The Theory and Computation of Optimal Transportation Spherical Optimal Transportation

David Gu Computer Science Department Stony Brook University

Reference Book

图: Theory and Computation of Optimal Transportation

最优传输的几何观点口诀:

- ▶ 代价变换支撑
- ▶ 支撑包络势能
- ▶ 势能微分映射
- ▶ 映射对偶凸壳

Minkowski Problem

Given k unit vectors n_1, \dots, n_k , not contained in any half-space of \mathbb{R}^n , $A_1, \dots, A_k > 0$, satisfying

$$\sum_{i=1}^k A_i \mathbf{n}_i = \mathbf{0},$$

find a compact convex polyhedron P, with kco-dimension 1 facets F_1, \dots, F_k , such that the volume of F_i equals to A_i , the normal to F_i is \mathbf{n}_i .

图: Minkowski problem.

Minkowski Theorem

定理 (Minkowsi)

Such kind of P exists, and is unique up to a translation.

n_i

图: Minkowski Problem.

Alexandrov Theorem

定理 (Alexadnrov 1950)

Suppose Ω is a compact convex domain in \mathbb{R}^n , p_1, \ldots, p_k are distinct vectors in \mathbb{R}^n , $A_1, \ldots, A_k > 0$, satisfying $\sum A_i = vol(\Omega)$, then there exists a convex piecewise linear function, unique up to a constant,

$$u(x) = \max_{i=1}^{k} \langle p_i, x \rangle - h_i,$$

such that

$$vol(W_i) = A_i, \quad W_i = \{x | u(x) = p_i\}.$$

图: Alexandrov Theorem.

图: Semi-discrete Optimal Transportation, initial stage.

图: Semi-discrete Optimal Transportation, final stage.

Buddha surface

Riemann mapping

图: Conformal mapping.

Riemann Mapping

OT Mapping

Semi-discrete Worst Transportation

Riemann Mapping

Worst Transportation

Legendre dual

Semi-discrete Transportation Map

Brenier potential

Legendre dual

Optimal, worst transportation comparison

Riemann Mapping

OT mapping

WT mapping

14

Suppose $K \subset \mathbb{R}^d$ is a bounded open convex domain, containing the origin, the boundary ∂K is parameterized by polar coordinates:

$$\partial K = \{\rho(x)x : x \in \mathbb{S}^{d-1}, \rho : \mathbb{S}^{d-1} \to \mathbb{R}^+\}.$$

定义 (sub-normal map)

For any point $z \in \partial K$, the sub-normal map maps a point z to a closed set on the unit sphere, $z \mapsto N_K(z)$,

$$N_K(z) := \left\{ y \in \mathbb{S}^{d-1} : K \subset \{ w : \langle y, w - z \rangle \le 0 \} \right\}. \quad \blacklozenge \qquad (1)$$

Continuous Minkowski Problem I

[⊠: Given a convex $K \ni 0$, the boundary ∂K is parameterized by polar coordinates, represented as $\rho : \mathbb{S}^{d-1} \to \mathbb{R}^+$. Given a point $z \in \partial K$, the set $N_K(z)$ consists of all the exterior normals at z. When K has a unique tangent plane at z (such as z_2), $N_k(z)$ is a singleton. If z is a corner point, then $N_K(z)$ consists of multiple elements (such as z_1).

定义 (Gauss Map)

Multi-valued Gauss map $G_K:\mathbb{S}^{d-1}\to\mathbb{S}^{d-1}$ is defined by:

$$G_K(x) := N_K(\rho(x)x).$$

The Gauss curvature measure is defined as:

$$\mu_K(E) := \mathcal{H}^{d-1}(G_K(E)), \quad \forall \text{ Borel } \notin \mathbb{C} \subseteq \mathbb{S}^{d-1}$$

where \mathcal{H}^{d-1} represents the d-1 dimensional Hausdorff measure on \mathbb{S}^{d-1} .

It can be shown that μ_K is a Borel measure.

Minkowski Problem I

问题 (Minkowski I)

Given a Borel measure ν defined on the sphere \mathbb{S}^{d-1} , can we find a bounded convex open set $K \ni 0$, such that $\nu = \mu_K$?

图: Minkowski Problem I.

Minkowski Problem I

定义 (Spherical Convex Set and Polar Set) Given a spherical set $\omega \subset \mathbb{S}^{d-1}$, we say ω is convex, if the cone

$$\mathbb{R}^+\omega := \{tx : t > 0, x \in \omega\}$$

is convex. The polar set of ω is defined as

$$\omega^* := \{ y \in \mathbb{S}^{d-1} : \langle x, y \rangle \le 0, \forall x \in \omega \}. \quad \Box$$
 定理 (Minkowski I)

Let ν be a Borel measure on \mathbb{S}^{d-1} , then there exists a bounded convex open set K, such that

$$\nu = \mu_K \iff \begin{cases} (a) \ \nu(\mathbb{S}^{d-1}) = \mathcal{H}^{d-1}(\mathbb{S}^{d-1}); \\ (b) \ \nu(\mathbb{S}^{d-1} \setminus \omega) > \mathcal{H}^{d-1}(\omega^*), \forall \omega \subsetneq \mathbb{S}^{d-1} \ compact \ conv$$

If K exists, then different solutions differ by a dilation.

