# de Rham Cohomology, Hodge Decomposition 

David Gu

Yau Mathematics Science Center<br>Tsinghua University<br>Computer Science Department<br>Stony Brook University<br>gu@cs.stonybrook.edu

July 13, 2022

## Exterior Differential

## Insight

The homology of a manifold is the difference between the closed loops and the boundary loops.
The cohomology of a manifold is the difference between the curl free vector fields and the gradient vector fields.

## Insight

Consider a planar vector field defined on $\mathbb{C} \backslash\{0\}$,

$$
\mathbf{v}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)
$$

direct computation $\nabla \times \mathbf{v}(x, y)=0$.

$$
\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right|=0
$$

But choose the unit circle

$$
\oint_{\gamma} \omega=\oint_{\gamma} d \tan ^{-1} \frac{y}{x}=2 \pi
$$

therefore $\mathbf{v}$ is not a gradient field. Namely, $d \theta$ locally is integrable, globally not.

## Smooth Manifold



Figure: A manifold.

## Smooth Manifold

## Definition (Manifold)

A manifold is a topological space $M$ covered by a set of open sets $\left\{U_{\alpha}\right\}$. A homeomorphism $\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ maps $U_{\alpha}$ to the Euclidean space $\mathbb{R}^{n}$. ( $U_{\alpha}, \phi_{\alpha}$ ) is called a coordinate chart of $M$. The set of all charts $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ form the atlas of $M$. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then

$$
\phi_{\alpha \beta}=\phi_{\beta} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \phi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)
$$

is a transition map.
If all transition maps $\phi_{\alpha \beta} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ are smooth, then the manifold is a differential manifold or a smooth manifold.

## Tangent Space

## Definition (Tangent Vector)

A tangent vector $\xi$ at the point $p$ is an association to every coordinate chart ( $x^{1}, x^{2}, \cdots, x^{n}$ ) at $p$ an n-tuple ( $\xi^{1}, \xi^{2}, \cdots, \xi^{n}$ ) of real numbers, such that if $\left(\tilde{\xi}^{1}, \tilde{\xi}^{2}, \cdots, \tilde{\xi}^{n}\right)$ is associated with another coordinate system ( $\tilde{x}^{1}, \tilde{x}^{2}, \cdots, \tilde{x}^{n}$ ), then it satisfies the transition rule

$$
\tilde{\xi}^{i}=\sum_{j=1}^{n} \frac{\partial \tilde{x}^{i}}{\partial x^{j}}(p) \xi^{j}
$$

A smooth vector field $\xi$ assigns a tangent vector for each point of $M$, it has local representation

$$
\xi\left(x^{1}, x^{2}, \cdots, x^{n}\right)=\sum_{i=1}^{n} \xi_{i}\left(x^{1}, x^{2}, \cdots, x^{n}\right) \frac{\partial}{\partial x_{i}}
$$

$\left\{\frac{\partial}{\partial x_{i}}\right\}$ represents the vector fields of the velocities of iso-parametric curves on $M$. They form a basis of all vector fields.

## Push forward

## Definition (Push-forward)

Suppose $\phi: M \rightarrow N$ is a differential map from $M$ to $N, \gamma:(-\epsilon, \epsilon) \rightarrow M$ is a curve, $\gamma(0)=p, \gamma^{\prime}(0)=\mathbf{v} \in T_{p} M$, then $\phi \circ \gamma$ is a curve on $N$, $\phi \circ \gamma(0)=\phi(p)$, we define the tangent vector

$$
\phi_{*}(\mathbf{v})=(\phi \circ \gamma)^{\prime}(0) \in T_{\phi(p)} N
$$

as the push-forward tangent vector of $\mathbf{v}$ induced by $\phi$.

## differential forms

## Definition (Differential 1-form)

The tangent space $T_{p} M$ is an n-dimensional vector space, its dual space $T_{p}^{*} M$ is called the cotangent space of $M$ at $p$. Suppose $\omega \in T_{p}^{*} M$, then $\omega: T_{p} M \rightarrow \mathbb{R}$ is a linear function defined on $T_{p} M, \omega$ is called a differential 1-form at $p$.

