \omega_{1}=\int_{p_{0}}^{p} \omega_{1}+\int_{p}^{q} \omega_{1}+\int_{b_{j}} \omega_{1}+\int_{q}^{p^{\prime}} \omega_{1} \\
& =f(p)+\int_{b_{j}} \omega_{1}=f(p)+B_{j}
\end{aligned}
$$

Similarly, for $p \in b_{j}$, the corresponding equivalence point $p^{\prime} \in b_{j}^{-1}$, we have

$$
f\left(p^{\prime}\right)=f(p)-A_{j}
$$

Bilinear Relation

continued.

For $a_{j} b_{j} a_{j}^{-1} b_{j}^{-1}$, we have

$$
\begin{aligned}
\int_{a_{j} b_{j} a_{j}^{-1} b_{j}^{-1}} f \omega_{3} & =i n t_{a_{j}} f \omega_{3}+\int_{b_{j}} f \omega_{3}+\int_{a_{j}^{-1}} f \omega_{3}+\int_{b_{j}^{-1}} f \omega_{3} \\
& =\int_{a_{j}}\left(f(p)-f\left(p^{\prime}\right)\right) \omega_{3}+\int_{b_{j}}\left(f(p)-f\left(p^{\prime}\right)\right) \omega_{3} \\
& =A_{j} \int_{b_{j}} \omega_{3}-B_{j} \int_{a_{j}} \omega_{3} \\
& =A_{j} B_{j}^{\prime}-A_{j}^{\prime} B_{j}
\end{aligned}
$$

Bilinear Relation

continued.

By residue theorem,

$$
\begin{aligned}
\sum_{j=1}^{g} \int_{a_{j} b_{j} a_{j}^{-1} b_{j}^{-1}} f \omega_{3} & =\int_{\partial \Omega} f \omega_{3}=2 \pi \sqrt{-1} \sum_{k=1}^{m} \operatorname{Res}\left(f \omega_{3}, p_{k}\right) \\
\sum_{j=1}^{g}\left(A_{j} B_{j}^{\prime}-B_{j} A_{j}^{\prime}\right) & =2 \pi \sqrt{-1} \sum_{k=1}^{m} f\left(p_{k}\right) c_{k}
\end{aligned}
$$

This is the desired bilinear relation.

Bilinear Relation

Corollary

If ω_{3} is a normalized Abel differential of the third type, $\varphi_{1}, \cdots, \varphi_{g}$ is a canonical basis of holomorphic differentials, (period matrix is (I Z)), then

$$
B_{k}^{\prime}=\int_{b_{k}} \omega_{3}=2 \pi \sqrt{-1} \sum_{j=1}^{m} c_{j} \int_{l_{j}} \varphi_{k} .
$$

Bilinear Relation

Proof.

Let $\omega_{1} \leftarrow \varphi_{k}$, then $A_{i}\left(\varphi_{k}\right)=\delta_{i}^{k} ; \omega_{3}$ is normalized, then $A_{j}^{\prime}=0$, $(1 \leq j \leq g)$:

$$
\begin{aligned}
\sum_{j=1}^{g}\left(A_{j} B_{j}^{\prime}-B_{j} A_{j}^{\prime}\right) & =2 \pi \sqrt{-1} \sum_{j=1}^{m} f\left(p_{j}\right) c_{j} \\
\sum_{j=1}^{g} A_{j} B_{j}^{\prime} & =2 \pi \sqrt{-1} \sum_{j=1}^{m} f\left(p_{j}\right) c_{j} \\
B_{k}^{\prime} & =2 \pi \sqrt{-1} \sum_{j=1}^{m} f\left(p_{j}\right) c_{j}
\end{aligned}
$$

Bilinear Relation

Corollary

If ω_{3} is a normalized Abel differential of the third type with simple poles at p_{1}, p_{2} and the corresponding residues $+1,-1 ; \varphi_{1}, \cdots, \varphi_{\mathrm{g}}$ is a canonical basis of holomorphic differentials, (period matrix is $(I Z)$), then

$$
B_{k}^{\prime}=\int_{b_{k}} \omega_{3}=2 \pi \sqrt{-1} \sum_{j=1}^{m} c_{j} \int_{l_{j}} \varphi_{k}=-p i \int_{p_{1}}^{p_{2}} \varphi_{k} .
$$