定理 (Regularity of the Solution to Minkowski Problem) Suppose $K \subset \mathbb{R}^3$ is a convex open set containing the origin, if $\mu_K = fd\mathcal{H}^2$, the density function $f: \mathbb{S}^2 \to \mathbb{R}^+$ is bounded, then ∂K is C^1 .

Existence of the Solution to Minkowski Problem I 21

$$\begin{split} & [\underline{\mathbb{R}}] \colon \text{Generalized Legendre Transform,} \\ & h(y) = \max\{\rho(x) \langle x, y \rangle, x \in \mathbb{S}^{d-1}\}. \end{split}$$

Existence of the Solution to Minkowski Problem I 22

定义 (Spherical Legendre Dual)

Given a hyper-surface in \mathbb{R}^d , with polar representation $S := \{\rho(x)x : x \in \mathbb{S}^{d-1}, \rho : \mathbb{S}^{d-1} \to \mathbb{R}^+\}$, its spherical Legendre dual is $S^* := \{h(y)y : y \in \mathbb{S}^{d-1}, h : \mathbb{S}^{d-1} \to \mathbb{R}^+\}$, where

$$h(y) := \sup_{x \in \mathbb{S}^{d-1}} \rho(x) \langle x, y \rangle.$$
(2)

symmetrically, $S = (S^*)^*$, furthermore

$$\rho(x) = \inf_{y \in \mathbb{S}^{d-1}} \frac{h(y)}{\langle x, y \rangle},\tag{3}$$

or equivalently

$$\rho^{-1}(x) = \sup_{y \in \mathbb{S}^{d-1}} h^{-1}(y) \langle x, y \rangle. \quad \Box$$

Formula (口诀)

cost determines support, support envelopes potential (代价变换支撑,支撑包络势能);

图: Legendre Dual in Euclidean Space.

Formula (口诀)

Differentiation of Potential gives maps; maps is dual to convex hull (势能微分映射;映射对偶凸形。)

 [ឱ]: Euclidean Legendre dual. Support plane
 $\langle {\bf p}, x\rangle - h = 0$, dual point $({\bf p}, h).$

Spherical Legendre Dual

Formula

cost transformed to support, support envelopes potential, potential differentiates map, map dual to convex hull.

图: Legendre dual. support plane $\rho(x) = h/\langle x, \mathbf{y} \rangle$, dual point $h^{-1}\mathbf{y}$

Solution to Minkowski Problem I

Take logarithm of spherical Legendre duality formula,

$$\log \rho(x) = \inf_{y} \left\{ -\log\langle x, y \rangle - \log \frac{1}{h(y)} \right\},\tag{4}$$

and

$$\log \frac{1}{h(y)} = \inf_{x} \left\{ -\log\langle x, y \rangle - \log \rho(x) \right\}.$$
(5)

Define cost function $c: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}^+ \cup \{0\},\$

$$c(x, y) := -\log\langle x, y \rangle, \tag{6}$$

then $\log \rho(x)$ and $-\log h(y)$ are *c*-transform of each other:

$$(\log \rho(x))^c = \log \frac{1}{h(y)}$$
 for $\left(\log \frac{1}{h(y)}\right)^{\overline{c}} = \log \rho(x).$

证明.

Minkowski problem I can be rephrased as an optimal transportation problem: given a Borel measure ν on \mathbb{S}^{d-1} , find an optimal transportation map $T: (\mathbb{S}^{d-1}, \mathcal{H}^{d-1}) \to (\mathbb{S}^{d-1}, \nu)$,

$$\min_{T_{\#}\mathcal{H}^{d-1}=\nu} \int_{\mathbb{S}^{d-1}} -\log\langle x, T(x)\rangle d\mathcal{H}^{d-1}.$$

this is equivalent to the dual problem:

$$\max\left\{\int_{\mathbb{S}^{d-1}}\varphi(x)d\mathcal{H}^{d-1}(x)+\int_{\mathbb{S}^{d-1}}\varphi^{c}(y)d\nu(y),\quad\varphi\in c\text{-}\mathrm{conv}\left(\mathbb{S}^{d-1}\right)\right\}$$

the cost function $-\log\langle x, y \rangle$ is continuous, \mathbb{S}^{d-1} is a compact metric space, by (DP) theory, there exists a solution $(\varphi, \varphi^c) = (\rho(x), 1/h(y)).$ Assume S is a smooth strictly convex surface, its Gauss map $N_k: S \to \mathbb{S}^2$ is invertible. We can use Gauss sphere to parameterize the surface, denoted as S(y), $y \in \mathbb{S}^2$. The normal to the surface at S(y) is y, the Gaussian curvature is $\mathcal{K}(y)$. The Gaussian curvature satisfies:

$$\int_{\mathbb{S}^2} \frac{y}{\mathcal{K}(y)} dA_{\mathbb{S}^2}(y) = 0.$$

The surface area element is:

$$d\nu = dA_S(y) = \frac{1}{\mathcal{K}(y)} dA_{\mathbb{S}^2}(y).$$

Namely, the Gauss map pushes the area element dA_S to measure ν on the Gauss sphere , the density is $\mathcal{K}(y)^{-1}$.

