Surface Differential Geometry, Movable Frame Method

David Gu
Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

July 21, 2022

Movable Frame

Figure: A parametric surface.

Orthonormal Movable frame

Movable Frame

Suppose a regular surface S is embedded in \mathbb{R}^{3}, a parametric representation is $\mathbf{r}(u, v)$. Select two vector fields $\mathbf{e}_{1}, \mathbf{e}_{2}$, such that

$$
\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle=\delta_{i j} .
$$

Let \mathbf{e}_{3} be the unit normal field of the surface. Then

$$
\left\{\mathbf{r} ; \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}
$$

form the orhonormal frame field of the surface.

Orthonormal Movalbe frame

Tangent Vector

The tangent vector is the linear combination of the frame bases,

$$
d \mathbf{r}=\omega_{1} \mathbf{e}_{1}+\omega_{2} \mathbf{e}_{2}
$$

where $\omega_{k}(\mathbf{v})=\left\langle\mathbf{e}_{k}, \mathbf{v}\right\rangle . d \mathbf{r}$ is orthogonal to the normal vector \mathbf{e}_{3}.

Motion Equation

$$
d \mathbf{e}_{i}=\omega_{i 1} \mathbf{e}_{1}+\omega_{i 2} \mathbf{e}_{2}+\omega_{i 3} \mathbf{e}_{3}
$$

where $\omega_{i j}=\left\langle d \mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle$. Because

$$
\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle=\delta_{i j}, \quad 0=d\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle=\left\langle d \mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle+\left\langle\mathbf{e}_{i}, d \mathbf{e}_{j}\right\rangle
$$

we get

$$
\omega_{i j}+\omega_{j i}=0, \omega_{i i}=0
$$

Motion Equation

Motion Equation

$$
\begin{gathered}
d \mathbf{r}=\omega_{1} \mathbf{e}_{1}+\omega_{2} \mathbf{e}_{2} \\
\left(\begin{array}{c}
d \mathbf{e}_{1} \\
d \mathbf{e}_{2} \\
d \mathbf{e}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \omega_{12} & \omega_{13} \\
-\omega_{12} & 0 & \omega_{23} \\
-\omega_{13} & -\omega_{23} & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\mathbf{e}_{3}
\end{array}\right)
\end{gathered}
$$

Fundamental Forms

The first fundamental form is

$$
I=\langle d \mathbf{r}, d \mathbf{r}\rangle=\omega_{1} \omega_{1}+\omega_{2} \omega_{2}
$$

The second fundamental form is

$$
I I=-\left\langle d \mathbf{r}, d \mathbf{e}_{3}\right\rangle=-\omega_{1} \omega_{31}-\omega_{2} \omega_{32}=\omega_{1} \omega_{13}+\omega_{2} \omega_{23}
$$

Weingarten Mapping

Definition (Weingarten Mapping)

The Gauss mapping is

$$
\mathbf{r} \rightarrow \mathbf{e}_{3}
$$

its derivative map is called the Weingarten mapping,

$$
d \mathbf{r} \rightarrow d \mathbf{e}_{3}, \omega_{1} \mathbf{e}_{1}+\omega_{2} \mathbf{e}_{2} \rightarrow \omega_{31} \mathbf{e}_{1}+\omega_{32} \mathbf{e}_{2}
$$

Definition (Gaussian Curvature)

The area ratio (Jacobian of the Weingarten mapping) is the Gaussian curvature

$$
K \omega_{1} \wedge \omega_{2}=\omega_{31} \wedge \omega_{32}
$$

Gaussian curvature

Weigarten Mapping

$\left\{\omega_{1}, \omega_{2}\right\}$ form the basis of the cotangent space, therefore ω_{13}, ω_{23} can be represented as the linear combination of them,

$$
\binom{\omega_{13}}{\omega_{23}}=\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right)\binom{\omega_{1}}{\omega_{2}}
$$

therefore

$$
\omega_{13} \wedge \omega_{23}=\left|\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right| \omega_{1} \wedge \omega_{2}
$$

so $K=h_{11} h_{22}-h_{12} h_{21}$, the mean curvature $H=\frac{1}{2}\left(h_{11}+h_{22}\right)$.