A differential 1-form field has the local representation

$$
\omega\left(x^{1}, x^{2}, \cdots, x^{n}\right)=\sum_{i=1}^{n} \omega_{i}\left(x^{1}, x^{2}, \cdots, x^{n}\right) d x_{i}
$$

where $\left\{d x_{i}\right\}$ are the differential forms dual to $\left\{\frac{\partial}{\partial x_{j}}\right\}$, such that

$$
\left\langle d x_{i}, \frac{\partial}{\partial x_{j}}\right\rangle=d x_{i}\left(\frac{\partial}{\partial x_{j}}\right)=\delta_{i j}
$$

## High order exterior forms

## Definition (Tensor)

A tensor $\Theta$ of type $(m, n)$ on a manifold $M$ is a correspondence that associates to each point $p \in M$ a multi-linear map

$$
\Theta_{p}: T_{p} M \times T_{p} M \times \cdots \times T_{p}^{*} M \cdots \times T_{p}^{*} M \rightarrow \mathbb{R}
$$

where the tangent space $T_{p} M$ appears $m$ times and cotangent space $T_{p}^{*} M$ appears $n$ times.

## Definition (exterior $m$-form)

An exterior $m$-form is a tensor $\omega$ of type ( $m, 0$ ), which is skew symmetric in its arguments, namely

$$
\omega_{p}\left(\xi_{\sigma(1)}, \xi_{\sigma(2)}, \cdots, \xi_{\sigma(m)}\right)=(-1)^{\sigma} \omega_{p}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{m}\right)
$$

for any tangent vectors $\xi_{1}, \xi_{2}, \cdots, \xi_{m} \in T_{p} M$ and any permutation $\sigma \in S_{m}$, where $S_{m}$ is the permutation group.

## differential forms

## Differential Form

The local representation of $\omega$ in $\left(x^{1}, x^{2}, \cdots, x^{m}\right)$ is

$$
\omega=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n} \omega_{i_{1} i_{2} \cdots i_{m}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \cdots \wedge d x^{i_{m}}=\omega_{l} d x^{\prime}
$$

$\omega_{l}$ is a function of the reference point $p, \omega$ is said to be differentiable, if each $\omega_{l}$ is differentiable.

## Wedge product

## Definition (Wedge product)

A coordinate free representation of wedge product of $m_{1}$-form $\omega_{1}$ and $m_{2}$-form $\omega_{2}$ is defined as $\left(\omega_{1} \wedge \omega_{2}\right)\left(\xi_{1}, \xi_{2}, \cdots, \xi_{m_{1}+m_{2}}\right)$ equals

$$
\sum_{\sigma \in S_{m_{1}+m_{2}}} \frac{(-1)^{\sigma}}{m_{1}!m_{2}!} \omega_{1}\left(\xi_{\sigma(1)}, \cdots, \xi_{\sigma\left(m_{1}\right)}\right) \omega_{2}\left(\xi_{\sigma\left(m_{1}+1\right)}, \cdots, \xi_{\sigma\left(m_{1}+m_{2}\right)}\right)
$$

## Wedge product

Give $k$ differential 1-forms, their exterior wedge product is given by:

$$
\omega_{1} \wedge \omega_{2} \cdots \omega_{k}\left(v_{1}, v_{2}, \cdots, v_{k}\right)=\left|\begin{array}{cccc}
\omega_{1}\left(v_{1}\right) & \omega_{1}\left(v_{2}\right) & \ldots & \omega_{1}\left(v_{k}\right) \\
\omega_{2}\left(v_{1}\right) & \omega_{2}\left(v_{2}\right) & \ldots & \omega_{2}\left(v_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{k}\left(v_{1}\right) & \omega_{k}\left(v_{2}\right) & \ldots & \omega_{k}\left(v_{k}\right)
\end{array}\right|
$$

