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图: Theory and Computation of Optimal Transportation
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最优传输的几何观点口诀：

▶ 代价变换支撑
▶ 支撑包络势能
▶ 势能微分映射
▶ 映射对偶凸壳
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Minkowski Problem
Given k unit vectors n1, · · · ,nk,
not contained in any half-space
of Rn, A1, · · · ,Ak > 0,
satisfying

k∑
i=1

Aini = 0,

find a compact convex
polyhedron P, with k
co-dimension 1 facets
F1, · · · ,Fk, such that the
volume of Fi equals to Ai, the
normal to Fi is ni.

ni

FiAi

图: Minkowski problem.
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定理 (Minkowsi)
Such kind of P exists, and is
unique up to a translation.

ni

FiAi

图: Minkowski Problem.
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定理 (Alexadnrov 1950)
Suppose Ω is a compact convex
domain in Rn, p1, . . . , pk are
distinct vectors in Rn,
A1, . . . ,Ak > 0, satisfying∑

Ai = vol(Ω), then there exists
a convex piecewise linear
function, unique up to a
constant,

u(x) = kmax
i=1

〈pi, x〉 − hi,

such that

vol(Wi) = Ai, Wi = {x|u(x) = pi}.

Ω
Wi

Fi

πj

uh(x)

图: Alexandrov Theorem.
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图: Semi-discrete Optimal Transportation, initial stage.
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图: Semi-discrete Optimal Transportation, final stage.
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Buddha surface Riemann mapping

图: Conformal mapping.
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Riemann Mapping OT Mapping
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Riemann Mapping Worst Transportation
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Brenier potential Legendre dual



Semi-discrete Transportation Map 13

Brenier potential Legendre dual



Optimal, worst transportation comparison 14

Riemann Mapping OT mapping WT mapping
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Suppose K ⊂ Rd is a bounded open convex domain, containing
the origin, the boundary ∂K is parameterized by polar
coordinates:

∂K = {ρ(x)x : x ∈ Sd−1, ρ : Sd−1 → R+}.

定义 (sub-normal map)
For any point z ∈ ∂K, the sub-normal map maps a point zto a
closed set on the unit sphere, z 7→ NK(z),

NK(z) :=
{

y ∈ Sd−1 : K ⊂ {w : 〈y,w − z〉 ≤ 0}
}
. ♦ (1)
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K

ρ(x)x ∈ ∂K

x ∈ Sd−1

NK(z2)

NK(z1)

z1

z2

o

图: Given a convex K 3 0, the boundary ∂K is parameterized by polar
coordinates, represented as ρ : Sd−1 → R+. Given a point z ∈ ∂K, the
set NK(z) consists of all the exterior normals at z. When K has a
unique tangent plane at z (such as z2), Nk(z) is a singleton. If z is a
corner point, then NK(z) consists of multiple elements (such as z1).
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定义 (Gauss Map)
Multi-valuedGauss map GK : Sd−1 → Sd−1 is defined by:

GK(x) := NK(ρ(x)x).

The Gauss curvature measure is defined as:

µK(E) := Hd−1(GK(E)), ∀ Borel 集合 E ⊂ Sd−1.

where Hd−1 represents the d − 1 dimensional Hausdorff measure
on Sd−1.
It can be shown that µK is a Borel measure.
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问题 (Minkowski I)
Given a Borel measure ν defined on the sphere Sd−1, can we
find a bounded convex open set K 3 0, such that ν = µK?

ρ

GK
NK

S2

S2

∂K

NK(z)

z

K

图: Minkowski Problem I.
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定义 (Spherical Convex Set and Polar Set)
Given a spherical set ω ⊂ Sd−1, we say ω is convex, if the cone

R+ω := {tx : t > 0, x ∈ ω}

is convex. The polar set of ω is defined as

ω∗ := {y ∈ Sd−1 : 〈x, y〉 ≤ 0, ∀x ∈ ω}.
定理 (Minkowski I)
Let ν be a Borel measure on Sd−1, then there exists a bounded
convex open set K, such that

ν = µK ⇐⇒
{

(a) ν(Sd−1) = Hd−1(Sd−1);
(b) ν(Sd−1 \ ω) > Hd−1(ω∗),∀ω ⊊ Sd−1 compact convex.