问题 (Minkowski II)

Given measure ν on the sphere, satisfying

$$\int_{\mathbb{S}^2} y d\nu(y) = \mathbf{0},$$

Find a convex surface S(y), such that $d\nu$ is the area element of S, where the density of ν is $d\nu = \frac{1}{\mathcal{K}(y)} dA_{\mathbb{S}^2}$, the normal to the surface at S(y) is y, and the Gaussian curvature is $\mathcal{K}(y)$. In Minkowski problem I, the surface has polar representation

In Minkowski problem I, the surface has polar representation $\rho(x)x, x \in \mathbb{S}^2$; in Minkowski problem II, surface is parameterized by the Gauss sphere, namely parameterized by the normals.

We use the sum of Dirac distributions to approximate the measure ν . Construct a cell decomposition of the sphere \mathcal{D} ,

$$\mathbb{S}^2 = \bigcup_{i=1}^n W_i,$$

for each cell W_i , compute a vector

$$v_i = \int_{W_i} \frac{y}{\mathcal{K}(y)} dA_{\mathbb{S}^2},$$

let $A_i = |v_i|$ and $y_i = v_i/A_i$, then use $\{(A_i, y_i)\}_{i=1}^n$ to solve discrete Minkowski problem to obtain the discrete convex polyhedron P, the normal to the *i*-th face is y_i , the area of the *i*-th face is A_i . Construct a sequence of cell decompositions $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n, \ldots$, if the diameters of the cells uniformly monotonously converge to 0, then there is a subsequence of convex polyhedra $P_1, P_2, \ldots, P_n, \ldots$ converge to the smooth convex surface S. A illumination system consists of a point light source at \mathcal{O} and a reflector surface Γ with polar representation,

$$\Gamma_{\rho} = \{ x\rho(x); x \in \Omega \}, \quad \rho > 0, \tag{7}$$

all the incidence light rays fall inside the input domain Ω .

If we only consider the far field problem, then we can only care about the directions of the reflected rays. All the reflected rays fall in the output domain Ω^* .

图: Illumination system.

Reflector Design

B: Left: the desired far field image, Lena; Right: the simulated reflected image.

Reflector Design

图: The reflector surface for the Lena image.

Reflector Design

B: Left: the desired far field image, Monge; Right: the simulated reflected image.
Reflector Design

图: The reflector surface for the Lena image.

Suppose f is the illumination intensity defined on the input domain Ω , namely the distribution of the incidence rays emanating from \mathcal{O} , g is the illumination intensity in the output domain Ω^* . Assume there is no energy loss, then according energy conservation law, we have

$$\int_{\Omega} f = \int_{\Omega^*} g. \tag{8}$$

Reflector Design

A ray emanates from \mathcal{O} , propagates along a direction $x \in \Omega$, intersects the mirror at $z = x\rho(x) \in \Gamma_{\rho}$, the reflection direction is determined by the reflection law,

$$T(x) = T_{\rho}(x) = \partial \rho(x) = x - 2\langle x, n \rangle n, \qquad (9)$$

where n is the exterior normal to the reflector surface Γ_{ρ} at point z, $\langle x, n \rangle$ represents the inner product. By energy conservation, T is measure preserving,

$$\int_{T^{-1}(E)} f = \int_{E} g, \quad \forall \text{ Borel } \pounds \land E \subset \Omega^{*}.$$
(10)

satisfying the natural boundary condition

$$T_{\rho}(\Omega) = \partial \rho(\Omega) = \Omega^*.$$
(11)

By measure preserving condition, we can obtain the PDE for the reflector. In fact, at $x \in \Omega$, the Jacobi of T equals to f(x)/g(T(x)), in a local ortha-normal coordinates of \mathbb{S}^2 , the local representation of the PDE is

$$\mathcal{L}\rho = \eta^{-2} \det(-\nabla_i \nabla_j \rho + 2\rho^{-1} \nabla_i \rho \nabla_j \rho + (\rho - \eta) \delta_{ij}) = f(x)/g(T(x)),$$
(12)

where ∇ is the covariant differential operator, $\eta = (|\nabla \rho|^2 + \rho^2)/2\rho$, and δ_{ij} is the Kronecker function. This is a non-linear Monge-Ampère PDE, a natural boundary condition is

$$T_{\rho}(\Omega) = \partial \rho(\Omega) = \Omega^*.$$
(13)

问题 (Reflector Design)

Given spherical domains Ω , $\Omega^* \subset \mathbb{S}^2$, and density functions $f: \Omega \to \mathbb{R}_+$ and $g: \Omega^* \to \mathbb{R}_+$, find a reflector surface Γ_{ρ} , such that the reflection map T_{ρ} satisfies the measure-preserving condition and the natural boundary condition.