Gauss's theorem Egregium

Theorem (Gauss' Theorem Egregium)

The Gaussian curvature is intrinsic, solely determined by the first fundamental form.

Proof.

$$
\begin{aligned}
0= & d^{2} \mathbf{e}_{1} \\
= & d\left(\omega_{12} \mathbf{e}_{2}+\omega_{13} \mathbf{e}_{3}\right) \\
= & d \omega_{12} \mathbf{e}_{2}-\omega_{12} \wedge d \mathbf{e}_{2}+d \omega_{13} \mathbf{e}_{3}-\omega_{13} \wedge d \mathbf{e}_{3} \\
= & d \omega_{12} \mathbf{e}_{2}-\omega_{12} \wedge\left(\omega_{21} \mathbf{e}_{1}+\omega_{23} \mathbf{e}_{3}\right)+ \\
& d \omega_{13} \mathbf{e}_{3}-\omega_{13} \wedge\left(\omega_{31} \mathbf{e}_{1}+\omega_{32} \mathbf{e}_{2}\right) \\
= & \left(d \omega_{12}-\omega_{13} \wedge \omega_{32}\right) \mathbf{e}_{2}+\left(d \omega_{13}-\omega_{12} \wedge \omega_{23}\right) \mathbf{e}_{3}
\end{aligned}
$$

therefore

$$
d \omega_{12}=-\omega_{13} \wedge \omega_{23}=-K \omega_{1} \wedge \omega_{2}
$$

Gauss's theorem Egregium

Lemma

The connection is given by the Riemannian metric:

$$
\omega_{12}=\frac{d \omega_{1}}{\omega_{1} \wedge \omega_{2}} \omega_{1}+\frac{d \omega_{2}}{\omega_{1} \wedge \omega_{2}} \omega_{2}
$$

Proof.

$$
\begin{aligned}
0= & d^{2} \mathbf{r} \\
= & d\left(\omega_{1} \mathbf{e}_{1}+\omega_{2} \mathbf{e}_{2}\right) \\
= & d \omega_{1} \mathbf{e}_{1}-\omega_{1} \wedge d \mathbf{e}_{1}+d \omega_{2} \mathbf{e}_{2}-\omega_{w} \wedge d \mathbf{e}_{2} \\
= & d \omega_{1} \mathbf{e}_{1}-\omega_{1} \wedge\left(\omega_{12} \mathbf{e}_{2}+\omega_{13} \mathbf{e}_{3}\right)+ \\
& d \omega_{2} \mathbf{e}_{2}-\omega_{2} \wedge\left(\omega_{21} \mathbf{e}_{1}+\omega_{23} \mathbf{e}_{3}\right) \\
= & \left(d \omega_{1}-\omega_{2} \wedge \omega_{21}\right) \mathbf{e}_{1}+\left(d \omega_{2}-\omega_{1} \wedge \omega_{12}\right) \mathbf{e}_{2}+ \\
& -\left(\omega_{1} \wedge \omega_{13}+\omega_{2} \wedge \omega_{23}\right) \mathbf{e}_{3} .
\end{aligned}
$$

Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet)

Suppose M is a closed orientable C^{2} surface, then

$$
\int_{M} K d A=2 \pi \chi(M)
$$

where $d A$ is the area element of hte surface, $\chi(M)$ is the Euler characteristic number of M.

Proof.

Construct a smooth vector field v, with isolated zeros $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$. Choose a small disk $D\left(p_{i}, \varepsilon\right)$. On the surface

$$
\bar{M}=M \backslash \bigcup_{i=1}^{n} D\left(p_{i}, \varepsilon\right)
$$

Gauss-Bonnet Theorem

Proof.

construct orthonormal frame $\left\{p, e_{1}, e_{2}, e_{3}\right\}$, where

$$
e_{1}(p)=\frac{v(p)}{|v(p)|}, \quad e_{3}(p)=n(p) .
$$

The integration

$$
\int_{\bar{M}} K d A=\int_{\bar{M}} K \omega_{1} \wedge \omega_{2}=-\int_{\bar{M}} d \omega_{12}
$$

by Stokes theorem and Poincarère-Hopf theorem, we obtain

$$
-\sum_{i=1}^{n} \int_{\partial D\left(p_{i}, \varepsilon\right)} \omega_{12}=2 \pi \sum_{i=1}^{n} \operatorname{Index}\left(p_{i}, v\right)=2 \pi \chi(M)
$$

Here by $\omega_{12}=\left\langle d e_{1}, e_{2}\right\rangle, \omega_{12}$ is the rotation speed of e_{1}. Let $\varepsilon \rightarrow 0$, the equation holds.