Bilinear Relation

Theorem

Suppose ω_{2} is an Abel differential of the second type with a single pole at p_{0}, the Laurent series of ω_{2} in a local parameter neighborhood of p_{0} is

$$
\frac{d z}{z^{n}} \quad(n \geq 2)
$$

where $z=\varphi(p)$ is the local parameter, $\varphi\left(p_{0}\right)=0$. ω_{1} is a holomorphic differential with local representation

$$
\omega_{1}=\left(c_{0}+c_{1} z+\cdots+c_{n-2} z^{n-2}+c_{n-1} z^{n-1}+c_{n} z^{n} \cdots\right) d z
$$

The A-period, B-period of ω_{1} are A_{j}, B_{j}; those of ω_{2} are A_{j}^{\prime} and B_{j}^{\prime}, then we have

$$
\begin{equation*}
\sum_{j=1}^{g}\left(A_{j} B_{j}^{\prime}-A_{j}^{\prime} B_{j}\right)=2 \pi \sqrt{-1} \frac{c_{n-2}}{n-1} \tag{1}
\end{equation*}
$$

Bilinear Relation

Proof.

Similar to the last proof, in Ω define $f(p)=\int_{p_{0}}^{p} \omega_{1}$, the integration path is inside. Then in the neighborhood of p_{0},

$$
\begin{aligned}
f(z) & =c_{0} z+\frac{c_{1}}{2} z^{2}+\cdots+\frac{c_{n-2}}{n-1} z^{n-1}+\cdots, \\
f \omega_{2}(z) & =c_{0} z^{-(n-1)}+\frac{c_{1}}{2} c_{0} z^{-(n-2)}+\cdots \frac{c_{n-2}}{n-1} z^{-1}+\cdots
\end{aligned}
$$

then we obtain

$$
\sum_{j=1}^{g}\left(A_{j} B_{j}^{\prime}-A_{j}^{\prime} B_{j}\right)=2 \pi \sqrt{-1} \operatorname{Res}\left(f \omega_{2}, p_{0}\right)
$$

hence

$$
2 \pi \sqrt{-1} \operatorname{Res}\left(f \omega_{2}, p_{0}\right)=2 \pi \sqrt{-1} \frac{c_{n-2}}{n-1}
$$

Bilinear Relation

Corollary

Suppose ω_{2} is a normalized Abel differential of the second type with a single pole at p_{0}, the Laurent series of ω_{2} in a local parameter neighborhood of p_{0} is

$$
\frac{d z}{z^{n}} \quad(n \geq 2)
$$

where $z=\varphi(p)$ is the local parameter, $\varphi\left(p_{0}\right)=0 .\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{g}\right\}$ is the canonical basis of holomorphic differentials (period matrix (I Z)) with local representation

$$
\varphi_{k}=\left(a_{k, 0}+a_{k, 1} z+\cdots+a_{k, n-2} z^{n-2}+a_{k, n-1} z^{n-1}+a_{k, n} z^{n} \cdots\right) d z
$$

Then

$$
\begin{equation*}
B_{k}^{\prime}=\int_{b_{k}} \omega_{2}=2 \pi \sqrt{-1} \frac{a_{k, n-2}}{n-1} . \tag{2}
\end{equation*}
$$

Bilinear Relation

Proof.

The A-periods of $\omega_{2}, A_{j}^{\prime}$ are zeros. The A-period of φ_{k} are $A_{j}\left(\varphi_{k}\right)=\delta_{i}^{k}$. Set $\omega_{1} \leftarrow \varphi_{k}$, then we have

$$
\begin{equation*}
\sum_{j=1}^{g}\left(A_{j}\left(\varphi_{k}\right) B_{j}^{\prime}-A_{j}^{\prime} B_{j}\right)=\sum_{j=1}^{g} A_{j}\left(\varphi_{k}\right) B_{j}^{\prime}=B_{k}^{\prime}=2 \pi \sqrt{-1} \frac{a_{k, n-2}}{n-1} \tag{3}
\end{equation*}
$$

Riemann Roch

Definition

Let $K(C)$ represent all the meromorphic functions defined on the Riemann surface C;

$$
L(D):=\{f \in K((C):(f) \geq D\}
$$

$\Omega(C)$ represents all the meromorphic differentials on C,

$$
\Omega(D):=\{\omega \in \Omega(C):(\omega) \geq D\} .
$$

For example

$$
\Omega(0)=\{\text { holomorphic differentials }\} .
$$

By Laurent series, it is easy to show $\nu_{p}(f+g) \geq \min \left\{\nu_{p}(f), \nu_{p}(g)\right\}$, then $L(D)$ and $\Omega(D)$ are linear spaces.