If K exists, then different solutions differ by a dilation.
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定理 (Regularity of the Solution to Minkowski Problem)
Suppose K ⊂ R3 is a convex open set containing the origin, if
µK = fdH2, the density function f : S2 → R+ is bounded, then
∂K is C1.
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y

ρ(x)x

ρ(x)〈x, y〉

h(y)

S

图: Generalized Legendre Transform,
h(y) = max{ρ(x)〈x, y〉, x ∈ Sd−1}.
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定义 (Spherical Legendre Dual)
Given a hyper-surface in Rd, with polar representation
S := {ρ(x)x : x ∈ Sd−1, ρ : Sd−1 → R+}, its spherical Legendre
dual is S∗ := {h(y)y : y ∈ Sd−1, h : Sd−1 → R+}, where

h(y) := sup
x∈Sd−1

ρ(x)〈x, y〉. (2)

symmetrically, S = (S∗)∗, furthermore

ρ(x) = inf
y∈Sd−1

h(y)
〈x, y〉 , (3)

or equivalently

ρ−1(x) = sup
y∈Sd−1

h−1(y)〈x, y〉.
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Formula （口诀）
cost determines support, support envelopes potential （代价变
换支撑，支撑包络势能）；

u u∗

∇u

Wi
pi

πi
π∗i

Ω, T
Ω∗, T ∗

proj proj∗

图: Legendre Dual in Euclidean Space.
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Formula （口诀）
Differentiation of Potential gives maps; maps is dual to convex
hull （势能微分映射；映射对偶凸形。）

u u∗

∇u

Wi
pi

πi
π∗i

Ω, T
Ω∗, T ∗

proj proj∗

图: Euclidean Legendre dual. Support plane 〈p, x〉 − h = 0 , dual point
(p, h).



Spherical Legendre Dual 25

Formula
cost transformed to support, support envelopes potential,
potential differentiates map, map dual to convex hull.

图: Legendre dual. support plane ρ(x) = h/〈x, y〉，dual point h−1y
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Take logarithm of spherical Legendre duality formula,

log ρ(x) = inf
y

{
− log〈x, y〉 − log 1

h(y)

}
, (4)

and
log 1

h(y) = inf
x
{− log〈x, y〉 − log ρ(x)} . (5)

Define cost function c : Sd−1 × Sd−1 → R+ ∪ {0},

c(x, y) := − log〈x, y〉, (6)

then log ρ(x) and − log h(y) are c-transform of each other:

(log ρ(x))c = log 1

h(y) 和
(

log 1

h(y)

)c̄
= log ρ(x).
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证明.
Minkowski problem I can be rephrased as an optimal
transportation problem: given a Borel measure ν on Sd−1, find
an optimal transportation map T : (Sd−1,Hd−1) → (Sd−1, ν),

min
T#Hd−1=ν

∫
Sd−1

− log〈x,T(x)〉dHd−1.

this is equivalent to the dual problem:

max
{∫

Sd−1

φ(x)dHd−1(x) +
∫
Sd−1

φc(y)dν(y), φ ∈ c-conv
(
Sd−1

)}
.

the cost function − log〈x, y〉 is continuous, Sd−1 is a compact
metric space, by (DP) theory, there exists a solution
(φ,φc) = (ρ(x), 1/h(y)).
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Assume S is a smooth strictly convex surface, its Gauss map
Nk : S → S2 is invertible. We can use Gauss sphere to
parameterize the surface，denoted as S(y)，y ∈ S2. The normal
to the surface at S(y) is y，the Gaussian curvature is K(y). The
Gaussian curvature satisfies:∫

S2

y
K(y)dAS2(y) = 0.

The surface area element is:

dν = dAS(y) =
1

K(y)dAS2(y).