Computing Geodesics

Figure: Geodesics.

Covariant Differential

Definition (Covariant Differentiation)

Covariant differentiation is the generalization of directional derivatives, satisfies the following properties: assume v and w are tangent vector fields on a surface, $f: S \rightarrow \mathbb{R}$ is a C^{1} function, then
(1) $D(\mathbf{v}+\mathbf{w})=D(\mathbf{v})+D(\mathbf{w})$,
(2) $D(f \mathbf{v})=d f \mathbf{v}+f D \mathbf{v}$,
(3) $D\langle\mathbf{v}, \mathbf{w}\rangle=\langle D \mathbf{v}, \mathbf{w}\rangle+\langle\mathbf{v}, D \mathbf{w}\rangle$.

By movable framework, the motion equation of the surface is

$$
d \mathbf{e}_{1}=\omega_{12} \mathbf{e}_{2}+\omega_{13} \mathbf{e}_{3}, \quad d \mathbf{e}_{2}=\omega_{21} \mathbf{e}_{1}+\omega_{23} \mathbf{e}_{3}
$$

We only keep tangential component, and delete the normal part to obtain covariant differential

$$
D \mathbf{e}_{\mathbf{1}}=\omega_{12} \mathbf{e}_{\mathbf{1}}, \quad D \mathbf{e}_{2}=\omega_{21} \mathbf{e}_{\mathbf{1}}
$$

Covariant Differential

Definition (Parallel transport)

Suppose S is a metric surface, $\gamma:[0,1] \rightarrow S$ is a smooth curve, $v(t)$ is a vector field along γ, if

$$
\frac{D v}{d t} \equiv 0
$$

then we say the vector field $v(t)$ is parallel transportation along γ.
Given a tangent vector field $v=f_{1} \mathbf{e}_{\mathbf{1}}+f_{2} \mathbf{e}_{2}$, then

$$
\begin{aligned}
D v & =d f_{1} \mathbf{e}_{\mathbf{1}}+f_{1} D \mathbf{e}_{\mathbf{1}}+d f_{2} \mathbf{e}_{2}+f_{2} D \mathbf{e}_{2} \\
& =\left(d f_{1}-f_{2} \omega_{12}\right) \mathbf{e}_{\mathbf{1}}+\left(d f_{2}+f_{1} \omega_{12}\right) \mathbf{e}_{2}
\end{aligned}
$$

and

$$
\frac{D v}{d t}=\left(\frac{d f_{1}}{d t}-f_{2} \frac{\omega_{12}}{d t}\right) \mathbf{e}_{\mathbf{1}}+\left(\frac{d f_{2}}{d t}+f_{1} \frac{\omega_{12}}{d t}\right) \mathbf{e}_{2}
$$

where $\frac{\omega_{12}}{d t}=\left\langle\omega_{12}, \dot{\gamma}\right\rangle$. If $\omega_{12}=\alpha d x+\beta d y$, then $\frac{\omega_{12}}{d t}=\alpha \dot{x}+\beta \dot{y}$.

Parallel Transport

Parallel Transport Equation

Therefore parallel vector field satisfies the ODE

$$
\left\{\begin{array}{l}
\frac{d f_{1}}{d t}-f_{2} \frac{\omega_{12}}{d t}=0 \\
\frac{d f_{2}}{d t}+f_{1} \frac{\omega_{12}}{d t}=0
\end{array}\right.
$$

Given an intial condition $v(0)$, the solution uniquely exists.