Divisors

Definition (Effective Divisor)

A divisor D is called effective, if $D \geq 0$, namely

$$
D=\sum_{k=1}^{m} n_{k} p_{k}, \quad n_{k} \geq 0
$$

Definition (Multiple Divisor)

A divisor D_{1} is called a multiple divisor of D_{2} if $D_{1}-D_{2} \geq 0$.

Riemann Roch

Given a divisor $D=\sum_{k=1}^{m} n_{k} p_{k}, D=D^{+}+D^{-}$, where

$$
\begin{aligned}
& D^{+}=\sum_{k=1}^{m} \max \left\{n_{k}, 0\right\} p_{k} \\
& D^{-}=\sum_{k=1}^{m} \min \left\{n_{k}, 0\right\} p_{k}
\end{aligned}
$$

If $D_{1} \leq D_{2}$, then $\operatorname{dim} L\left(D_{2}\right) \leq \operatorname{dim} L\left(D_{1}\right)$. So

$$
\operatorname{dim} L(D) \leq \operatorname{dim} L\left(D^{-}\right)<\infty
$$

Riemann Roch

Suppose

$$
D^{-}=-\sum_{k=1}^{m} n_{k} p_{k} \quad n_{k} \in \mathbb{Z}^{+}
$$

Suppose at the neighborhood of p_{k}, the principle part of f is given by

$$
f_{k}(z):=\frac{a_{k, n_{k}}}{z^{n_{k}}}+\frac{a_{k, n_{k}-1}}{z^{n_{k}-1}}+\cdots \frac{a_{k, 2}}{z^{2}}+\frac{a_{k, 1}}{z^{1}}
$$

Then

$$
f-f_{1}-f_{2}-\cdots-f_{m} \equiv c
$$

is a holomorphic function, thereefore equals to a constant c. So there are

$$
c, a_{1,1}, \cdots, a_{1, n_{1}}, a_{2,1}, \cdots, a_{2, n_{2}}, \cdots, a_{m, 1}, \cdots, a_{m, n_{m}}
$$

Therefore

$$
\operatorname{dim} L\left(D^{-}\right)=1+\sum_{j=1} n_{j}=-\operatorname{deg}\left(D^{-}\right)+1<\infty
$$

Riemann Roch

Theorem

Suppose ω_{0} is a meromorphic differential, $\omega_{0} \not \equiv 0$, then for any divisor D

$$
\operatorname{dim} \Omega(D)=\operatorname{dim} L\left(D-\left(\omega_{0}\right)\right)
$$

Proof.

For any $\omega \in \Omega(D),(\omega) \geq D$

$$
\left(\frac{\omega}{\omega_{0}}\right)=(\omega)-\left(\omega_{0}\right) \geq D-\left(\omega_{0}\right)
$$

therefore $\frac{\omega}{\omega_{0}} \in L\left(D-\left(\omega_{0}\right)\right)$. Inversely, if $f \in L\left(D-\left(\omega_{0}\right)\right)$, then

$$
\left(f \omega_{0}\right)=(f)+\left(\omega_{0}\right) \geq D-\left(\omega_{0}\right)+\left(\omega_{0}\right)=D
$$

$f \omega_{0} \in \Omega(D)$. So $\omega \mapsto \frac{\omega}{\omega_{0}}$ is an isomorphism.

Riemann-Roch Theorem

Theorem (Riemann-Roch)
Suppose C is a genus g compact Riemann surface, given a divisor D, then

$$
\begin{equation*}
\operatorname{dim} L(-D)=\operatorname{dim} \Omega(D)+\operatorname{deg}(D)-g+1 \tag{4}
\end{equation*}
$$

Riemann-Roch Theorem

Proof.