Namely, the Gauss map pushes the area element dAS to
measure ν on the Gauss sphere ，the density is K(y)−1.
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问题 (Minkowski II)
Given measure ν on the sphere，satisfying∫

S2
ydν(y) = 0,

Find a convex surface S(y)，such that dν is the area element of
S, where the density of ν is dν = 1

K(y)dAS2，the normal to the
surface at S(y) is y，and the Gaussian curvature is K(y)。
In Minkowski problem I，the surface has polar representation
ρ(x)x，x ∈ S2; in Minkowski problem II, surface is parameterized
by the Gauss sphere, namely parameterized by the normals.
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We use the sum of Dirac distributions to approximate the
measure ν. Construct a cell decomposition of the sphere D,

S2 =
n∪

i=1

Wi,

for each cell Wi, compute a vector

vi =

∫
Wi

y
K(y)dAS2 ,

let Ai = |vi| and yi = vi/Ai, then use {(Ai, yi)}n
i=1 to solve

discrete Minkowski problem to obtain the discrete convex
polyhedron P, the normal to the i-th face is yi, the area of the
i-th face is Ai.
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Construct a sequence of cell decompositions D1,D2, . . . ,Dn, . . . ,
if the diameters of the cells uniformly monotonously converge to
0, then there is a subsequence of convex polyhedra
P1,P2, . . . ,Pn, . . . converge to the smooth convex surface S.
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A illumination system consists of a point light source at O and
a reflector surface Γ with polar representation,

Γρ = {xρ(x); x ∈ Ω}, ρ > 0, (7)

all the incidence light rays fall inside the input domain Ω.

yk

Ω Ω∗

gk

I

Γ = ρyk,ck

S2

O

z

n

图: Illumination system.
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If we only consider the far field problem, then we can only care
about the directions of the reflected rays. All the reflected rays
fall in the output domain Ω∗.

yk

Ω Ω∗

gk

I

Γ = ρyk,ck

S2

O

z

n

图: Illumination system.



Reflector Design 34

图: Left: the desired far field image, Lena; Right: the simulated
reflected image.
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图: The reflector surface for the Lena image.
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图: Left: the desired far field image, Monge; Right: the simulated
reflected image.
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图: The reflector surface for the Lena image.
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Suppose f is the illumination intensity defined on the input
domain Ω, namely the distribution of the incidence rays
emanating from O, g is the illumination intensity in the output
domain Ω∗. Assume there is no energy loss, then according
energy conservation law, we have∫

Ω
f =

∫
Ω∗

g. (8)



Reflector Design 39

A ray emanates from O, propagates along a direction x ∈ Ω,
intersects the mirror at z = xρ(x) ∈ Γρ, the reflection direction
is determined by the reflection law,

T(x) = Tρ(x) = ∂ρ(x) = x − 2〈x,n〉n, (9)

where n is the exterior normal to the reflector surface Γρ at
point z, 〈x,n〉 represents the inner product. By energy
conservation, T is measure preserving,∫

T−1(E)
f =

∫
E

g, ∀ Borel 集合 E ⊂ Ω∗. (10)

satisfying the natural boundary condition

Tρ(Ω) = ∂ρ(Ω) = Ω∗. (11)
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By measure preserving condition, we can obtain the PDE for
the reflector. In fact, at x ∈ Ω, the Jacobi of T equals to
f(x)/g(T(x)), in a local ortha-normal coordinates of S2, the local
representation of the PDE is

Lρ = η−2 det(−∇i∇jρ+2ρ−1∇iρ∇jρ+(ρ−η)δij) = f(x)/g(T(x)),
(12)

where ∇ is the covariant differential operator,
η = (|∇ρ|2 + ρ2)/2ρ, and δij is the Kronecker function. This is a
non-linear Monge-Ampère PDE, a natural boundary condition
is

Tρ(Ω) = ∂ρ(Ω) = Ω∗. (13)
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问题 (Reflector Design)
Given spherical domains Ω, Ω∗ ⊂ S2, and density functions
f : Ω → R+ and g : Ω∗ → R+, find a reflector surface Γρ, such
that the reflection map Tρ satisfies the measure-preserving
condition and the natural boundary condition.
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x

ρ(x)

图: A paraboloid of revolution about the axis of direction y, with
radial representation ρ(x) = C/(1− 〈x, y〉).
The uniform reflection property of a paraboloid of revolution:
all the reflected rays of the incidence rays parallel to the
rotation axis intersect at the focal point, vice versa.
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定义 (Supporting Paraboloid)
Let ρ ∈ C(Ω) be a positive function, Γρ = {xρ(x) : x ∈ Ω}
represents the radial graph of ρ. We say Γp is a supporting
paraboloid of ρ at x0ρ(x0) ∈ Γρ, where p = py,C, if{

ρ(x0) = py,C(x0),
ρ(x) ≤ py,C(x), ∀x ∈ Ω.

