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Minkowski Problem 4
—

Minkowski Problem

Given k unit vectors ny, -« -, ny,

not contained in any half-space n
of R™ Aqy,---,Ax > 0,
satisfying I

k
Z Aini = 0,
o/

find a compact convex

polyhedron P, with &

co-dimension 1 facets ) Minkowski problem.
Fy, .-+, F}, such that the

volume of F; equals to A;, the

normal to F; is n;.



Minkowski Theorem 5

—
EH (Minkowsi) a

Such kind of P exists, and is )

unique up to a translation. “

[¥]: Minkowski Problem.



Alexandrov Theorem 6

EF (Alexadnrov 1950)

Suppose € is a compact convex
domain in R™, p1,..., pg are

distinct vectors in R", \?Wr uplz)
Ay, ..., A > 0, satisfying
> A; = vol(2), then there exists @

a convex piecewise linear
function, unique up to a
constant,

u(z) = max(pi,a) — hy

[#: Alexandrov Theorem.
such that

vol(W;) = Ai, Wi = {alu(z) = pi}.



Semi-discrete Optimal Transportation 7

[4]: Semi-discrete Optimal Transportation, initial stage.



Semi-discrete Optimal Transportation 8

[4: Semi-discrete Optimal Transportation, final stage.



Semi-discrete Optimal Transportation 9

Buddha surface Riemann mapping

[4]: Conformal mapping.



Semi-discrete Optimal Transportation 10

Riemann Mapping OT Mapping



Semi-discrete Worst Transportation 11

Riemann Mapping Worst Transportation
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Brenier potential Legendre dual



Semi-discrete Transportation Map 13

Brenier potential Legendre dual



Optimal, worst transportation comparison 14

Riemann Mapping OT mapping WT mapping



Continuous Minkowski Problem I 15

—

Suppose K C R¢ is a bounded open convex domain, containing
the origin, the boundary 0K is parameterized by polar
coordinates:

OK = {p(x)z: z€ S+t p: sl R*1.
7E X (sub-normal map)

For any point z € 9K, the sub-normal map maps a point zto a
closed set on the unit sphere, z — Ng(2),

Nk(2) := {yESd_l:KC{w:(y,w—z}SO}}. ¢ (1



Continuous Minkowski Problem I 16

- NK(zl)

NK(ZQ)

p(z)z € OK

[#: Given a convex K 3 0, the boundary 0K is parameterized by polar
coordinates, represented as p : S¥~! — R*. Given a point z € 0K, the
set Nk(z) consists of all the exterior normals at 2. When K has a
unique tangent plane at z (such as z3), Ni(2) is a singleton. If z is a
corner point, then Ng(z) consists of multiple elements (such as z;).



Gauss Map 17
—

& X (Gauss Map)
Multi-valuedGauss map Gg : S%1 — S% 1 is defined by:

Gi(a) = N(p(a)a).
The Gauss curvature measure is defined as:
pi(B) = H"Y(G(E)), V Borel 4 Ec S41

where H% ! represents the d — 1 dimensional Hausdorff measure
on S%1. O

It can be shown that px is a Borel measure.



Minkowski Problem I 18

— ’n ﬂ:_!ﬁ (Minkowski I)

Given a Borel measure v defined on the sphere S™1, can we
find a bounded convex open set K > 0, such that v = ug? ]

NA
SZ
/\‘

G\

K

NawZt

[%]: Minkowski Problem I.




Minkowski Problem I 19

o
7 X (Spherical Convex Set and Polar Set)

Given a spherical set w C ST!, we say w is convex, if the cone
Rtw:= {tz: t>0,z€ w}
is convex. The polar set of w is defined as

whi={ye S (g9 <O,VzEw}). [
EF (Minkowski I)
Let v be a Borel measure on S*1, then there exists a bounded

convex open set K, such that

(a) v(ST1) = HIH (ST,

v e { (6) V(ST \w) > HIH (w"), Yw C 84T compact conv

If K exists, then different solutions differ by a dilation. O



Regularity of the Solution to Minkowski Problem I 20

EH (Regularity of the Solution to Minkowski Problem)

Suppose K C R3 is a convex open set containing the origin, if
pK = fdH?, the density function f: S* — R is bounded, then
oK is C'. O



Existence of the Solution to Minkowski Problem I 21

—

[#: Generalized Legendre Transform,
h(y) = max{p(z)(z, y),z € S"'}.