Surface with uniform reflection property

图: A paraboloid of revolution about the axis of direction y, with radial representation $\rho(x) = C/(1 - \langle x, y \rangle)$.

The uniform reflection property of a paraboloid of revolution: all the reflected rays of the incidence rays parallel to the rotation axis intersect at the focal point, vice versa.

定义 (Supporting Paraboloid)

Let $\rho \in C(\Omega)$ be a positive function, $\Gamma_{\rho} = \{x\rho(x) : x \in \Omega\}$ represents the radial graph of ρ . We say Γ_p is a supporting paraboloid of ρ at $x_0\rho(x_0) \in \Gamma_{\rho}$, where $p = p_{y,C}$, if

$$\begin{cases} \rho(x_0) = p_{y,C}(x_0), \\ \rho(x) \le p_{y,C}(x), \quad \forall x \in \Omega. \end{cases}$$

$$(14)$$

定义 (Admissible Function)

We say ρ is an *admissible function*, if its radial graph Γ_{ρ} has a supporting paraboloid at every point.

定义 (Subdifferential)

Let ρ be an admissible function, the subdifferential is a set-valued map $\partial \rho : \Omega \to \mathbb{S}^2$: for any $x_0 \in \Omega$, $\partial \rho(x_0)$ is set of y_0 , such thas there exists a C > 0, $p_{y_0,C}$ is the supporting parabolid of ρ at x_0 ,

$$\partial \rho(x) = \left\{ y \in \Omega^* : \exists C > 0 \text{ s.t. paraboloid } p_{y,C} \text{ supports } \rho \text{ at } x \right\}.$$

定义 (Generalized Alexandrov Measure)

The subdifferential $\partial \rho$ induces a measure $\mu = \mu_{\rho,g}$ on Ω , where $g \in L^1(\Omega^*)$ is a non-negative measurable function on \mathbb{S}^2 , such that for any Borel set $E \subset \Omega$,

$$\mu_{\rho,g}(E) = \int_{\partial\rho(E)} g(x) dx.$$
(15)

定义 (Generalized Solution)

Admissible function ρ is called the generalized solution to the spherical Monge-Ampère equation for reflection system, if as measures $\mu_{\rho,g} = fdx$. Equivalently, for any Borel set $E \subset \Omega$, we have

$$\int_{E} f = \int_{\partial \rho(E)} g. \tag{16}$$

Furthermore, if ρ satisfies

$$\Omega^* \subset \partial \rho(\Omega), \quad |\{x \in \Omega : f(x) > 0 \text{ and } \partial \rho(x) - \overline{\Omega^*} \neq \emptyset\}| = 0, \ (17)$$

then ρ is the generalized solution to the spherical Monge-Ampère equation for the OT map $\mathcal{L}\rho = f/g \circ T$ with natural boundary condition $T_{\rho}(\Omega) = \Omega^*$.

Generalized Legendre Transformation

图: Generalized Legendre transformation.

Suppose ρ is admissible, fix a direction $y \in \mathbb{S}^2$, there exists a paraboloid of revolution about the axis of direction y, represented as $p_{y,c}$ with radial representation $\frac{c}{1-\langle x,y\rangle}$, which supports Γ_{ρ} at point $\rho(x)x$. As shown in the figure, for any paraboloid of revolution about the axis of direction $y \ p_{y,\tilde{c}}$, which intersects Γ_{ρ} , we have $\tilde{c} \leq c$. Assume Γ_{ρ} intersects $p_{y,\tilde{c}}$ at $\rho(x)x$, then $\rho(x) = \frac{\tilde{c}}{1-\langle x,y\rangle}$, $\tilde{c} = \rho(x)(1-\langle x,y\rangle)$. Hence we have

$$c(y) = \sup_{x \in \Omega} \rho(x)(1 - \langle x, y \rangle) \iff \frac{1}{c(y)} = \inf_{x \in \Omega} \frac{1}{\rho(x)(1 - \langle x, y \rangle)},$$

We represent it as $\eta: \Omega^* \to \mathbb{R}_+, \ \eta(y) = 1/c(y)$.

定义 (Generalized Legendre Transform)

Suppose ρ is an admissible function defined on $\Omega \subset \mathbb{S}^2$, the generalized Legendre transform of ρ with respect to the function $\frac{1}{1-\langle x,y\rangle}$ is a function η defined on \mathbb{S}^2 ,

$$\eta(y) = \inf_{x \in \Omega} \frac{1}{\rho(x)(1 - \langle x, y \rangle)}. \quad \blacklozenge \tag{18}$$

For any fixed $y_0 \in \Omega^*$, suppose the infimum is reached at $x_0 \in \Omega$, hence we have

$$\eta(y_0)\rho(x_0) = \frac{1}{1 - \langle x_0, y_0 \rangle},$$
(19)

for arbitrary $x \in \Omega$ and $y \in \Omega^*$,

$$\rho(x)\eta(y) \le \frac{1}{1 - \langle x, y \rangle},\tag{20}$$

and the paraboloid $p_{y_0,C}(x) = \frac{C}{1-\langle x, y_0 \rangle}$ supports ρ at x_0 , and $p_{x_0,C}(y) = \frac{C}{1-\langle x_0, y \rangle}$ supports η at y_0 .