Levy-Civita Connection

Definition (Levy-Civita Connection)

The connection D is the Levy-Civita connection with respect to the Riemannianmetic \mathbf{g}, if it satisfies:
(1) compatible with the metric

$$
\mathbf{x}\langle\mathbf{y}, \mathbf{z}\rangle_{\mathbf{g}}=\left\langle D_{\mathbf{x}} \mathbf{y}, \mathbf{z}\right\rangle_{\mathbf{g}}+\left\langle\mathbf{y}, D_{\mathbf{x}} \mathbf{z}\right\rangle_{\mathbf{g}}
$$

(2) free of torsion

$$
D_{\mathbf{v}} \mathbf{w}-D_{\mathbf{w}} \mathbf{v}=[\mathbf{v}, \mathbf{w}]
$$

Suppose \mathbf{v} and \mathbf{w} are two vector fields parallel along γ, then

$$
\frac{d}{d t}\langle\mathbf{v}, \mathbf{w}\rangle_{\mathbf{g}}=\dot{\gamma}\langle\mathbf{v}, \mathbf{w}\rangle_{\mathbf{g}}=\left\langle D_{\dot{\gamma}} \mathbf{v}, \mathbf{w}\right\rangle+\left\langle\mathbf{v}, D_{\dot{\gamma}} \mathbf{w}\right\rangle \equiv 0 .
$$

Namely, parallel transportation preserves inner product.

Geodesic Curvature

Definition (Geodesic Curvature)

Assume $\gamma:[0,1] \rightarrow S$ is a C^{2} curve on a surface S, s is the arc length parameter. Construct orthonormal frame field along the curve $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, where $\mathbf{e}_{\mathbf{1}}$ is the tangent vector field of γ, \mathbf{e}_{3} is the normal field of the surface,

$$
k_{g}:=\frac{D \mathbf{e}_{\mathbf{1}}}{d s}=k_{g} \mathbf{e}_{\mathbf{2}}
$$

is called geodesic curvature vector,

$$
k_{g}=\left\langle\frac{D \mathbf{e}_{1}}{d s}, \mathbf{e}_{2}\right\rangle=\frac{\omega_{12}}{d s}
$$

is called geodesic curvature.

Geodesic Curvature

Geodesic curvature, normal curvature

Given a spacial curve, its curvature vector satisfies

$$
\frac{d^{2} \gamma}{d s^{2}}=k_{g} \mathbf{e}_{2}+k_{n} \mathbf{e}_{3}
$$

where k_{n} is the normal curvature of the curve. The curvature of the curve, geodesic curvature and normal curvature satisfy

$$
k^{2}=k_{g}^{2}+k_{n}^{2} .
$$

Geodesic curvature k_{g} only depends on the Riemannian metric of the surface, is independent of the 2nd fundamental form. Therefore k_{g} is intrinsic, k_{n} is extrinsic.

Gauss-Bonnet

Theorem

Suppose (S, \mathbf{g}) is an oriented metric surface with boundaries, then

$$
\int_{S} K d A+\int_{\partial S} k_{g} d s=2 \pi \chi(S)
$$

Proof.

Construct a vector field with isolated zeros $\left\{p_{i}\right\}, \mathbf{e}_{1}$ is tangent to ∂S, small disks $D\left(p_{i}, \varepsilon\right)$. Define $\bar{S}:=S \backslash \bigcup_{i} D\left(p_{i}, \varepsilon\right)$,

$$
\begin{aligned}
\int_{\bar{S}} K d A & =-\int_{\bar{S}} \frac{d \omega_{12}}{\omega_{1} \wedge \omega_{2}} d A=-\int_{\bar{S}} d \omega_{12}=-\int_{\partial \bar{S}} \omega_{12} \\
& =-\int_{\partial S-\cup_{i} \partial D\left(p_{i}, \varepsilon\right)} \omega_{12}=-\int_{\partial S} \frac{\omega_{12}}{d s} d s+\sum_{i} \int_{\partial D\left(p_{i}, \varepsilon\right)} \omega_{12} \\
& =-\int_{\partial S} k_{g} d s+2 \pi \sum_{i} \ln \operatorname{dex}\left(p_{i}\right)=-\int_{\partial S} k_{g} d s+2 \pi \chi(S) .
\end{aligned}
$$

Compute Minimal Surface

Figure: Minimal surface.

Smooth minimal surface satisfies $\Delta_{\mathbf{g}} r \equiv 0$, equivalently $H(p) \equiv 0$. A discrete minimal surface satisfies $\sum_{v_{i} \sim v_{j}} w_{i j}\left(\mathbf{r}\left(v_{i}\right)-\mathbf{r}\left(v_{j}\right)\right)=0, \forall v_{i} \notin \partial M$.