Existence of the Solution to Minkowski Problem I 22

7 X (Spherical Legendre Dual)

Given a hyper-surface in R?, with polar representation
S:={p(x)z: €S p:S! - R+} its spherical Legendre
dual is §* := {h(y)y: y € S 1 h: ST = R}, where

hy) = :;1}3 1 p(z)(z, ). (2)

symmetrically, S = (S*)*, furthermore

h(y) (3)

)

z) = inf
Pl yesi-1 (z, y)

or equivalently




Legendre Dual 23
—

Formula ( [T3)

cost determines support, support envelopes potential ({72

B, SOEUSTE);

T

[¥]: Legendre Dual in Euclidean Space.



Legendre Dual 24
—
Formula (1)

Differentiation of Potential gives maps; maps is dual to convex

hull - (FRERI BT BRI )

T

[4]: Euclidean Legendre dual. Support plane (p,z) —h =0, dual point
(p, h).



Spherical Legendre Dual 25

ormula
cost transformed to support, support envelopes potential,
potential differentiates map, map dual to convex hull.

[#: Legendre dual. support plane p(z) = h/(z,y), dual point h~ty



Solution to Minkowski Problem 1 26

Take logarithm of spherical Legendre duality formula,

log p(z) = ig}f{— log(z, y) — log h(ly)} ; (4)
and
log h(ly) — inf {~ log(z,3) — log p(x)} . (5)

Define cost function ¢ : S*1 x S — R* U {0},
C(.T, y) = 10g<$, y>7 (6)

then log p(z) and —log h(y) are c-transform of each other:

“=lo L 0 1 7:: og p(x
(o8 p(2))° = log 75 (lgh(y)) log (a).

=



Proof for Minkowski I 27
ERA.
Minkowski problem I can be rephrased as an optimal
transportation problem: given a Borel measure v on S !, find
an optimal transportation map 7: (S, H41) — (S41,v),

min / —log(z, T(x))dH .
§d—1

T#/Hd71=I/

this is equivalent to the dual problem:
max {/ o(x)dH (z) +/ ©(y)dv(y), ¢ € c-conv (Sd_1>} .
Sgd—1 Sd—1

the cost function —log(z, %) is continuous, S9! is a compact
metric space, by (DP) theory, there exists a solution

(0, 0) = (p(x),1/h(y))- -



Minkowski Problem II 28
—

Assume S is a smooth strictly convex surface, its Gauss map

Ny : S — S? is invertible. We can use Gauss sphere to
parameterize the surface, denoted as S(y), y € S?. The normal
to the surface at S(y) is y, the Gaussian curvature is K(y). The
Gaussian curvature satisfies:

/ i Az (y) =0,
82

The surface area element is:

dv = dAs(y) = dAs: (y).

1
K(y)
Namely, the Gauss map pushes the area element dAg to
measure v on the Gauss sphere , the density is IC(y) !



Minkowski Problem II 29
—

)@ (Minkowski II)

Given measure v on the sphere, satisfying

/SQ ydv(y) =0,

Find a convex surface S(y), such that dv is the area element of
S, where the density of v is dv = @dASQ, the normal to the
surface at S(y) is y, and the Gaussian curvature is K(y).

In Minkowski problem I, the surface has polar representation
p(z)z, v € S% in Minkowski problem II, surface is parameterized
by the Gauss sphere, namely parameterized by the normals.