Furthermore:

$$y_0 \in \partial \rho(x_0) \iff x_0 \in \partial \eta(y_0).$$

especially, when the generalized Legendre transform of η is restricted on Ω , it is exactly ρ ,

$$\rho^{**} = \rho.$$

If ρ is smooth and satisfies the Monge-Ampère equation(12), then the subdifferential $\partial \eta$ is the inverse map of $\partial \rho$. Hence, η satisfies the equation

$$\mathcal{L}\rho = \frac{f(x)}{g(\partial\rho(x))}, \quad \mathcal{L}\eta = \frac{g(y)}{f(\partial\eta(x))},$$
 (21)

Solution to Reflector Design Problem

定理 (Reflector Design)

Suppose Ω and Ω^* are domains contained in the north and the south hemi-sphere respectively, f and g are bounded positive functions, $\int_{\Omega} f(x) = \int_{\Omega^*}$, then there exist a pair of functions (φ_1, ψ_1) maximizing the following energy,

$$\sup\left\{\int_{\Omega}\varphi(x)f(x)\,dx + \int_{\Omega^*}\psi(y)g(y)\,dy,\varphi(x) + \psi(y) \le c(x,y)\right\},\tag{22}$$

where

$$c(x, y) = -\log(1 - \langle x, y \rangle), \qquad (23)$$

 $\langle x, y \rangle$ is the inner product in \mathbb{R}^3 , such that $\rho = e^{\varphi}$ is the solution to the spherical Monge-Ampère equation $\mathcal{L}\rho = f/g \circ \partial \rho$ satisfying the natural boundary condition $\partial \rho(\Omega) = \Omega^*$, and all such solutions ϕ differ by a constant.

Proof.

Reflector design is an optimal transport problem. By the existence and the uniqueness of the solution to the dual problem (DP), we get that there exist a pair of Kantorovich potentials $(\varphi, \psi), \ \psi = \varphi^c, \ \varphi = \psi^{\overline{c}}, \ \text{and } \varphi$ is unique up to a constant. Let $x_0 \in \Omega$ be a differentiable point of φ , let $y_0 \in \overline{\Omega_*}$, such that

$$\begin{cases} \varphi(x_0) &= c(x_0, y_0) - \psi(y_0) \\ \varphi(x) &\leq c(x, y_0) - \psi(y_0), \quad \forall x \in \Omega. \end{cases}$$

now let $\rho = e^{\varphi}$, the paraboloid is given by

$$p(x) = \exp(c(x, y_0) - \psi(y_0)) = \frac{C}{1 - \langle x, y_0 \rangle}, C = \exp(-\psi(y_0)).$$

then p(x) supports Γ_{ρ} at x_0 .

continued.

 Γ_{ρ} is the inner envelope of the supporting paraboloids, ρ is almost everywhere differentiable. At the differentiable points of ρ , the supporting paraboloid is unique, hence y_0 is unique. Hence, the optimal transport plan becomes an optimal transport map $T_{\rho}: \Omega \to \Omega^*$.

The paraboloid p(x) and Γ_{ρ} share the same normal vector at the tangential point, by the uniform reflection property of the paraboloid, we have

$$y_0 = T_{\rho}(x_0) = T_p(x_0) = x_0 - 2\langle x_0, n \rangle n.$$

 T_{ρ} is measure preserving, satisfies the spherical Monge-Ampère equation, $\mathcal{L}\rho = f/g \circ \partial \rho$, with the natural boundary condition $T_{\rho}(\Omega) = \Omega^*$.

Refractor Design Problem

图: Refractive lens system.

Suppose n_1 and n_2 are refractive indices of two homogeneous, isotropic media I and II. Suppose the light source is at a point \mathcal{O} in the medium I, along a direction $x \in \Omega \subset \mathbb{S}^2$, the light intensity is f(x). We want to construct a refractive surface with radial representation Γ_{ρ} ,

$$\Gamma_{\rho} = \{ x\rho(x); x \in \Omega \}, \quad \rho > 0, \tag{24}$$

 Γ_{ρ} separates the media I and II, such that all the directions of the refracted rays in the medium II are inside $\Omega^* \subset \mathbb{S}^2$, and the intensity of the ray along $y \in \Omega^*$ equals to g(y), where the spherical function $g: \Omega^* \to \mathbb{R}$ is prescribed. Suppose the refraction has no energy loss, by energy conservation law,

$$\int_{\Omega} f(x) dx = \int_{\Omega^*} g(y) dy.$$
(25)

A ray starts from \mathcal{O} and arrives at $x\rho(x) \in \Gamma_{\rho}$, where $x \in \Omega$. It is refracted, the direction of the refracted ray is

$$T(x) = T_{\rho}(x) = \partial \rho(x).$$
(26)