Exterior is anti-symmetric, suppose $\sigma \in S_{k}$ is a permutation, then

$$
\omega_{\sigma(1)} \wedge \omega_{\sigma(2)} \wedge \cdots \wedge \omega_{\sigma(k)}=(-1)^{\sigma} \omega_{1} \wedge \omega_{2} \wedge \cdots \wedge \omega_{k}
$$

## Pull back

## Definition (Pull back)

Suppose $\phi: M \rightarrow N$ is a differentiable map from $M$ to $N, \omega$ is an $m$-form on $N$, then the pull-back $\phi^{*} \omega$ is an $m$-form on $M$ defined by

$$
\left(\phi^{*} \omega\right)_{p}\left(\xi_{1}, \cdots, \xi_{m}\right)=\omega_{\phi(p)}\left(\phi_{*} \xi_{1}, \cdots, \phi_{*} \xi_{m}\right), p \in M
$$

for $\xi_{1}, \xi_{2}, \cdots, \xi_{m} \in T_{p} M$, where $\phi_{*} \xi_{j} \in T_{\phi(p)} N$ is the push forward of $\xi_{j} \in T_{p} M$.

## Integration

## Integration in Euclidean space

Suppose that $U \subset \mathbb{R}^{n}$ is an open set,

$$
\omega=f(x) d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{n}
$$

then

$$
\int_{U} \omega=\int_{U} f(x) d x^{1} d x^{2} \cdots d x^{n}
$$

## Integration



Suppose $U \subset M$ is an open set of a manifold $M$, a chart $\phi: U \rightarrow \Omega \subset \mathbb{R}^{n}$, then

$$
\int_{U} \omega=\int_{\Omega}\left(\phi^{-1}\right)^{*} \omega
$$

## Integration



Integration is independent of the choice of the charts. Let $\psi: U \rightarrow \psi(U)$ be another chart, with local coordinates ( $u_{1}, u_{2}, \cdots, u_{n}$ ), then

$$
\int_{\phi(U)} f(x) d x^{1} d x^{2} \cdots d x^{n}=\int_{\psi(U)} f(x(u)) \operatorname{det}\left(\frac{\partial x^{i}}{\partial u^{j}}\right) d u^{1} d u^{2} \cdots d u^{n} .
$$

## Integration

## Integration on Manifolds

consider a covering of $M$ by coordinate charts $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}$ and choose a partition of unity $\left\{f_{i}\right\}, i \in I$, such that $f_{i}(p) \geq 0$,

$$
\sum_{i} f_{i}(p) \equiv 1, \forall p \in M
$$

Then $\omega_{i}=f_{i} \omega$ is an $n$-form on $M$ with compact support in some $U_{\alpha}$, we can set the integration as

$$
\int_{M} \omega=\sum_{i} \int_{M} \omega_{i}
$$

## Exterior Derivative

## Exterior Derivative of a Function

Suppose $f: M \rightarrow \mathbb{R}$ is a differentiable function, then the exterior derivative of $f$ is a 1-form,

$$
d f=\sum_{i} \frac{\partial f}{\partial x_{i}} d x^{i}
$$

## Exterior Derivative of Differential Forms

The exterior derivative of an $m$-form on $M$ is an $(m+1)$-form on $M$ defined in local coordinates by

$$
d \omega=d\left(\omega_{l} d x^{\prime}\right)=\left(d \omega_{l}\right) \wedge d x^{\prime}
$$

where $d \omega_{l}$ is the differential of the function $\omega_{I}$.