First, we prove the theorem for $D=0$, then $L(0)$ is the space of holomorphic functions, which are constants globally. $\operatorname{dim} L(0)=1 ; \Omega(0)$ is the space of holomorphic 1 -forms, $\operatorname{dim} \Omega(D)=g$, therefore

$$
\operatorname{dim} L(0)=\operatorname{dim} \Omega(0)+\operatorname{deg}(0)-g+1
$$

Riemann-Roch Theorem

continued.

Second, we prove the theorem for effective divisor $D>0$.

$$
D=\sum_{k=1}^{m} n_{k} p_{k}, \quad n_{k}>0
$$

By definition, $f \in L(-D)$ iff f has a pole at p_{k} with an order no greater than n_{k}. Take a local parameter disk V_{k} centered at p_{k}, the local parameter is

$$
z=z(p), \quad z\left(p_{k}\right)=0
$$

Take a set of canonical homology basis $\left(a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}\right)$, which don't go through $p_{k} . \forall f \in L(-D), d f$ has Laurent series

$$
d f=\left(\sum_{j=2}^{n_{k}+1} \frac{c_{j}\left(p_{k}\right)}{z^{j}}+\sum_{j=0}^{\infty} A_{j}\left(p_{k}\right) z^{j}\right) d z
$$

Riemann-Roch Theorem

continued.

Let

$$
D_{1}=\sum_{k=1}^{m}\left(n_{k}+1\right) p_{k},
$$

then $d f \in \Omega\left(-D_{1}\right)$. The differential operator d defines a homomorphism $d: L(-D) \rightarrow \Omega\left(-D_{1}\right), f \mapsto d f$, the image space of $L(-D)$ is $d L(-D)$, which is a sublinear space of $\Omega\left(-D_{1}\right)$.
Consider $d L(-D), \forall p_{k}, 1 \leq k \leq m$ and $2 \leq n \leq n_{k}+1$, let ω_{k}^{n} be the normalized Abel differential of the second type, which has zero A-periods and a single pole at p_{k} with order n, and principle part $\frac{d z}{z^{n}}$ in the local parameter disk $V_{k},\left(\omega_{k}^{n}\right)_{\infty}=-n p_{k}, \forall f \in L(-D)$,

$$
d f=\sum_{k=1}^{m} \sum_{j=2}^{n_{k}+1} c_{j}\left(p_{k}\right) \omega_{k}^{j}+\varphi
$$

where φ is a holomorphic differential.

Riemann-Roch Theorem

continued.

$$
\begin{array}{r}
\int_{a_{j}} d f=0, \int_{a_{j}} \omega_{k}^{n}=0,1 \leq j \leq g \Longrightarrow \int_{a_{j}} \varphi=0 \\
\|\varphi\|^{2}=\sqrt{-1} \sum_{j=1}^{g}\left(A_{j} \bar{B}_{j}-B_{j} \bar{A}_{j}\right)=0 \Longrightarrow \varphi=0
\end{array}
$$

$\left\{\omega_{k}^{n}\right\}, 1 \leq k \leq m, 2 \leq n \leq n_{k}+1$ are linearly independent, they form a basis of $d L(-D),\left|\left\{\omega_{k}^{n}\right\}\right|=\operatorname{deg}(D) . d: L(-D) \rightarrow \mathbb{C}^{\operatorname{deg} D}$,

$$
f \mapsto d f=\left(c_{j}\left(p_{k}\right): 1 \leq k \leq m, 2 \leq j \leq n_{k}+1\right) .
$$

Riemann-Roch Theorem

continued.

For any $\left(c_{j}\left(p_{k}\right)\right) \in \mathbb{C}^{\operatorname{deg} D}$, there is a $f \in L(-D)$, such that $d f \mapsto\left(c_{j}\left(p_{k}\right)\right)$, if and only if

$$
\sum_{k=1}^{m} \sum_{j=2}^{n_{k}+2} c_{j}\left(p_{k}\right) \omega_{k}^{j}
$$

is exact, hence the B-periods for the above differential are zeros (since ω_{k}^{n} are normalized, the A-periods are automatically zeros): for any b_{l}, $1 \leq I \leq g$,

$$
\begin{equation*}
\sum_{k=1}^{m} \sum_{j=2}^{n_{k}+2} c_{j}\left(p_{k}\right) \int_{b_{l}} \omega_{k}^{j}=0, \quad I=1,2, \cdots, g \tag{5}
\end{equation*}
$$

Riemann-Roch Theorem

continued.