By energy conservation, T is measure preserving, namely

$$\int_{T^{-1}(E)} f(x) dx = \int_E g(y) dy, \quad \forall \text{ Borel set } E \subset \Omega^*, \qquad (27)$$

with natural boundary condition

$$T_{\rho}(\Omega) = \partial \rho(\Omega) = \Omega^*.$$
(28)

问题 (Refractor Design)

Suppose n_1 and n_2 are refractive indices of two homogeneous, isotropic media. Given spherical domains $\Omega, \Omega^* \subset \mathbb{S}^2$, density functions $f: \Omega \to \mathbb{R}_+$ and $g: \Omega^* \to \mathbb{R}_+$, find refractive surface Γ_{ρ} separates the two media, the refraction map T_{ρ} (26) satisfies the measure preserving condition (27) and the natural boundary condition (28).

Snell Law

图: Snell refraction law.

 v_1 and v_2 are the light speeds in the media I and II, $n_1 = c/v_1$, $n_2 = c/v_2$ are the *refractive indices*. Suppose a ray along the direction $x \in \mathbb{S}^{n-1}$ travels in medium I, and hits a boundary point $p \in \Gamma$ and enters the medium II, the refracted ray is along the direction $y \in \mathbb{S}^{n-1}$.

图: Snell refraction law.

Snell law claims

 $n_1\sin\theta_1=n_2\sin\theta_2,$

where θ_1 is the angle of incidence, θ_2 is the angle of refraction, n is normal to the interface surface Γ , pointing to the medium II. The vectors x, n and y are co-planar.

定义 (Surface with uniform refraction property)

If the interface surface Γ of the media I and II refracts all the rays of light emanating from the origin \mathcal{O} inside medium I into rays parallel to a fixed $y \in \mathbb{S}^2$, then Γ is called a surface with uniform refraction property. $\kappa = n_2/n_1$, when $\kappa < 1$, Γ is an ellipsoid of revolution about the axis of direction y, denoted as $e_{y,b}$

$$e_{y,b} = \left\{ \rho(x)x : \rho(x) = \frac{b}{1 - \kappa \langle y, x \rangle}, x \in \mathbb{S}^{n-1}, \langle x, y \rangle \ge \kappa \right\}.$$
(29)

when $\kappa > 1$, by physics constraint $\langle x, y \rangle > 1/k$, Γ is a the sheet with opening in direction y of a hyperboloid of revolution of two sheets about the axis of direction y,

$$h_{y,b} = \left\{ \rho(x)x : \rho(x) = \frac{b}{\kappa \langle y, x \rangle - 1}, x \in \mathbb{S}^{n-1}, \langle x, y \rangle \ge 1/\kappa \right\}.$$
(30)

引理 (Lemma)

Suppose n_1 and n_2 are the refractive indices of two media I and II respectively, and $\kappa = n_2/n_1$. The origin \mathcal{O} is in medium I, $e_{y,b}$ and $h_{y,b}$ are interface surface between media I and II, defined by (29) and (30) respectively, we have

if $\kappa < 1$, then $e_{y,b}$ refracts all the rays emanating from the origin \mathcal{O} in medium I into rays in medium II with refraction direction y;

if $\kappa > 1$, then $h_{y,b}$ refracts all the rays emanating from the origin \mathcal{O} in medium I into rays in medium II with refraction direction y.

Hyperboloid of Revolution of Two Sheets

图: hyperboloid of revolution of two sheets.

定义 (Supporting Ellipsoid)

Suppose $\rho \in C(\Omega)$ is a positive function, and $\Gamma_{\rho} = \{x\rho(x) : x \in \Omega\}$ is the radial graph of ρ . Let $e = e_{y,c}$ be an ellipsolid of revolution, its radial graph be Γ_{e} . If

$$\begin{cases} \rho(x_0) = e_{y,c}(x_0), \\ \rho(x) \le e_{y,c}(x), \quad \forall x \in \Omega, \end{cases}$$
(31)

then we say Γ_e is a supporting ellipsoid of ρ at the point $x_0\rho(x_0) \in \Gamma_{\rho}$. If the radial graph Γ_{ρ} has a supporting ellipsoid at every point, then we say ρ is admissible.

定义 (sub-differential)

Let ρ be an admissible function. We define a set-valued map $\partial \rho : \Omega \to \mathbb{S}^2$, the so-called *sub-differential*. For any $x_0 \in \Omega$, $\partial \rho(x_0)$ is the set of y_0 's, such that $\exists c > 0$, $e_{y_0,c}$ is the supporting ellipsoid of ρ at x_0 ,

$$\partial \rho(x_0) := \{ y_0 \in \mathbb{S}^2 : \exists c > 0, e_{y_0,c} \text{ supports } \rho \text{ at } x_0 \}.$$

For any subset $E \subset \Omega$, we define

$$\partial \rho(E) = \bigcup_{x \in E} \partial \rho(x).$$

定义 (Generalized Alexandrov Measure)