Minkowski Problem II 30
—

We use the sum of Dirac distributions to approximate the
measure v. Construct a cell decomposition of the sphere D,

= U W’[?
=1

for each cell W;, compute a vector

/ i s

let A; = |v;| and y; = v;/ Ay, then use {(A;, y;)}i-, to solve
discrete Minkowski problem to obtain the discrete convex
polyhedron P, the normal to the +th face is y;, the area of the
i-th face is A;.



Minkowski Problem II 31
—

Construct a sequence of cell decompositions Dy, Do, ..., D,, ...,
if the diameters of the cells uniformly monotonously converge to
0, then there is a subsequence of convex polyhedra

Py, Py, ..., Py, ... converge to the smooth convex surface S.



Reflector Design 32

—

A illumination system consists of a point light source at O and
a reflector surface I' with polar representation,

Ty ={zp(x);z€Q}, p>0, (7)

all the incidence light rays fall inside the input domain ).




Reflector Design 33

—

If we only consider the far field problem, then we can only care
about the directions of the reflected rays. All the reflected rays
fall in the output domain *.

[4]: Tllumination system.



Reflector Design 34
—

[&]: Left: the desired far field image, Lena; Right: the simulated
reflected image.



Reflector Design 35
—

[4]: The reflector surface for the Lena image.




Reflector Design 36

[€]: Left: the desired far field image, Monge; Right: the simulated
reflected image.
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—

[4: The reflector surface for the Lena image.




Reflector Design 38
—

Suppose fis the illumination intensity defined on the input
domain €2, namely the distribution of the incidence rays
emanating from O, ¢ is the illumination intensity in the output
domain Q*. Assume there is no energy loss, then according
energy conservation law, we have

L= ®)



Reflector Design 39

—

A ray emanates from O, propagates along a direction z € €2,
intersects the mirror at z = zp(z) € I, the reflection direction
is determined by the reflection law,

T(z) = Ty(x) = Op(x) = x— 2(z, m)m, (9)

where 7 is the exterior normal to the reflector surface I', at
point z, (z, n) represents the inner product. By energy
conservation, 7T'is measure preserving,

/ | )f:/g, V Borel 25 EC Q. (10)
T-\(E E

satisfying the natural boundary condition

T,(Q) = dp(Q) = Q. (11)



Reflector Design 40

—

By measure preserving condition, we can obtain the PDE for
the reflector. In fact, at z € §2, the Jacobi of T equals to
f(z)/g(T(x)), in a local ortha-normal coordinates of S?, the local
representation of the PDE is

Lp =12 det(=ViVip+2p~'VipVjp+ (p—n)dy) = f(2)/9(T(x)),
(12)
where V is the covariant differential operator,

n=(|Vpl|* + p?)/2p, and §;; is the Kronecker function. This is a
non-linear Monge-Ampeére PDE, a natural boundary condition
is

7,(9) = 9p(©) = . (13)



Reflector Design 41
—

i@ (Reflector Design)

Given spherical domains Q, Q* C S?, and density functions
[:Q =Ry and g: Q" — Ry, find a reflector surface Iy, such
that the reflection map T, satisfies the measure-preserving
condition and the natural boundary condition. O



Surface with uniform reflection property 42

—

[¥: A paraboloid of revolution about the axis of direction gy, with
radial representation p(z) = C/(1 — (, y)).

The uniform reflection property of a paraboloid of revolution:
all the reflected rays of the incidence rays parallel to the
rotation axis intersect at the focal point, vice versa.