The dimension of $d L(-D)$ equals to the dimension of the solution space of above linear equation group. The coefficient matrix is

$$
\left(\int_{b_{l}} \omega_{k}^{n}\right)_{g \times \operatorname{deg}(D)}
$$

assume its rank is r, then $\operatorname{dim}(d L(-D))=\operatorname{deg} D-r$. On the other hand, the kernel of d is

$$
d^{-1}(0)=\{f \in L(-D): d f=0\}=\mathbb{C}
$$

therefore $\operatorname{dim}\left(d^{-1}(0)\right)=1$. By $L(-D) / d^{-1}(0) \cong d L(D)$, we have

$$
\begin{equation*}
\operatorname{dim} L(-D)=\operatorname{dim}(d L(-D))+1=\operatorname{deg} D-r+1 \tag{6}
\end{equation*}
$$

Riemann-Roch Theorem

continued.

The holomorphic differential space is $\Omega(0)=A$ with canonical basis $\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{g}\right\}, \int_{a_{j}} \varphi_{i}=\delta_{i}^{j}$. The local representations for φ_{l} in V_{k}, $1 \leq k \leq m$

$$
\varphi_{I}=a_{l, 0}\left(p_{k}\right)+a_{l, 1}\left(p_{k}\right) z+a_{l, 2}\left(p_{k}\right) z^{2}+\cdots+a_{l, n_{k}-1}\left(p_{k}\right) z^{n_{k}-1}+\cdots
$$

for any $\omega \in \Omega(D), D>0$ then ω is a holomorpic differential, $\omega \in A$, there is a set of complex numbers $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{g}\right)$

$$
\begin{aligned}
\omega & =\lambda_{1} \varphi_{1}+\lambda_{2} \varphi_{2}+\cdots+\lambda_{g} \varphi_{g} \\
& =\sum_{l=1}^{g} \lambda_{l}\left(\sum_{i=1}^{n_{k}-1} a_{l, i}\left(p_{k}\right) z^{i}+\sum_{i=n_{k}}^{\infty} a_{l, i}\left(p_{k}\right) z^{i}\right)
\end{aligned}
$$

Riemann-Roch Theorem

continued.

$\forall p_{k}, 1 \leq k \leq m, \omega$ has zero at p_{k} with order $\geq n_{k}$, we obtain the linear system

$$
\begin{equation*}
\sum_{l=1}^{g} a_{l, j}\left(p_{k}\right) \lambda_{I}=0, \quad k=1,2, \cdots, m, j=0,1, \cdots, n_{k}-1 \tag{7}
\end{equation*}
$$

reversely, if $\left(\lambda_{1}, \cdots, \lambda_{g}\right)$ is a solution to the above linear system, then $\omega \in \Omega(D)$.
Define linear operator $T: \Omega(D) \rightarrow \mathbb{C}^{g}, \omega \mapsto\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{g}\right)$, then $\Omega(D)$ is isomorpic to the solution space of the linear system Eqn. (7), whose coefficient matrix is

$$
\left(a_{l, j}\left(p_{k}\right)\right)_{\operatorname{deg} D \times g} .
$$

Assume its rank is ρ, the dimension of the solution space of Eqn. (7) is $g-\rho$, hence

$$
\operatorname{dim} \Omega(D)=g-\rho
$$

Riemann-Roch Theorem

continued.

We claim that $r=\rho$. By the bilinear relation between the Abel differential of the first type and the Abel differential of the second type, we have

$$
\left(\int_{b_{l}} \omega_{k}^{j}\right)_{g \times \operatorname{deg} D}=\left(\frac{2 \pi \sqrt{-1} a_{l, j-2}\left(p_{k}\right)}{j-1}\right)
$$

where $I=1, \cdots, g, k=1, \cdots, m, j=2,3, \cdots, n_{k}+1$. The left hand side is