## Exterior Derivative

The exterior derivative of a differential 1-form is given by:

$$
d\left(\sum \omega_{i} d x_{i}\right)=\sum_{i, j}\left(\frac{\partial \omega_{j}}{\partial x_{i}}-\frac{\partial \omega_{i}}{\partial x_{j}}\right) d x_{i} \wedge d x_{j}
$$

that of a differential $k$-form
$d\left(\omega_{1} \wedge \omega_{2} \cdots \wedge \omega_{k}\right)=\sum(-1)^{i-1} \omega_{1} \wedge \cdots \wedge \omega_{i-1} \wedge d \omega_{i} \wedge \omega_{i+1} \wedge \cdots \wedge \omega_{k}$.

## Stokes Theorem

## Theorem (Stokes)

let $M$ be an n-manifold with boundary $\partial M$ and $\omega$ be a differentialble ( $n-1$ )-form with compact support on $M$, then

$$
\int_{\partial M} \omega=\int_{M} d \omega .
$$

## Stokes Theorem

## Theorem

Suppose $\Sigma$ is a differential manifold, then we have

$$
d^{k} \circ d^{k-1}=0 .
$$

## Proof.

Assume $\omega$ is a $k-1$ differential form, $D$ is a $k+1$ chain, from Stokes theorem, we have

$$
\int_{D} d^{k} \circ d^{k-1} \omega=\int_{\partial_{k+1} D} d^{k-1} \omega=\int_{\partial_{k} \circ \partial_{k+1} D} \omega=0
$$

since $\partial_{k} \circ \partial_{k+1}=0$.

## de Rham Cohomology

Let $\Omega^{k}(\Sigma)$ be the sapce of all differential $k$-forms, $d^{k}: \Omega^{k}(\Sigma) \rightarrow \Omega^{k+1}(\Sigma)$ be exterior differential operator.

## Definition (Closed form)

$k$-form $\omega \in \Omega^{k}(\Sigma)$ is called a closed form, if $d^{k} \omega=0$, namely $\omega \in \operatorname{Ker} d^{k}$.

## Definition (Exact Form)

$k$-differential form $\omega \in \Omega^{k}(\Sigma)$ is called exact form, if there is a $\tau \in \Omega^{k-1}(\Sigma)$, such that $\omega=d^{k-1} \tau$, namely $\omega \in \operatorname{Img} d^{k-1}$.

Since $d^{k} \circ d^{k-1}=0$, exact forms are closed, $\operatorname{Img} d^{k-1} \subset \operatorname{Ker} d^{k}$.

## de Rham Cohomology

## Definition (de Rham Cohomology)

Assume $\Sigma$ is a differntial manifold, then de Rham complex is

$$
\begin{gathered}
\Omega^{0}(\Sigma, \mathbb{R}) \xrightarrow{d^{0}} \Omega^{1}(\Sigma, \mathbb{R}) \xrightarrow{d^{1}} \Omega^{2}(\Sigma, \mathbb{R}) \xrightarrow{d^{2}} \Omega^{3}(\Sigma, \mathbb{R}) \xrightarrow{d^{3}} \cdots \\
H_{d R}^{k}(\Sigma, \mathbb{R}):=\frac{\operatorname{Ker} d^{k}}{\operatorname{lmg} d^{k-1}}
\end{gathered}
$$

## Theorem

The de Rham cohomology group $H_{d R}^{m}(M)$ is isomorphic to the cohomology group $H^{m}(M, \mathbb{R})$

$$
H_{d R}^{m}(M) \cong H^{m}(M, \mathbb{R})
$$

## Hodge Operator

## Electronic Field



Figure: Hodge star operator.

## Hodge Star Operator - First Definition

Suppose $M$ is a Riemannian manifold, we can locally find oriented orthonormal basis of vector fields, and choose parameterization, such that

$$
\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{n}}\right\}
$$

form an oriented orthonormal basis. let

$$
\left\{d x_{1}, d x_{2}, \cdots, d x_{n}\right\}
$$

be the dual 1-form basis.