Reflector Design 43

—

& X (Supporting Paraboloid)

Let p € C(Q) be a positive function, I', = {zp(z) : z € Q}
represents the radial graph of p. We say I'), is a supporting
paraboloid of p at zpp(x0) € 'y, where p = p, ¢, if

(70) = py,c(20),
[ i

7E X (Admissible Function)

We say p is an admissible function, if its radial graph I', has a
supporting paraboloid at every point. O



Reflector Design 44

—
7€ X (Subdifferential)

Let p be an admissible function, the subdifferential is a
set-valued map Op : Q — S?: for any xp € Q, dp(x0) is set of yp,
such thast there exists a C' > 0, p,, ¢ is the supporting
parabolid of p at g,

Op(z) = {y € Q" :3 C> 0s.t. paraboloid p, ¢ supports p at :v} . O

& X (Generalized Alexandrov Measure)

The subdifferential Jp induces a measure p = p, 4 on €2, where
g € L}(Q*) is a non-negative measurable function on S?, such
that for any Borel set E C (2,

o8 = | e (15)



Reflector Design 45

—

7E X (Generalized Solution)

Admissible function p is called the generalized solution to the
spherical Monge-Ampere equation for reflection system, if as
measures [, 4 = fdzr. Equivalently, for any Borel set £ C (2, we

have
/E f= /8 o (16)

Furthermore, if p satisfies
O Cop(Q), HzeQ:flz)>0and dp(x)—Q* #£ 0} =0, (17)

then p is the generalized solution to the spherical
Monge-Ampere equation for the OT map Lp = f/go T with
natural boundary condition 7,(2) = Q*. O



Generalized Legendre Transformation 46

[4: Generalized Legendre transformation.



Generalized Legendre Transform 47

—

Suppose p is admissible, fix a direction y € S?, there exists a
paraboloid of revolution about the axis of direction Y,
represented as py . with radial representation - < L which
supports I', at point p(z)z. As shown in the ﬁgure for any
paraboloid of revolution about the axis of direction y py z, which
intersects I, we have ¢ < ¢. Assume I',, intersects p, ; at p(z)z,

then p(z) = 1_@ 7 €= p(z)(1 — (z,y)). Hence we have

1

() =supp(2)(1 ~ (2.4)) = ( ) T D= (m )

We represent it as n: Q* — Ry, n(y) = 1/c(y).



Generalized Legendre Transform 48

—

7E X (Generalized Legendre Transform)

Suppose p is an admissible function defined on Q C S?, the

generalized Legendre transform of p with respect to the

function 5 <1 is a function 7 defined on S?,
- $>y>

1

n(y) = inf 0= @) ¢ (18)



Symmetry for Reflector Design 49

For any fixed yg € %, suppose the infimum is reached at
19 € €0, hence we have

1

n(yo)p(10) = ma (19)

for arbitrary z € 2 and y € QF,

1
p(r)n(y) < m7

and the paraboloid py, c(z) = ﬁgyw supports p at zp, and
pxo,c(y) = 1_<§07y> supports n at .




Symmetry for Reflector Design 50

Furthermore:

Yo € Op(z0) <= 29 € On(yo).

especially, when the generalized Legendre transform of 7 is
restricted on (2, it is exactly p,

kk

P =p.

If p is smooth and satisfies the Monge-Ampeére equation(12),
then the subdifferential On is the inverse map of dp. Hence, n
satisfies the equation
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—
EH (Reflector Design)

Suppose ) and Q* are domains contained in the north and the
south hemi-sphere respectively, f and g are bounded positive
functions, fQ fz) = fQ*, then there exist a pair of functions
(p1,v1) mazimizing the following energy,

sup{ [ eaast | van et +o0) < ca ).

(22)
where

c(z, y) = —log(1 — (z,y)), (23)

(z,y) is the inner product in R, such that p = ¥ is the solution
to the spherical Monge-Ampére equation Lp = f/go Op satisfying
the natural boundary condition Op(2) = Q*, and all such

solutions ¢ differ by a constant. O



Solution to Reflector Design Problem 52

—
Proof.
Reflector design is an optimal transport problem. By the
existence and the uniqueness of the solution to the dual problem
(DP), we get that there exist a pair of Kantorovich potentials
(0,0), =% =1 and ¢ is unique up to a constant. Let
79 € Q be a differentiable point of ¢, let yg € Q«, such that

{ @(r0) = c(20,%0) — ¥(v0)
olr) < oz, y)—Yv(y), VYre.
now let p = e, the paraboloid is given by
() = exp(el. ) — (30)) = T €= exp(~ ()
DPiT) = eXpiaT, Yo Yo 1 () p Yo))-
then p(z) supports I', at 2. O



Solution to Reflector Design Problem 53

—

continued.