♦ (14)

定义 (Admissible Function)
We say ρ is an admissible function, if its radial graph Γρ has a
supporting paraboloid at every point.
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定义 (Subdifferential)
Let ρ be an admissible function, the subdifferential is a
set-valued map ∂ρ : Ω → S2: for any x0 ∈ Ω, ∂ρ(x0) is set of y0,
such thast there exists a C > 0, py0,C is the supporting
parabolid of ρ at x0,

∂ρ(x) =
{

y ∈ Ω∗ : ∃ C > 0 s.t. paraboloid py,C supports ρ at x
}
.

定义 (Generalized Alexandrov Measure)
The subdifferential ∂ρ induces a measure µ = µρ,g on Ω, where
g ∈ L1(Ω∗) is a non-negative measurable function on S2, such
that for any Borel set E ⊂ Ω,

µρ,g(E) =
∫
∂ρ(E)

g(x)dx. (15)

µρ,g is called a generalized Alexandrov measure.
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定义 (Generalized Solution)
Admissible function ρ is called the generalized solution to the
spherical Monge-Ampère equation for reflection system, if as
measures µρ,g = fdx. Equivalently, for any Borel set E ⊂ Ω, we
have ∫

E
f =

∫
∂ρ(E)

g. (16)

Furthermore, if ρ satisfies

Ω∗ ⊂ ∂ρ(Ω), |{x ∈ Ω : f(x) > 0 and ∂ρ(x)−Ω∗ 6= ∅}| = 0, (17)

then ρ is the generalized solution to the spherical
Monge-Ampère equation for the OT map Lρ = f/g ◦ T with
natural boundary condition Tρ(Ω) = Ω∗.
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θ

Γρ

y

x

C1
1−〈x,y〉

C2
1−〈x,y〉

C3
1−〈x,y〉

图: Generalized Legendre transformation.
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Suppose ρ is admissible, fix a direction y ∈ S2, there exists a
paraboloid of revolution about the axis of direction y,
represented as py,c with radial representation c

1−⟨x,y⟩ , which
supports Γρ at point ρ(x)x. As shown in the figure, for any
paraboloid of revolution about the axis of direction y py,c̃, which
intersects Γρ, we have c̃ ≤ c. Assume Γρ intersects py,c̃ at ρ(x)x,
then ρ(x) = c̃

1−⟨x,y⟩ , c̃ = ρ(x)(1− 〈x, y〉). Hence we have

c(y) = sup
x∈Ω

ρ(x)(1− 〈x, y〉) ⇐⇒ 1

c(y) = inf
x∈Ω

1

ρ(x)(1− 〈x, y〉) ,

We represent it as η : Ω∗ → R+, η(y) = 1/c(y).
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定义 (Generalized Legendre Transform)
Suppose ρ is an admissible function defined on Ω ⊂ S2, the
generalized Legendre transform of ρ with respect to the
function 1

1−⟨x,y⟩ is a function η defined on S2,

η(y) = inf
x∈Ω

1

ρ(x)(1− 〈x, y〉) . ♦ (18)
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For any fixed y0 ∈ Ω∗, suppose the infimum is reached at
x0 ∈ Ω, hence we have

η(y0)ρ(x0) =
1

1− 〈x0, y0〉
, (19)

for arbitrary x ∈ Ω and y ∈ Ω∗,

ρ(x)η(y) ≤ 1

1− 〈x, y〉 , (20)

and the paraboloid py0,C(x) = C
1−⟨x,y0⟩ supports ρ at x0, and

px0,C(y) = C
1−⟨x0,y⟩ supports η at y0.