$$
\left[\begin{array}{ccccccc}
\left\langle b_{1}, \omega_{1}^{2}\right\rangle & \cdots & \left\langle b_{1}, \omega_{1}^{n_{1}+1}\right\rangle & \cdots & \left\langle b_{1}, \omega_{m}^{2}\right\rangle & \cdots & \left\langle b_{1}, \omega_{m}^{n_{m}+1}\right\rangle \\
\left\langle b_{2}, \omega_{1}^{2}\right\rangle & \cdots & \left\langle b_{2}, \omega_{1}^{n_{1}+1}\right\rangle & \cdots & \left\langle b_{2}, \omega_{m}^{2}\right\rangle & \cdots & \left\langle b_{2}, \omega_{m}^{n_{m}+1}\right\rangle \\
\vdots & & \vdots & & \vdots & & \vdots \\
\left\langle b_{g}, \omega_{1}^{2}\right\rangle & \cdots & \left\langle b_{g}, \omega_{1}^{n_{1}+1}\right\rangle & \cdots & \left\langle b_{g}, \omega_{m}^{2}\right\rangle & \cdots & \left\langle b_{g}, \omega_{m}^{n_{m}+1}\right\rangle
\end{array}\right]
$$

Riemann-Roch Theorem

continued.

The right hand side is given by

$$
2 \pi \sqrt{-1}\left(a_{l, j-2}\left(p_{k}\right)\right)\left[\begin{array}{llll}
D_{1} & & & \\
& D_{2} & & \\
& & \ddots & \\
& & & D_{m}
\end{array}\right], D_{k}=\left[\begin{array}{cccc}
\frac{1}{2} & & & \\
& \frac{1}{3} & & \\
& & \ddots & \\
& & & \frac{1}{n_{k}+1}
\end{array}\right]
$$

Since $\operatorname{diag}\left(D_{1}, \cdots, D_{m}\right)$ is full rank, so the rank of the LHS r equals to that of the RHS ρ, therefore

$$
r=\rho .
$$

Riemann-Roch Theorem

continued.

$$
\left\{\begin{aligned}
\operatorname{dim} L(-D) & =(\operatorname{deg} D-r)+1 \\
\operatorname{dim} \Omega(D) & =g-\rho \\
\rho & =r
\end{aligned}\right.
$$

Therefore, we obtain if $D \geq 0$

$$
\operatorname{dim} L(-D)=\operatorname{dim} \Omega(D)+\operatorname{deg} D-g+1
$$

Riemann-Roch Theorem

Proof.

Suppose ω is a meromorphic differential, then $\operatorname{deg}(\omega)=2 g-2$,

$$
\begin{cases}\operatorname{dim} \Omega(D) & =\operatorname{dim} L(D-(\omega)) \\ \operatorname{deg}(D-(\omega)) & =\operatorname{deg} D-\operatorname{deg}(\omega) \\ \operatorname{deg}(\omega) & =2 g-2\end{cases}
$$

$$
\operatorname{dim} L(-D)=\operatorname{dim} \Omega(D)+\operatorname{deg} D-g+1
$$

$\operatorname{dim} L(-D)+\frac{1}{2} \operatorname{deg}(-D)=\operatorname{dim} \Omega(D)+\frac{1}{2} \operatorname{deg} D-\frac{1}{2} \operatorname{deg}(\omega)$
$\operatorname{dim} L(-D)+\frac{1}{2} \operatorname{deg}(-D)=\operatorname{dim} L(D-(\omega))+\frac{1}{2} \operatorname{deg}(D-(\omega))$
$\operatorname{dim} L(-D)+\frac{1}{2} \operatorname{deg}(-D)=\operatorname{dim} L(-((\omega)-D))+\frac{1}{2} \operatorname{deg}(-((\omega)-D))$

Riemann-Roch Theorem

continued.

We have obtained another symmetric formula of Riemann-Roch

$$
\operatorname{dim} L(-D)+\frac{1}{2} \operatorname{deg}(-D)=\operatorname{dim} L(-((\omega)-D))+\frac{1}{2} \operatorname{deg}(-((\omega)-D))
$$

If $D \geq 0$ or $(\omega)-D \geq 0$ (D is equivalent to an effective divisor, or $(\omega)-D$ is equivalent to an effective divisor), then the RR has been proven. Otherwise we claim
(1) $\operatorname{dim} L(-D)=0$
(2) $\operatorname{dim} L(-((\omega)-D))=0$
(3) $\operatorname{deg}(D)=g-1$

Riemann-Roch Theorem

continued.