Minimal Surface

Lemma

Given a metric surface (S, \mathbf{g}) embedded in \mathbb{R}^{3}, then $\Delta_{\mathbf{g}} \mathbf{r}=2 H(p) \mathbf{n}$, where \mathbf{r}, \mathbf{n} are the position and normal vectors.

Proof.

We choose isothermal coordinates (x, y). Then $\mathbf{g}=^{2 \lambda(x, y)}\left(d x^{2}+d y^{2}\right)$, $\omega_{12}=-\lambda_{y} d x+\lambda_{x} d y, \omega_{13}=h_{11} \omega_{1}+h_{12} \omega_{2}, \omega_{23}=h_{12} \omega_{1}+h_{22} \omega_{2}$,
$\omega_{1}=e^{\lambda} d x, \omega_{2}=e^{\lambda} d y$,

$$
\begin{aligned}
\frac{\partial}{\partial x} \mathbf{r}_{\mathbf{x}} & =\frac{\partial}{\partial x} e^{\lambda} \mathbf{e}_{\mathbf{1}}=e^{\lambda} \lambda_{x} \mathbf{e}_{\mathbf{1}}+e^{\lambda} \frac{\partial}{\partial x} \mathbf{e}_{\mathbf{1}} \\
& =e^{\lambda} \lambda_{x} \mathbf{e}_{\mathbf{1}}+e^{\lambda}\left\langle d \mathbf{e}_{1}, \frac{\partial}{\partial x}\right\rangle=e^{\lambda} \lambda_{x} \mathbf{e}_{\mathbf{1}}+e^{\lambda}\left\langle\omega_{12} \mathbf{e}_{2}+\omega_{13} \mathbf{e}_{\mathbf{3}}, \partial_{x}\right\rangle \\
& =e^{\lambda} \lambda_{x} \mathbf{e}_{\mathbf{1}}+e^{\lambda}\left(-\lambda_{y}\right) \mathbf{e}_{\mathbf{2}}+e^{\lambda} \mathbf{e}_{\mathbf{3}}\left\langle h_{11} \omega_{1}, \partial_{x}\right\rangle \\
& =e^{\lambda} \lambda_{x} \mathbf{e}_{\mathbf{1}}-e^{\lambda} \lambda_{y} \mathbf{e}_{\mathbf{2}}+e^{2 \lambda} h_{11} \mathbf{e}_{\mathbf{3}}
\end{aligned}
$$

Minimal Surface

Proof.

Similarly,

$$
\begin{aligned}
\frac{\partial}{\partial y} \mathbf{r}_{\mathbf{y}} & =\frac{\partial}{\partial y} e^{\lambda} \mathbf{e}_{2}=e^{\lambda} \lambda_{y} \mathbf{e}_{\mathbf{2}}+e^{\lambda} \frac{\partial}{\partial y} \mathbf{e}_{\mathbf{2}} \\
& =e^{\lambda} \lambda_{y} \mathbf{e}_{\mathbf{2}}+e^{\lambda}\left\langle d \mathbf{e}_{2}, \frac{\partial}{\partial y}\right\rangle=e^{\lambda} \lambda_{y} \mathbf{e}_{\mathbf{2}}+e^{\lambda}\left\langle\omega_{21} \mathbf{e}_{1}+\omega_{23} \mathbf{e}_{\mathbf{3}}, \partial_{y}\right\rangle \\
& =e^{\lambda} \lambda_{y} \mathbf{e}_{\mathbf{2}}+e^{\lambda}\left(-\lambda_{y}\right) \mathbf{e}_{\mathbf{2}}+e^{\lambda} \mathbf{e}_{\mathbf{3}}\left\langle h_{22} \omega_{2}, \partial_{y}\right\rangle \\
& =e^{\lambda} \lambda_{y} \mathbf{e}_{\mathbf{2}}-e^{\lambda} \lambda_{x} \mathbf{e}_{\mathbf{1}}+e^{2 \lambda} h_{22} \mathbf{e}_{\mathbf{3}}
\end{aligned}
$$