Symmetry for Reflector Design 50

Furthermore：

y0 ∈ ∂ρ(x0) ⇐⇒ x0 ∈ ∂η(y0).

especially, when the generalized Legendre transform of η is
restricted on Ω, it is exactly ρ,

ρ∗∗ = ρ.

If ρ is smooth and satisfies the Monge-Ampère equation(12),
then the subdifferential ∂η is the inverse map of ∂ρ. Hence, η
satisfies the equation

Lρ =
f(x)

g(∂ρ(x)) , Lη =
g(y)

f(∂η(x)) , (21)
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定理 (Reflector Design)
Suppose Ω and Ω∗ are domains contained in the north and the
south hemi-sphere respectively, f and g are bounded positive
functions,

∫
Ω f(x) =

∫
Ω∗, then there exist a pair of functions

(φ1, ψ1) maximizing the following energy,

sup
{∫

Ω
φ(x)f(x)dx +

∫
Ω∗
ψ(y)g(y)dy, φ(x) + ψ(y) ≤ c(x, y)

}
,

(22)
where

c(x, y) = − log(1− 〈x, y〉), (23)

〈x, y〉 is the inner product in R3, such that ρ = eφ is the solution
to the spherical Monge-Ampère equation Lρ = f/g ◦ ∂ρ satisfying
the natural boundary condition ∂ρ(Ω) = Ω∗, and all such
solutions ϕ differ by a constant.
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Proof.
Reflector design is an optimal transport problem. By the
existence and the uniqueness of the solution to the dual problem
(DP), we get that there exist a pair of Kantorovich potentials
(φ,ψ)，ψ = φc，φ = ψc̄，and φ is unique up to a constant. Let
x0 ∈ Ω be a differentiable point of φ，let y0 ∈ Ω∗ , such that{

φ(x0) = c(x0, y0)− ψ(y0)
φ(x) ≤ c(x, y0)− ψ(y0), ∀x ∈ Ω.

now let ρ = eφ, the paraboloid is given by

p(x) = exp(c(x, y0)− ψ(y0)) =
C

1− 〈x, y0〉
,C = exp(−ψ(y0)).

then p(x) supports Γρ at x0.
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continued.
Γρ is the inner envelope of the supporting paraboloids，ρ is
almost everywhere differentiable. At the differentiable points of
ρ，the supporting paraboloid is unique, hence y0 is unique.
Hence，the optimal transport plan becomes an optimal
transport map Tρ : Ω → Ω∗.
The paraboloid p(x) and Γρ share the same normal vector at
the tangential point，by the uniform reflection property of the
paraboloid，we have

y0 = Tρ(x0) = Tp(x0) = x0 − 2〈x0,n〉n.

Tρ is measure preserving，satisfies the spherical Monge-Ampère
equation，Lρ = f/g ◦ ∂ρ，with the natural boundary condition
Tρ(Ω) = Ω∗.
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yk

Ω
Ω∗

gk

I

Mϕ

S2

O

I II

图: Refractive lens system.
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Suppose n1 and n2 are refractive indices of two homogeneous,
isotropic media I and II. Suppose the light source is at a point
O in the medium I, along a direction x ∈ Ω ⊂ S2, the light
intensity is f(x).
We want to construct a refractive surface with radial
representation Γρ,

Γρ = {xρ(x); x ∈ Ω}, ρ > 0, (24)

Γρ separates the media I and II, such that all the directions of
the refracted rays in the medium II are inside Ω∗ ⊂ S2, and the
intensity of the ray along y ∈ Ω∗ equals to g(y), where the
spherical function g : Ω∗ → R is prescribed.
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Suppose the refraction has no energy loss, by energy
conservation law, ∫

Ω
f(x)dx =

∫
Ω∗

g(y)dy. (25)

A ray starts from O and arrives at xρ(x) ∈ Γρ, where x ∈ Ω. It
is refracted, the direction of the refracted ray is