', is the inner envelope of the supporting paraboloids, p is
almost everywhere differentiable. At the differentiable points of
p, the supporting paraboloid is unique, hence yg is unique.
Hence, the optimal transport plan becomes an optimal
transport map 7, : 1 — Q.

The paraboloid p(z) and I', share the same normal vector at
the tangential point, by the uniform reflection property of the
paraboloid, we have

Yo = Tp(20) = Tp(a0) = 20 — 2(20, M) 7.

T, is measure preserving, satisfies the spherical Monge-Ampere
equation, Lp = f/go dp, with the natural boundary condition




Refractor Design Problem 54

[¥]: Refractive lens system.
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—

Suppose n; and no are refractive indices of two homogeneous,
isotropic media I and II. Suppose the light source is at a point
O in the medium I, along a direction z € Q C S?, the light
intensity is f(z).

We want to construct a refractive surface with radial
representation I,

Ty, ={zp(x);2€Q}, p>0, (24)

I', separates the media I and II, such that all the directions of
the refracted rays in the medium II are inside Q* C S?, and the
intensity of the ray along y € Q* equals to g(y), where the
spherical function g: 2* — R is prescribed.



Refractor Design Problem 56

—

Suppose the refraction has no energy loss, by energy
conservation law,

[tz [ stwran. (25)

A ray starts from O and arrives at 2p(z) € '), where z € Q. It
is refracted, the direction of the refracted ray is

T(z) = Tp(x) = 9p(x). (26)



Refractor Design Problem 57

—

By energy conservation, 7' is measure preserving, namely

/ fz)de = / g(y)dy, ¥ Borel set EC QF, (27)
T-1(E) E

with natural boundary condition

T,(Q) = dp() = 2" (28)



Refractor Design Problem 58

—

@ (Refractor Design)

Suppose ny and ny are refractive indices of two homogeneous,
isotropic media. Given spherical domains Q,Q0* C S?, density
functions f: Q — Ry and g: Q* — R, find refractive surface
I', separates the two media, the refraction map T, (26) satisfies

the measure preserving condition (27) and the natural boundary
condition (28). O



Snell Law
—

nysin @) = nysin by

n1v;

N2V2 1T

[#]: Snell refraction law.

99

v; and vy are the light speeds in
the media I and II, ny = ¢/vy,
Ng = c/v2 are the refractive
indices. Suppose a ray along
the direction z € S"~! travels in
medium I, and hits a boundary
point p € I' and enters the
medium II, the refracted ray is
along the direction y € S*~1.



Snell Law 60

—

My sin ) = ngsin by Snell law claims
nv . .
I 0, o nq sin #1 = ng sin Oy,
r .
7 where 6, is the angle of
navs 7 1 incidence, 03 is the angle of

refraction, n is normal to the
interface surface I', pointing to
the medium II. The vectors

x, n and y are co-planar.

[#]: Snell refraction law.



Surface with uniform refraction property 61

—

7E X (Surface with uniform refraction property)

If the interface surface I' of the media I and II refracts all the
rays of light emanating from the origin O inside medium I into
rays parallel to a fixed y € S2, then I is called a surface with
uniform refraction property.