Suppose ρ is an admissible function defined on $\Omega \subset \mathbb{S}^2$, $g \in L^1(\Omega^*)$ is a non-negative measurable function defined on $\Omega^* \subset \mathbb{S}^2$, the generalized Alexandrov measure induced by ρ and g, denoted as $\mu_{\rho,g}$, is defined as

$$\mu_{\rho,g}(E) = \int_{\partial\rho(E)} g(x) dx, \quad \forall \text{ Borel } E \subset \Omega.$$
(32)

定义 (Generalized Solution)

Given spherical measures $f \in L^1(\Omega)$ and $g \in L^1(\Omega^*)$, such that $\int_{\Omega} f dx = \int_{\Omega^*} g dy$. Suppose ρ is a spherical admissible function. If the generalized Alexandrov measure induced by ρ satisfies $\mu_{\rho,g} = f dx$, namely

$$\int_{E} f = \int_{\partial \rho(E)} g, \quad \forall \text{ Borel } E \subset \Omega$$
(33)

furthermore, if ρ satisfies

 $\Omega^* \subset \partial \rho(\Omega), \quad |\{x \in \Omega: f(x) > 0 \text{ and } \partial \rho(x) - \overline{\Omega^*} \neq \emptyset\}| = 0, \ (34)$

then we say ρ is a generalized solution to the spherical Monge-Ampère equation with natural boundary condition.

Generalized Legendre Transform

图: Generalized Legendre transform.

Among all ellipsoids $e_{y,c}$'s of revolution about the axis of direction y intersecting with Γ_{ρ} , $c \leq c^*$. If Γ_{ρ} intersects $e_{y,c}$ at $\rho(x) = \frac{c}{1-\kappa\langle x,y \rangle}$, $c = \rho(x)(1-\kappa\langle x,y \rangle)$, thus we obtain

$$c^*(y) = \sup_{x \in \Omega} \rho(x)(1 - \kappa \langle x, y \rangle) \iff \frac{1}{c^*(y)} = \inf_{x \in \Omega} \frac{1}{\rho(x)(1 - \kappa \langle x, y \rangle)}.$$

 $1/c^*(y)$ is the function of y, denoted as $\eta: \Omega^* \to \mathbb{R}_+$.

定义 (Generalized Legendre Transform)

Suppose ρ is an admissible function defined on Ω . The generalized Legendre transform of ρ with respect to the function $\frac{1}{1-\kappa\langle x,y\rangle}$ is a function η defined on the sphere S² 上的函数 η , given by

$$\eta(y) = \inf_{x \in \Omega} \frac{1}{\rho(x)(1 - \kappa \langle x, y \rangle)}.$$
 (35)

Symmetry

Denote $\Omega^* = \partial \rho(\Omega)$. For any fixed point $y_0 \in \Omega^*$, (35) reaches the infimum at $x_0 \in \Omega$, then

$$\eta(y_0)\rho(x_0) = \frac{1}{1 - \kappa \langle x_0, y_0 \rangle},$$
(36)

For arbitrary $x \in \Omega$ and $y \in \Omega^*$, $\rho(x)\eta(y) \le \frac{1}{1 - \kappa \langle x, y \rangle}.$ (37)

we have

$$y_0 \in \partial \rho(x_0) \iff x_0 \in \partial \eta(y_0).$$

Especially, the generalized Legendre transform of η , restricted on Ω , is ρ itself,

$$\eta^{**} = \eta, \quad (\partial \eta)^{-1} = \partial \rho$$
$$\rho^{**} = \rho, \quad (\partial \rho)^{-1} = \partial \eta$$
定理

Suppose Ω and Ω^* are domains in \mathbb{S}^{n-1} , the illumination intensity of the emanating ray lights is represented by a positive bounded function f(x) defined on Ω , the illumination intensity of the refracted rays is represented by a positive bounded function g(y) on $\overline{\Omega^*}$. Suppose $|\partial \Omega| = 0$ and satisfies the physical constraint $\inf_{x \in \Omega, y \in \Omega^*} \langle x, y \rangle \ge \kappa.$ (38)

furthermore, assume the total energy is conserved

$$\int_{\Omega} f(x) dx = \int_{\Omega^*} g(y) dy > 0, \qquad (39)$$

where dx, dy represent the Hausdorff measure on \mathbb{S}^{n-1} . Then for $\kappa < 1$, there exists a week solution Γ_{ρ} , all such solutions Γ_{ρ} 's differ by a scaling.

证明.

By the (DP) theorem in optimal transportation, there are a pair of functions (ϕ, ψ) , unique up to a constant, maximizing the following energy

 $\sup\{I(u,v):(u,v)\in K\},$

where
$$I(u, v) = \int_{\Omega} f(x)u(x)dx + \int_{\Omega^*} v(y)g(y)dy,$$
$$K = \left\{ (u, v) \in (C(\overline{\Omega}), C(\overline{\Omega^*})) : u(x) + v(y) \le c(c, y), \forall x \in \Omega, y \in \Omega^* \right\},$$
$$c(x, y) = -\log(1 - \kappa \langle x, y \rangle),$$

where $\langle x, y \rangle$ is the inner product in \mathbb{R}^n , such that $\rho = e^{\phi}$ is the solution to the spherical Monge-Ampère equation with the natural boundary condition.