## Hodge star operator

## Definition (Hodge Star Operator)

The Hodge star opeartor ${ }^{*}: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)$ is a linear operator

$$
{ }^{*}\left(d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{k}\right)=d x_{k+1} \wedge d x_{k+2} \wedge \cdots \wedge d x_{n} .
$$

## Hodge Star Operator

Let $\sigma=\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ be a permutation, then the hoedge star operator

$$
*\left(d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}\right)=(-1)^{\sigma} d x_{i_{k+1}} \wedge d x_{i_{k+2}} \wedge \cdots \wedge d x_{i_{n}} .
$$

## Definition

Let $\eta, \zeta \in \Omega^{k}(M)$ are two $k$-forms on $M$, then the norm is defined as

$$
(\eta, \zeta)=\int_{M} \eta \wedge^{*} \zeta .
$$

$\Omega^{k}(M)$ is a Hilbert space.

## Hodge Star Operator - Second Equivalent Definition

Given a Riemannian manifold $(M, \mathbf{g}), \mathbf{g}=\left(g_{i j}\right)$, which gives the inner product in the tangent space $T_{p}(M)$,

$$
g_{i j}=\left\langle\partial_{i}, \partial_{j}\right\rangle_{\mathbf{g}}
$$

its inverse matrix is $\left(g^{i j}\right)$, satisfies

$$
\sum_{j=1}^{n} g_{i j} g^{j k}=\delta_{i}^{k}
$$

## Riemannian metric

## Definition (Dual Inner Product)

Given a $n$ dimensional Riemannian manifold $(M, \mathbf{g})$, the dual inner product $\langle,\rangle_{\mathbf{g}}: T_{p}^{*}(M) \times T_{p}^{*}(M) \rightarrow \mathbb{R}, \forall \omega, \eta \in T_{p}^{*}(M), \omega=\sum_{i=1}^{n} \omega_{i} d x^{i}$, $\eta=\sum_{i=1}^{n} \eta_{i} d x^{i}$, then

$$
\langle\omega, \eta\rangle_{\mathbf{g}}=\sum_{i, j=1}^{n} g^{i j} \omega_{i} \eta_{j}
$$

## Riemannian metric

## Orthonormal Basis

Let $\left\{\theta_{1}, \theta_{2}, \cdots, \theta_{n}\right\}$ is a set of orthonormal basis

$$
\left\langle\theta_{i}, \theta_{j}\right\rangle_{\mathbf{g}}=\delta_{i}^{j} .
$$

## Basis of $\Omega^{k}(M)$

We use $\left\{\theta_{i}\right\}$ to construct the basis of $\Omega^{k}(M)$,

$$
\Omega^{k}(M):=\operatorname{Span}\left\{\theta_{i_{1}} \wedge \theta_{i_{2}} \wedge \cdots \wedge \theta_{i_{k}} \mid i_{1}<i_{2}<\cdots<i_{k}\right\} .
$$

## Dual Inner Product

We define dual inner product $\langle,\rangle_{\mathbf{g}}: \Omega^{k}(M) \times \Omega^{k}(M)$ as follows:

$$
\left\langle\theta_{i_{1}} \wedge \cdots \wedge \theta_{i_{k}}, \theta_{j_{1}} \wedge \cdots \wedge \theta_{j_{k}}\right\rangle=\delta_{i_{1} \cdots i_{k}}^{j_{1} \cdots j_{k}} .
$$

## Riemannian Volume Element

## Riemannian volume Element

Let $G=\operatorname{det}\left(g_{i j}\right)$, then in the local coordinates, the Riemannian volume element is defined as

$$
\omega_{\mathbf{g}}=\sqrt{G} d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{n}
$$

## Definition (Hodge Star Operator)

* $: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)$,

$$
\omega \wedge^{*} \eta=\langle\omega, \tau\rangle_{\mathbf{g}} \omega_{\mathbf{g}} .
$$