T(x) = Tρ(x) = ∂ρ(x). (26)
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By energy conservation, T is measure preserving, namely∫
T−1(E)

f(x)dx =

∫
E

g(y)dy, ∀ Borel set E ⊂ Ω∗, (27)

with natural boundary condition

Tρ(Ω) = ∂ρ(Ω) = Ω∗. (28)
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问题 (Refractor Design)
Suppose n1 and n2 are refractive indices of two homogeneous,
isotropic media. Given spherical domains Ω,Ω∗ ⊂ S2, density
functions f : Ω → R+ and g : Ω∗ → R+, find refractive surface
Γρ separates the two media, the refraction map Tρ (26) satisfies
the measure preserving condition (27) and the natural boundary
condition (28).
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θ1

θ2

Γ

n1v1

n2v2

I

II

p

x

y

n1 sin θ1 = n2 sin θ2
n

图: Snell refraction law.

v1 and v2 are the light speeds in
the media I and II, n1 = c/v1,
n2 = c/v2 are the refractive
indices. Suppose a ray along
the direction x ∈ Sn−1 travels in
medium I, and hits a boundary
point p ∈ Γ and enters the
medium II, the refracted ray is
along the direction y ∈ Sn−1.
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θ1

θ2

Γ

n1v1

n2v2

I

II

p

x

y

n1 sin θ1 = n2 sin θ2
n

图: Snell refraction law.

Snell law claims

n1 sin θ1 = n2 sin θ2,

where θ1 is the angle of
incidence, θ2 is the angle of
refraction, n is normal to the
interface surface Γ, pointing to
the medium II. The vectors
x, n and y are co-planar.
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定义 (Surface with uniform refraction property)
If the interface surface Γ of the media I and II refracts all the
rays of light emanating from the origin O inside medium I into
rays parallel to a fixed y ∈ S2, then Γ is called a surface with
uniform refraction property.
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κ = n2/n1, when κ < 1, Γ is an ellipsoid of revolution about the
axis of direction y, denoted as ey,b

ey,b =

{
ρ(x)x : ρ(x) = b

1− κ〈y, x〉 , x ∈ Sn−1, 〈x, y〉 ≥ κ

}
. (29)

when κ > 1, by physics constraint 〈x, y〉 > 1/k, Γ is a the sheet
with opening in direction y of a hyperboloid of revolution of two
sheets about the axis of direction y,

hy,b =

{
ρ(x)x : ρ(x) = b

κ〈y, x〉 − 1
, x ∈ Sn−1, 〈x, y〉 ≥ 1/κ

}
.

(30)
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引理 (Lemma)
Suppose n1 and n2 are the refractive indices of two media I and
II respectively, and κ = n2/n1. The origin O is in medium I,
ey,b and hy,b are interface surface between media I and II,
defined by (29) and (30) respectively, we have
if κ < 1, then ey,b refracts all the rays emanating from the
origin O in medium I into rays in medium II with refraction
direction y;
if κ > 1, then hy,b refracts all the rays emanating from the
origin O in medium I into rays in medium II with refraction
direction y.
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图: hyperboloid of revolution of two sheets.
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定义 (Supporting Ellipsoid)
Suppose ρ ∈ C(Ω) is a positive function, and
Γρ = {xρ(x) : x ∈ Ω} is the radial graph of ρ. Let e = ey,c be an
ellipsolid of revolution, its radial graph be Γe. If{

ρ(x0) = ey,c(x0),
ρ(x) ≤ ey,c(x), ∀x ∈ Ω,

(31)

then we say Γe is a supporting ellipsoid of ρ at the point
x0ρ(x0) ∈ Γρ.
If the radial graph Γρ has a supporting ellipsoid at every point,
then we say ρ is admissible.
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定义 (sub-differential)
Let ρ be an admissible function. We define a set-valued map
∂ρ : Ω → S2, the so-called sub-differential. For any x0 ∈ Ω,
∂ρ(x0) is the set of y0’s, such that ∃c > 0, ey0,c is the supporting
ellipsoid of ρ at x0,

∂ρ(x0) := {y0 ∈ S2 : ∃c > 0, ey0,c supports ρ at x0}.