定理

Suppose Ω and Ω^* are domains in \mathbb{S}^{n-1} , the illumination intensity of the emanating ray lights is represented by a positive bounded function f(x) defined on Ω , the illumination intensity of the refracted rays is represented by a positive bounded function g(y) on $\overline{\Omega^*}$. Suppose $|\partial \Omega| = 0$ and satisfies the physical constraint $\inf_{x \in \Omega, v \in \Omega^*} \langle x, y \rangle \geq \frac{1}{\kappa}$. (40)

furthermore, assume the total energy is conserved

$$\int_{\Omega} f(x) dx = \int_{\Omega^*} g(y) dy > 0, \qquad (41)$$

where dx, dy represent the Hausdorff measure on \mathbb{S}^{n-1} . Then for $\kappa > 1$, there exists a week solution Γ_{ρ} , all such solutions Γ_{ρ} 's differ by a scaling. The proof is similar to the proof for the case of $\kappa < 1$, but the cost function is modified as

$$c(x, y) = -\log(\kappa \langle x, y \rangle - 1).$$
(42)

Simulation Result

图: Reflector Design

- 1. Area-preserving Parameterization;
- 2. Minkowski Problem I;
- 3. Reflector Design;
- 4. Refractor Design $\kappa < 1$;
- 5. Refractor Design $\kappa > 1$;

Summary

Source measure (Ω, μ) , target measure (Ω^*, ν) , cost function c(x, y), Kantorovich potential function (φ, ψ) , density function $d\mu(x) = f(x)dx$, $d\nu(y) = g(y)dy$,

$$\sup \left\{ \int_{\Omega} \varphi f + \int_{\Omega^*} \psi g : \varphi \oplus \psi \le c \right\}$$
$$\psi(y) = \varphi^c, \quad \varphi(x) = \psi^{\bar{c}}$$

	$\cos t$	support	potential
	c(x, y)	$c(x,y) - \psi(y)$	$\varphi = \inf_y c(x, y) - \psi(y)$
1	$\langle x, y \rangle$	$\langle x, y \rangle - \psi(y)$	$\varphi(x) = \sup_{y} \langle x, y \rangle - \psi(y)$
2	$-\log\langle x, y \rangle$	$\frac{e^{-\psi(y)}}{\langle x,y \rangle}$	$ \rho(x) = e^{\varphi(x)} = \inf_{y} \frac{e^{-\psi(y)}}{\langle x, y \rangle} $
3	$-\log(1 - \langle x, y \rangle)$	$\frac{e^{-\psi(y)}}{1-\langle x,y\rangle}$	$\rho(x) = e^{\varphi(x)} = \inf_{y} \frac{e^{-\psi(y)}}{1 - \langle x, y \rangle}$
4	$-\log(1-\kappa\langle x,y\rangle)$	$\frac{e^{-\psi(y)}}{1-\kappa\langle x,y\rangle}$	$\rho(x) = e^{\varphi(x)} = \inf_{y} \frac{e^{-\psi(y)}}{1 - \kappa \langle x, y \rangle}$
5	$-\log(\kappa \langle x, y \rangle - 1)$	$\frac{e^{-\psi(y)}}{\kappa \langle x, y \rangle - 1}$	$\rho(x) = e^{\varphi(x)} = \inf_{y} \frac{e^{-\psi(y)}}{\kappa \langle x, y \rangle - 1}$

	map	support	Legendre Dual
	$\nabla_x c(x, T(x)) = \nabla \varphi(x)$	$c(x, y) - \psi(y)$	$\psi(y) = \inf_x c(x, y) - \varphi(x)$
1	$T(x) = \nabla \varphi(x)$	plane	$\psi(y) = \sup_{x} \langle x, y \rangle - \varphi(x)$
2	T(x) = n(x)	plane	$\eta(y) = e^{\psi(y)} = \inf_x \frac{e^{-\varphi(x)}}{\langle x, y \rangle}$
3	$T(x) = x - 2\langle x, n \rangle n$	paraboloid	$\eta(y) = e^{\psi(y)} = \inf_x \frac{e^{-\varphi(x)}}{1 - \langle x, y \rangle}$
4	$n(x) = \frac{x - \kappa T(x)}{ x - \kappa T(x) }$	ellipsoid	$\eta(y) = e^{\psi(y)} = \inf_{x} \frac{e^{-\varphi(x)}}{1 - \kappa \langle x, y \rangle}$
5	$n(x) = \frac{x - \kappa T(x)}{ x - \kappa T(x) }$	hyperboloid	$\eta(y) = e^{\psi(y)} = \inf_x \frac{e^{-\varphi(x)}}{\kappa \langle x, y \rangle - 1}$

For more information, please contact gu@cs.stonybrook.edu

Thank You !