Therefore

$$
\Delta_{\mathbf{g}} \mathbf{r}=\frac{1}{e^{2 \lambda}}\left(\mathbf{r}_{x x}+\mathbf{r}_{y y}\right)=\left(h_{11}+h_{22}\right) \mathbf{e}_{3}=2 H \mathbf{e}_{3}
$$

Surface Area Variation

Lemma

Given a surface S with position vector $\mathbf{r}(x, y)$, perturb the surface along the normal direction

$$
\mathbf{r}_{\varepsilon, \varphi}(x, y)=\mathbf{r}(x, y)+\varepsilon \varphi(x, y) \mathbf{n}(x, y)
$$

the area variation is given by

$$
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} A r e a\left(\mathbf{r}_{\varepsilon, \varphi}\right)=\int_{S} 2 \varphi(x, y) H e^{2 u(x, y)} d x d y=\int_{S} 2 \varphi H d A
$$

Surface Area Variation

Proof.

We use isothermal coordinate, the first fundamental form:

$$
\begin{aligned}
& E=\left\langle\mathbf{r}_{x}+\varepsilon \mathbf{n}_{x}, \mathbf{r}_{x}+\varepsilon \mathbf{n}_{x}\right\rangle=e^{2 u}+2 \varepsilon\left\langle\mathbf{r}_{x}, \mathbf{n}_{x}\right\rangle+\varepsilon^{2}\left|\mathbf{n}_{x}\right|^{2} \\
& G=\left\langle\mathbf{r}_{y}+\varepsilon \mathbf{n}_{y}, \mathbf{r}_{y}+\varepsilon \mathbf{n}_{y}\right\rangle=e^{2 u}+2 \varepsilon\left\langle\mathbf{r}_{y}, \mathbf{n}_{y}\right\rangle+\varepsilon^{2}\left|\mathbf{n}_{y}\right|^{2} \\
& F=\left\langle\mathbf{r}_{x}+\varepsilon \mathbf{n}_{x}, \mathbf{r}_{y}+\varepsilon \mathbf{n}_{y}\right\rangle=\varepsilon\left\langle\mathbf{r}_{x}, \mathbf{n}_{y}\right\rangle+\varepsilon\left\langle\mathbf{r}_{y}, \mathbf{n}_{x}\right\rangle+\varepsilon^{2}\left\langle\mathbf{n}_{x}, \mathbf{n}_{y}\right\rangle \\
& \qquad E G-F^{2}=e^{4 u}+2 \varepsilon e^{2 u}\left(\left\langle\mathbf{r}_{x}, \mathbf{n}_{x}\right\rangle+\left\langle\mathbf{r}_{y}, \mathbf{n}_{y}\right\rangle\right)+O\left(\varepsilon^{2}\right) \\
& \left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \sqrt{E G-F^{2}}=\left\langle\mathbf{r}_{x}, \mathbf{n}_{x}\right\rangle+\left\langle\mathbf{r}_{y}, \mathbf{n}_{y}\right\rangle=2 H e^{2 u}
\end{aligned}
$$

where we use the mean curvature formula

$$
\begin{aligned}
& 2 H= \operatorname{Tr}\left(-\frac{I I}{l}\right)=-e^{-2 u}\left(\left\langle\mathbf{r}_{x x}, \mathbf{n}\right\rangle+\left\langle\mathbf{r}_{y y}, \mathbf{n}\right\rangle\right)=e^{-2 u}\left(\left\langle\mathbf{r}_{x}, \mathbf{n}_{x}\right\rangle+\left\langle r_{y}, \mathbf{n}_{x}\right\rangle\right) \\
& \frac{d}{d \varepsilon} \operatorname{Area}(\varepsilon)=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \int_{S} \sqrt{E G-F^{2}} d x d y=\int_{S} 2 H e^{2 u} d x d y .
\end{aligned}
$$

Minimal Surface

Lemma

A surface $M, \mathbf{x}(u, v)=\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right)$, with isothermal coordinates is minimal if and only if x_{1}, x_{2}, and x_{3} are all harmonic.

Proof.