For any subset E ⊂ Ω, we define

∂ρ(E) =
∪
x∈E

∂ρ(x).
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定义 (Generalized Alexandrov Measure)
Suppose ρ is an admissible function defined on Ω ⊂ S2,
g ∈ L1(Ω∗) is a non-negative measurable function defined on
Ω∗ ⊂ S2, the generalized Alexandrov measure induced by ρ and
g, denoted as µρ,g, is defined as

µρ,g(E) =
∫
∂ρ(E)

g(x)dx, ∀ Borel E ⊂ Ω. (32)
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定义 (Generalized Solution)
Given spherical measures f ∈ L1(Ω) and g ∈ L1(Ω∗), such that∫
Ω fdx =

∫
Ω∗ gdy. Suppose ρ is a spherical admissible function.

If the generalized Alexandrov measure induced by ρ satisfies
µρ,g = fdx, namely∫

E
f =

∫
∂ρ(E)

g, ∀ Borel E ⊂ Ω (33)

furthermore, if ρ satisfies

Ω∗ ⊂ ∂ρ(Ω), |{x ∈ Ω : f(x) > 0 and ∂ρ(x)−Ω∗ 6= ∅}| = 0, (34)

then we say ρ is a generalized solution to the spherical
Monge-Ampère equation with natural boundary condition.
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Γρ

x

y

c∗
1−κ〈x,y〉

c2
1−κ〈x,y〉

c1
1−κ〈x,y〉

ρ2

ρ1

ρ(x) = c∗
1−κ〈x,y〉

图: Generalized Legendre transform.
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Among all ellipsoids ey,c’s of revolution about the axis of
direction y intersecting with Γρ, c ≤ c∗. If Γρ intersects ey,c at
ρ(x) = c

1−κ⟨x,y⟩ , c = ρ(x)(1− κ〈x, y〉), thus we obtain

c∗(y) = sup
x∈Ω

ρ(x)(1− κ〈x, y〉) ⇐⇒ 1

c∗(y) = inf
x∈Ω

1

ρ(x)(1− κ〈x, y〉) .

1/c∗(y) is the function of y, denoted as η : Ω∗ → R+.
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定义 (Generalized Legendre Transform)
Suppose ρ is an admissible function defined on Ω. The
generalized Legendre transform of ρ with respect to the
function 1

1−κ⟨x,y⟩ is a function η defined on the sphere S2 上的函
数 η, given by

η(y) = inf
x∈Ω

1

ρ(x)(1− κ〈x, y〉) . ♦ (35)
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Denote Ω∗ = ∂ρ(Ω). For any fixed point y0 ∈ Ω∗, (35) reaches
the infimum at x0 ∈ Ω, then

η(y0)ρ(x0) =
1

1− κ〈x0, y0〉
, (36)

For arbitrary x ∈ Ω and y ∈ Ω∗,
ρ(x)η(y) ≤ 1

1− κ〈x, y〉 . (37)

we have y0 ∈ ∂ρ(x0) ⇐⇒ x0 ∈ ∂η(y0).

Especially, the generalized Legendre transform of η, restricted
on Ω, is ρ itself,

η∗∗ = η, (∂η)−1 = ∂ρ

ρ∗∗ = ρ, (∂ρ)−1 = ∂η
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定理
Suppose Ω and Ω∗ are domains in Sn−1, the illumination
intensity of the emanating ray lights is represented by a positive
bounded function f(x) defined on Ω, the illumination intensity of
the refracted rays is represented by a positive bounded function
g(y) on Ω∗. Suppose |∂Ω| = 0 and satisfies the physical
constraint inf

x∈Ω,y∈Ω∗
〈x, y〉 ≥ κ. (38)

furthermore, assume the total energy is conserved∫
Ω

f(x)dx =

∫
Ω∗

g(y)dy > 0, (39)

where dx, dy represent the Hausdorff measure on Sn−1. Then
for κ < 1, there exists a week solution Γρ, all such solutions
Γρ’s differ by a scaling.
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证明.
By the (DP) theorem in optimal transportation, there are a
pair of functions (ϕ, ψ), unique up to a constant, maximizing
the following energy