Surface with uniform refraction property 62

—

k = ng/ny, when k < 1, I' is an ellipsoid of revolution about the
axis of direction y, denoted as e,

b

eyb = {p(:v)z: p(z) = m,xe SPL gy > K,} . (29)

when k > 1, by physics constraint (z,y) > 1/k, T" is a the sheet
with opening in direction y of a hyperboloid of revolution of two
sheets about the axis of direction y,

yxe SV (zy) > 1//@} .
(30)

hy b = {P(@W p(z) = wy D —1



Surface with uniform refraction property 63

—

5|3 (Lemma)

Suppose my and ng are the refractive indices of two media I and
II respectively, and k = ng/ny. The origin O is in medium I,
ey and hyy are interface surface between media I and I,
defined by (29) and (30) respectively, we have

if K <1, then ey, refracts all the rays emanating from the
origin O in medium I into rays in medium Il with refraction
direction y;

if K > 1, then hyy refracts all the rays emanating from the
origin O in medium I into rays in medium II with refraction
direction y. O



Hyperboloid of Revolution of Two Sheets 64

[€]: hyperboloid of revolution of two sheets.



Generalized Solution 65

—

7 X (Supporting Ellipsoid)

Suppose p € C(Q) is a positive function, and

I') = {ap(z) : z € Q} is the radial graph of p. Let e = e, . be an
ellipsolid of revolution, its radial graph be I',. If

(70) = ey,c(70),
{ Z(f)) < ey,C(x;E? Vz e, (31)

then we say ', is a supporting ellipsoid of p at the point

zop(0) € Lp.
If the radial graph I', has a supporting ellipsoid at every point,

then we say p is admissible.



Generalized Solution 66

—

& X (sub-differential)

Let p be an admissible function. We define a set-valued map

dp : Q — S?, the so-called sub-differential. For any zy € €,
Op(x0) is the set of yo’s, such that I¢ > 0, ey, . is the supporting
ellipsoid of p at ay,

Op(m) :=={yo € S?* : Ic > 0, €yo,c SUPPOIts p at zp}.

For any subset F C 2, we define

0p(E) = | 9p(=).

el



Generalized Solution 67

—

7E X (Generalized Alexandrov Measure)

Suppose p is an admissible function defined on € C S?,

g € L}(Q*) is a non-negative measurable function defined on
O* C S?, the generalized Alexandrov measure induced by p and
g, denoted as i, 4, is defined as

Lp,g(E) = / g(z)dzx, Y Borel E C Q. (32)
Op(E)



Generalized Solution 68

—

7E X (Generalized Solution)

Given spherical measures f€ L'(Q) and g € L'(Q*), such that
fQ fdr = fﬂ* gdy. Suppose p is a spherical admissible function.
If the generalized Alexandrov measure induced by p satisfies
Hp,g = fdz, namely

/f:/ g, V Borel EC Q (33)
E 9p(E)

furthermore, if p satisfies
O Cop(Q), HzeQ:flz)>0and dp(x)—Q* # 0} =0, (34)

then we say p is a generalized solution to the spherical
Monge-Ampeére equation with natural boundary condition. [



Generalized Legendre Transform 69

—

plz) = ﬁm

[¥]: Generalized Legendre transform.




Generalized Legendre Transform 70

—

Among all ellipsoids e, .’s of revolution about the axis of

direction y intersecting with I',, ¢ < ¢*. If I',, intersects e, . at
C

p(z) = —ra €= p(z)(1 — k(z, y)), thus we obtain

* = su T — KR{(T, 1 ! = in :
() = supp(d)(1 —(ey) = Zos = i S

1/c¢*(y) is the function of y, denoted as n: Q* — R.



Generalized Legendre Transform 71

—

& X (Generalized Legendre Transform)

Suppose p is an admissible function defined on €. The
generalized Legendre transform of p with respect to the
function ﬁw is a function 7 defined on the sphere S? F 15

¥ n, given by

¢ (35)




Symmetry 72

Denote Q* = dp(R2). For any fixed point yg € Q*, (35) reaches
the infimum at zg € €, then

n(yo)p(z0) = wv (36)

For arbitrary z € Q and y € QF,

p()n(y) (37)

< —
— 1 —/‘i<ZL',y>

we have Yo € Op(x0) <= 20 € IN(Wo).