Therefore

$$
{ }^{*}(1)=\omega_{\mathbf{g}}, \quad{ }^{*} \omega_{\mathbf{g}}=1 .
$$

## Inner Product

## Definition (Inner Product)

Let $(M, \mathbf{g})$ be a $n$ dimensional Riemannian manifold, $\zeta$ and $\eta$ are differential $k$-forms, $0 \leq k \leq n$, then $\zeta$ and $\eta$ inner product is defined as

$$
(\zeta, \eta):=\int_{M} \zeta \wedge^{*} \eta=\int_{M}\langle\zeta, \eta\rangle_{\mathbf{g}} \omega_{\mathbf{g}}
$$

## Hodge Star Operator on Surface - Type I

Suppose $(S, \mathbf{g})$ is a surface with a Riemannian metric, with isothermal coordinates $(u, v)$, the metric is

$$
\mathbf{g}=e^{2 \lambda(u, v)}\left(d u^{2}+d v^{2}\right)
$$

Then

$$
\frac{\partial}{\partial x_{1}}=e^{-\lambda} \frac{\partial}{\partial u}, \quad \frac{\partial}{\partial x_{2}}=e^{-\lambda} \frac{\partial}{\partial v}
$$

And

$$
d x_{1}=e^{\lambda} d u, \quad d x_{2}=e^{\lambda} d v
$$

Hodge Star

$$
\begin{gathered}
* d x_{1}=d x_{2}, \quad{ }^{*} d u=d v \\
* d x_{2}=-d x_{1}, \quad{ }^{*} d v=-d u \\
*(1)=d x_{1} \wedge d x_{2}=e^{2} d u \wedge d v,{ }^{*}\left(d x_{1} \wedge d x_{2}\right)=1 .
\end{gathered}
$$

## Hodge Star Operator on Surface - Type II

Suppose $(S, \mathbf{g})$ is a surface with a Riemannian metric, with isothermal coordinates $(u, v)$, the metric is

$$
\mathbf{g}=e^{2 \lambda(u, v)}\left(d u^{2}+d v^{2}\right),
$$

surface area element is

$$
\omega_{\mathbf{g}}=e^{2 \lambda(u, v)} d u \wedge d v
$$

Given 1-forms $\omega=\omega_{1} d u+\omega_{2} d v$ and $\tau=\tau_{1} d u+\tau_{2} d v$, its wedge product is

$$
\omega \wedge \tau=\left(\omega_{1} \tau_{2}-\omega_{2} \tau_{1}\right) d u \wedge d v
$$

Inner product is

$$
\langle\omega, \tau\rangle_{\mathbf{g}}=e^{-2 \lambda(u, v)}\left(\omega_{1} \tau_{1}+\omega_{2} \tau_{2}\right)
$$

## Hodge Star Operator on Surface

$$
\left(\omega_{1} d u+\omega_{2} d v\right) \wedge^{*} d u=\langle\omega, d u\rangle_{\mathbf{g}} \omega_{\mathbf{g}}=e^{-2 \lambda} \omega_{1} e^{2 \lambda} d u \wedge d v
$$

This shows ${ }^{*} d u=d v$, similarly ${ }^{*} d v=-d u$.

$$
{ }^{*}\left(\omega_{1} d u+\omega_{2} d v\right)=\omega_{1} d v-\omega_{2} d u
$$

Hence ${ }^{* *} \omega=-\omega$.

## Hodge Decomposition

## Codifferential operator

## Definition

The codifferential operator $\delta: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)$ is defined as

$$
\delta=(-1)^{k n+n+1 *} d^{*},
$$

where $d$ is the exterior derivative.