sup{I(u, v) : (u, v) ∈ K},

where I(u, v) =
∫
Ω

f(x)u(x)dx +
∫
Ω∗

v(y)g(y)dy,

K =
{
(u, v) ∈ (C(Ω),C(Ω∗)) : u(x) + v(y) ≤ c(c, y),∀x ∈ Ω, y ∈ Ω∗} ,

c(x, y) = − log(1− κ〈x, y〉),

where 〈x, y〉 is the inner product in Rn, such that ρ = eϕ is the
solution to the spherical Monge-Ampère equation with the
natural boundary condition.
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定理
Suppose Ω and Ω∗ are domains in Sn−1, the illumination
intensity of the emanating ray lights is represented by a positive
bounded function f(x) defined on Ω, the illumination intensity of
the refracted rays is represented by a positive bounded function
g(y) on Ω∗. Suppose |∂Ω| = 0 and satisfies the physical
constraint inf

x∈Ω,y∈Ω∗
〈x, y〉 ≥ 1

κ
. (40)

furthermore, assume the total energy is conserved∫
Ω

f(x)dx =

∫
Ω∗

g(y)dy > 0, (41)

where dx, dy represent the Hausdorff measure on Sn−1. Then
for κ > 1, there exists a week solution Γρ, all such solutions
Γρ’s differ by a scaling.
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The proof is similar to the proof for the case of κ < 1, but the
cost function is modified as

c(x, y) = − log(κ〈x, y〉 − 1). (42)
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图: Reflector Design
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1. Area-preserving Parameterization；
2. Minkowski Problem I;
3. Reflector Design；
4. Refractor Design κ < 1；
5. Refractor Design κ > 1；
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Source measure (Ω, µ)，target measure (Ω∗, ν)，cost function
c(x, y)，Kantorovich potential function (φ,ψ)，density function
dµ(x) = f(x)dx，dν(y) = g(y)dy,

sup
{∫

Ω
φf +

∫
Ω∗
ψg : φ⊕ ψ ≤ c

}
ψ(y) = φc, φ(x) = ψc̄

cost support potential
c(x, y) c(x, y)− ψ(y) φ = infy c(x, y)− ψ(y)

1 ⟨x, y⟩ ⟨x, y⟩ − ψ(y) φ(x) = supy⟨x, y⟩ − ψ(y)
2 − log⟨x, y⟩ e−ψ(y)

⟨x,y⟩ ρ(x) = eφ(x) = infy
e−ψ(y)

⟨x,y⟩

3 − log(1− ⟨x, y⟩) e−ψ(y)

1−⟨x,y⟩ ρ(x) = eφ(x) = infy
e−ψ(y)

1−⟨x,y⟩

4 − log(1− κ⟨x, y⟩) e−ψ(y)

1−κ⟨x,y⟩ ρ(x) = eφ(x) = infy
e−ψ(y)

1−κ⟨x,y⟩

5 − log(κ⟨x, y⟩ − 1) e−ψ(y)

κ⟨x,y⟩−1
ρ(x) = eφ(x) = infy

e−ψ(y)

κ⟨x,y⟩−1
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map support Legendre Dual
∇xc(x,T(x)) = ∇φ(x) c(x, y)− ψ(y) ψ(y) = infx c(x, y)− φ(x)

1 T(x) = ∇φ(x) plane ψ(y) = supx⟨x, y⟩ − φ(x)
2 T(x) = n(x) plane η(y) = eψ(y) = infx

e−φ(x)

⟨x,y⟩

3 T(x) = x − 2⟨x,n⟩n paraboloid η(y) = eψ(y) = infx
e−φ(x)

1−⟨x,y⟩

4 n(x) = x−κT(x)
|x−κT(x)| ellipsoid η(y) = eψ(y) = infx

e−φ(x)

1−κ⟨x,y⟩

5 n(x) = x−κT(x)
|x−κT(x)| hyperboloid η(y) = eψ(y) = infx

e−φ(x)

κ⟨x,y⟩−1
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For more information，please contact gu@cs.stonybrook.edu

Thank You !