Especially, the generalized Legendre transform of 7, restricted
on €, is p itself,




Solution to Refractor Design 73

—
SE P
Suppose Q and Q* are domains in S, the illumination
intensity of the emanating ray lights is represented by a positive
bounded function f(x) defined on 2, the illumination intensity of
the refracted rays is represented by a positive bounded function
g(y) on Q*. Suppose |02 = 0 and satisfies the physical

constraint inf > k. 38
secnf (B y) 2 K (38)

furthermore, assume the total energy is conserved

| faaa= [ sty >o, (39)

where dz, dy represent the Hausdorff measure on S*™1. Then
for k <1, there ewists a week solution I, all such solutions
I',’s differ by a scaling. O



Proof for Existence and Uniqueness 74
HER.
By the (DP) theorem in optimal transportation, there are a

pair of functions (¢, ), unique up to a constant, maximizing

the following energy
sup{I(u, v) : (u,v) € K},

where o) = [ fou@dor [ owatdy

K= {(u, v) € (C(Q), (%)) : u(z) + v(y) < c(c,y), Vo €N,y € Q*},

c(x, y) = —log(1 — k(z,9)),

where (z, y) is the inner product in R”, such that p = ¢? is the
solution to the spherical Monge-Ampeére equation with the
natural boundary condition. O



Solution to Refractor Design 75

—
T HH
Suppose Q and QF are domains in S"1, the illumination
intensity of the emanating ray lights is represented by a positive
bounded function f(x) defined on §, the illumination intensity of
the refracted rays is represented by a positive bounded function
g(y) on Q*. Suppose |09 = 0 and satisfies the physical

constraint inf > - 40
xeégegjw,y) > (40)

furthermore, assume the total energy is conserved

| f@aa= [ sty >o, (11)

where dz, dy represent the Hausdorff measure on S*™1. Then
for k > 1, there ewists a week solution I, all such solutions
I',’s differ by a scaling. O



Proof for Existence and Uniqueness 76

—

The proof is similar to the proof for the case of kK < 1, but the
cost function is modified as

c(z,y) = —log(k(z,y) — 1). (42)



Simulation Result 7

—

[4]: Reflector Design



Summary 78

—

Area-preserving Parameterization;
Minkowski Problem I;

Reflector Design;

Refractor Design x < 1;

A

Refractor Design £ > 1;



Summary

- !ource measure (€2, 1), target measure (Q2%,v), cost function———

c(z,y), Kantorovich potential function (¢,), density function

du(z) = flz)dz, dv(y) = g(y)dy,

Sup{/ﬂwar/Q*wg:so@wSc}

Y(y) = ¢ p(z) =¢°
cost support potential
c(z, y) c(z,y) —¥(y) ¢ = infy c(z,y) — ¥ (y)
1 (z,9) (zy) —v(y) | () =sup,(z,y) —¥(y)
2 — log(z, y) 62:;/) p(z) = @ = inf, e;jy(y)
e P z . e~ V(W)
3 710%(1 - <x7 y)) 17(1,;) p(:v) = e%’( ) = lnfy 1— z;,)
=50 P —0ts)
1 log(l—r(my) | o | o) = & —inf,
=20 0 =30
5 | —log(k{z,y) — 1) ;T»y_l p(z) = e?(®) — inf, :ziy)y_l
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—

map support Legendre Dual

Vac(z, T(x)) = Vo(a) | czy) =) | ¥(y) = infs c(z,y) — o(2)

1 T(z) = V() plane P(y) = sup, (2, y) — ()
2 T(z) = n(x) plane n(y) = e*™ = inf, e_;’;z)
3 T(z) = z—2(z,n)n paraboloid n(y) = e*™ = inf, 16:22(2)
o . C)
4 n(z) = |z—n££x;| ellipsoid n(y) = ™ = inf, %
5 n(z) = 7;::;8I hyperboloid | 7(y) = e*™ = inf, 7;27 2>_1
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For more information, please contact gu@cs.stonybrook.edu

Thank You !