## Lemma

The codifferential is the adjoint of the exterior derivative, in that

$$
(\delta \zeta, \eta)=(\zeta, d \eta)
$$

## Laplace Operator

## Definition (Laplace Operator)

The Laplace operator $\Delta: \Omega^{k}(M) \rightarrow \Omega^{k}(M)$,

$$
\Delta=d \delta+\delta d
$$

## Lemma

The Laplace operator is symmetric

$$
(\Delta \zeta, \eta)=(\zeta, \Delta \eta)
$$

and non-negative

$$
(\Delta \eta, \eta) \geq 0
$$

## Proof.

$$
(\Delta \zeta, \eta)=(d \zeta, d \eta)+(\delta \zeta, \delta \eta)
$$

## Harmonic Forms

## Definition (Harmonic forms)

Suppose $\omega \in \Omega^{k}(M)$, then $\omega$ is called a $k$-harmonic form, if

$$
\Delta \omega=0
$$

## Lemma

$\omega$ is a harmonic form, if and only if

$$
d \omega=0, \delta \omega=0
$$

## Proof.

$$
0=(\Delta \omega, \omega)=(d \omega, d \omega)+(\delta \omega, \delta \omega)
$$

## Hodge Decomposition

## Definition (Harmonic form group)

All harmoic $k$-forms form a group, denoted as $H_{\Delta}^{k}(M)$.
Theorem (Hodge Decomposition)

$$
\Omega_{k}=i m g d^{k-1} \bigoplus i m g \delta^{k+1} \bigoplus H_{\Delta}^{k}(M)
$$



## Hodge Decomposition

## Proof.

$\left(i m g d^{k-1}\right)^{\perp}=\left\{\omega \in \Omega^{k}(M) \mid(\omega, d \eta)=0, \forall \eta \in \Omega^{k-1}(M)\right\}$, because $(\omega, d \eta)=(\delta \omega, \eta)$, so $\left(\text { imgd }^{k-1}\right)^{\perp}=k e r \delta^{k}$. similarly, $\left(i m g \delta^{k+1}\right)^{\perp}=$ kerd $^{k}$. Because imgd ${ }^{k-1} \subset$ kerd $^{k}$, img $^{k+1} \subset k e r \delta^{k}$, therefore imgd ${ }^{k-1} \perp i m g \delta^{k+1}$,

$$
\Omega^{k}=i m g d^{k-1} \oplus i m g \delta^{k+1} \oplus\left(i m g d^{k-1} \oplus i m g \delta^{k+1}\right)^{\perp}
$$

$\left(i m g d^{k-1} \oplus i m g \delta^{k+1}\right)^{\perp}=\left(i m g d^{k-1}\right)^{\perp} \cap\left(i m g \delta^{k+1}\right)^{\perp}=k e r \delta^{k} \cap \operatorname{kerd}^{k}=$ $H_{\Delta}^{k}$.

## Hodge Decomposition

suppose $\omega \in \operatorname{kerd}^{k}$, then $\omega \perp i m g \delta^{k+1}$, then $\omega=\alpha+\beta, \alpha \in i m g d^{k-1}$, $\beta \in H_{\Delta}^{k}(M)$, define project $h:$ kerd $^{k} \rightarrow H_{\Delta}^{k}(M)$,

## Theorem

Suppose $\omega$ is a closed form, its harmonic component is $h(\omega)$, then the map:

$$
h: H_{d R}^{k}(M) \rightarrow H_{\Delta}^{k}(M)
$$

is isomorphic.
Each cohomologous class has a unique harmonic form.

## Harmonic 1-forms



Figure: Harmonic 1-form group basis.

## Dual Mesh



Delaunay triangulation $T$ and Voronoi diagram $D$, every prime edge $e$ corresponds to an dual edge $\bar{e} . \omega$ is a one-form on $T .{ }^{*} \omega$ is a one-form on $D$.

## Discrete Hodge Operator



Discrete Hodge star operator,

$$
\frac{\omega(e)}{e}=\frac{{ }^{*} \omega(\bar{e})}{|\bar{e}|},{ }^{*} \omega(\bar{e})=\frac{|\bar{e}|}{|e|} \omega(e)=\frac{1}{2}(\cot \alpha+\cot \beta) \omega(e) .
$$

## Discrete Harmonic One-form


$\omega$ is closed,

$$
d \omega=0 .
$$

## Discrete Harmonic One-form


$\omega$ is coclosed,

$$
\delta \omega={ }^{*} d^{*} \omega=0 .
$$