If M is minimal, then $H=0, \Delta \mathbf{x}=(2 H) e^{2 \lambda} \mathbf{n}=0$, therefore x_{1}, x_{2}, x_{3} are harmonic.
If x_{1}, x_{2}, x_{3} are harmonic, then $\Delta \mathbf{x}=0,(2 H) e^{2 \lambda} \mathbf{n}=0$. Now \mathbf{n} is the unit normal vector, so $\mathbf{n} \neq 0$ and $e^{2 \lambda}=\left\langle x_{u}, x_{u}\right\rangle=\left|x_{u}\right|^{2} \neq 0$. So $H=0, M$ is minimal.

Weierstrass-Ennerper Representation

Lemma

Let $z=u+\sqrt{-1} v, \frac{\partial x^{j}}{\partial z}=\frac{1}{2}\left(x_{u}^{j}-\sqrt{-1} x_{v}^{j}\right)$, define

$$
\begin{aligned}
\varphi & =\frac{\partial \mathbf{x}}{\partial z}=\left(x_{z}^{1}, x_{z}^{2}, x_{z}^{3}\right) \\
(\varphi)^{2} & =\left(x_{z}^{1}\right)^{2}+\left(x_{z}^{2}\right)^{2}+\left(x_{z}^{3}\right)^{2}
\end{aligned}
$$

if \mathbf{x} is isothermal, then $(\varphi)^{2}=0$.

Proof.

$\left(\varphi^{j}\right)^{2}=\left(x_{z}^{j}\right)^{2}=\frac{1}{4}\left(\left(x_{j}^{j}\right)^{2}-\left(x_{v}^{j}\right)^{2}-2 i x_{u}^{j} x_{v}^{j}\right)$, so
$(\varphi)^{2}=\frac{1}{4}\left(\left|\mathbf{x}_{u}\right|^{2}-\left|\mathbf{x}_{v}\right|^{2}-2 i \mathbf{x}_{u} \cdot \mathbf{x}_{v}\right)$. If \mathbf{x} is isothermal, then $(\varphi)^{2}=0$.

Weierstrass-Ennerper Representation

Theorem

Suppose M is a surface with position \mathbf{x}. Let $\varphi=\frac{\partial \mathbf{x}}{\partial z}$ and suppose $(\varphi)^{2}=0$. Then M is minimal if and only if φ^{j} is holomorphic.

Proof.

M is minimal, then x^{j} is harmonic, therefore $\Delta \mathbf{x}=0$, therefore

$$
\frac{\partial}{\partial \bar{z}}\left(\frac{\partial \mathbf{x}}{\partial z}\right)=\frac{\partial \varphi}{\partial \bar{z}}=0
$$

If φ^{j} is holomorphic, then $\frac{\partial \varphi}{\partial \bar{z}}=0$, then $\Delta \mathbf{x}=0, x^{j}$ is harmonic, hence M is minimal.

Weierstrass-Ennerper Representation

Lemma

$$
x^{j}(z, \bar{z})=c_{j}+\Re\left(\int \varphi^{j} d z\right)
$$

Proof.

$$
\varphi^{j} d z+\bar{\varphi}^{j} d \bar{z}^{j}=x_{u}^{j} d u+x_{v}^{j} d v=d x^{j}
$$

hence

$$
x^{j}=c_{j}+\int d x^{j}=c_{j}+\Re\left(\int \varphi^{j} d z\right)
$$

Weierstrass-Ennerper Representation

Let f be a holomorphic function and g be a meromorphic function, such that $f g^{2}$ is holomorphic,

$$
\varphi^{1}=\frac{1}{2} f\left(1-g^{2}\right), \varphi^{2}=\frac{i}{2} f\left(1+g^{2}\right), \varphi^{3}=f g
$$

then

$$
(\varphi)^{2}=\frac{1}{4} f^{2}\left(1-g^{2}\right)^{2}-\frac{1}{4} f^{2}\left(1+g^{2}\right)^{2}+f^{2} g^{2}=0
$$

Weierstrass-Ennerper Representation

Theorem (Weierstrass-Ennerper)

If f is holomorphic on a domain Ω, g is meromorphic in Ω, and $f g^{2}$ is holomorphic on Ω, then a minimal surface is defined by $\mathbf{x}(z, \bar{z})=\left(x^{1}(z, \bar{z}), x^{2}(z, \bar{z}), x^{3}(z, \bar{z})\right)$, where

$$
\begin{aligned}
& x^{1}(z, \bar{z})=\Re\left(\int f\left(1-g^{2}\right) d z\right) \\
& x^{2}(z, \bar{z})=\Re\left(\int \sqrt{-1} f\left(1+g^{2}\right) d z\right) \\
& x^{3}(z, \bar{z})=\Re\left(\int 2 f g d z\right)
\end{aligned}
$$