(1) If $\operatorname{dim} L(-D) \neq 0$, then $\exists f \in L(-D),(f)+D \geq 0$. Let $D_{1}=(f)+D 0, D_{1}-D=(f)$, hence $D_{1} \sim D, D$ is equivalent to an effective divisor, contradiction. Therefore $\operatorname{dim} L(-D)=0$.
(2) Similarly $\operatorname{dim} L(D-(\omega))=0$.

Riemann inequality: by $r \leq g$

$$
\operatorname{dim} L(-D)=\operatorname{dim}(d L(-D))+1=\operatorname{deg} D-r+1 \geq \operatorname{deg} D-g+1
$$

We decompose $D=D_{1}-D_{2}$, where $D_{1}>0$ and $D_{2}>0$, therefore $\operatorname{deg} D=\operatorname{deg} D_{1}-\operatorname{deg} D_{2}$. By Riemann inequality $\operatorname{dim} L\left(-D_{1}\right) \geq \operatorname{deg} D_{1}-g+1$,

$$
\operatorname{dim} L\left(-D_{1}\right) \geq \operatorname{deg} D+\operatorname{deg} D_{2}-g+1
$$

Riemann-Roch Theorem

continued.

Claim: $\operatorname{deg} D \leq g-1$
Otherwise if $\operatorname{deg} D \geq g$, then $\operatorname{dim} L\left(-D_{1}\right) \geq \operatorname{deg} D_{2}+1=n$, there are $\operatorname{deg} D_{2}+1$ linearly independent meromorphic functions in $L\left(-D_{1}\right)$,

$$
\begin{gathered}
f_{1}, f_{2}, \cdots, f_{n}, n=\operatorname{deg} D_{2}+1 \\
D_{2}=\sum_{k=1}^{m} n_{k} p_{k}, \quad n_{k}>0
\end{gathered}
$$

find $\left(\lambda_{1}, \cdots, \lambda_{n}\right) \neq 0$, such that

$$
f=\lambda_{1} f_{1}+\lambda_{2} f_{2}+\cdots+\lambda_{n} f_{n}
$$

$f \in L(-D)=L\left(-D_{1}+D_{2}\right)$.

Riemann-Roch Theorem

continued.

It suffices to make f to have zeros at $p_{k}(1 \leq k \leq m)$ with order at least n_{k}, namely

$$
(f)+D_{1}-D_{2} \geq(f)-D_{2} \geq 0
$$

as previous proof

$$
\begin{aligned}
f_{i} & =\sum_{j=0}^{n_{k}} a_{i, j}\left(p_{k}\right) z^{j}+\sum_{j=n_{k}+1}^{\infty} a_{i, j}\left(p_{k}\right) z^{j} \\
0 & =\sum_{i=1}^{n} \lambda_{i} a_{i, j}\left(p_{k}\right), \quad 1 \leq k \leq m, 1 \leq j \leq n_{k}
\end{aligned}
$$

There are $n=\operatorname{deg} D_{2}+1$ unknowns λ_{i}, and $\operatorname{deg} D_{2}$ equations. Therefore, there exists a non-zero solution $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right) \neq 0$, hence $f \not \equiv 0$, $f \in L(-D)$, contradict to $\operatorname{dim} L(-D)=0$. So we obtain $\operatorname{deg} D \leq g-1$, similarly $\operatorname{deg}((\omega)-D) \leq g-1$.

Riemann-Roch Theorem

continued.

But we know

$$
\operatorname{deg} D+\operatorname{deg}((\omega)-D)=\operatorname{deg}()=2 g-2
$$

hence

$$
\operatorname{deg} D=g-1, \quad \operatorname{deg}((\omega)-D)=g-1
$$

By three claims we obtain: if D and $(\omega)-D$ are not (equivalent to) effective divisors, then RR still holds

$$
\underbrace{\operatorname{dim} L(-D)}_{0}+\frac{1}{2} \underbrace{\operatorname{deg}(-D)}_{g-1}=\underbrace{\operatorname{dim} L(-((\omega)-D))}_{0}+\frac{1}{2} \underbrace{\operatorname{deg}(-((\omega)-D))}_{g-1}
$$