Compute Geodesics

Figure: Geodesic on polyhedral surfaces.
Geodesic on a surface $\gamma:[0,1] \rightarrow(S, \mathbf{g})$:

$$
D_{\dot{\gamma}} \dot{\gamma} \equiv 0
$$

Compute Geodesics

Figure: Conjugate point of geodesics.
Geodesic on a surface $\gamma:[0,1] \rightarrow(S, \mathbf{g})$:

$$
D_{\dot{\gamma}} \dot{\gamma} \equiv 0
$$

Discrete Geodesics

Discrete Geodesics

Suppose γ is a discrete geodesic:
(1) isometrically flatten the strip of curve γ onto the plane;
(2) when the γ crosses an edge, it is straight;
(3) γ never crosses any convex vertex;
(3) when γ crosses a concave vertex, if we flatten the neighborhood from right, then $\theta_{1} \geq \pi$; flatten from left, $\theta_{2} \geq \pi$.

Discrete Harmonic Map

Smooth surface harmonic map $\varphi:(S, \mathbf{g}) \rightarrow \mathbb{D}^{2}, \Delta_{\mathbf{g}} \varphi \equiv 0$, with Dirichlet boundary condition $\left.\varphi\right|_{\partial} S=f$. A discrete harmonic ma satisfies $\sum_{v_{i} \sim v_{j}} w_{i j}\left(\varphi\left(v_{i}\right)-\varphi\left(v_{j}\right)\right)=0, \forall v_{i} \notin \partial M$.

Compute Minimal Surface

Figure: Minimal surface.

Smooth minimal surface satisfies $\Delta_{\mathbf{g}} r \equiv 0$, equivalently $H(p) \equiv 0$. A discrete minimal surface satisfies $\sum_{v_{i} \sim v_{j}} w_{i j}\left(\mathbf{r}\left(v_{i}\right)-\mathbf{r}\left(v_{j}\right)\right)=0, \forall v_{i} \notin \partial M$.

Discarete Harmonic One-Form

$d \omega=0$

$\delta \omega=0$
Harmonic map $\varphi: M \rightarrow \mathbb{D}^{2}$; minimal surface $\varphi: M \rightarrow \mathbb{R}^{3}$.

Parallel Transport

Given $\gamma \subset S$, find an envelope surface Σ_{1} of all the tangent planes along $\gamma, \varphi: \gamma \rightarrow \Sigma_{1}$ isometrically maps γ to $\Sigma_{1} . \Sigma_{1}$ is developable, flatten Σ_{1} to obtain a planar domain $\Sigma_{2}, \psi: \Sigma_{1} \rightarrow \Sigma_{2}$. The composition $\psi \circ \varphi$ maps $p, q, v_{1} \in T_{p} S, v_{2} \in T_{p} S$ to $p^{\prime}, q^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}$. On the plane, translate a tangent vector v_{1}^{\prime} from starting point p to the ending point q to get v_{2}^{\prime}, maps back $v_{2}^{\prime}, v_{2}=(\psi \circ \varphi)^{-1}\left(v_{2}^{\prime}\right)$. Then v_{1} is parallelly transported along γ to get v_{2}.

Gaussian Curvature

Parallel transport v along $\partial \Sigma$, to get v^{\prime} when returned to the original point p, then the angle difference between v and v^{\prime} equals to the total Gaussian curvature,

$$
\theta=\int_{\Sigma} K d A
$$

Gaussian Curvature

Figure: Discrete parallel transport, $K(v)=\theta$.

Parallel transport a vector, when return to the original position, the difference angle equals to the discrete Gaussian curvature of the interior vertices.

Gaussian Curvature

For each face $\left[w, v_{i}, v_{i+1}\right]$, build a local frame $\left\{e_{1}^{i}, e_{2}^{i}\right\}$, such that e_{1}^{i} is parallel to $\left[v_{i}, v_{i+1}\right]$; Connection ω_{12} is defined at edges, $\omega_{12}\left(\left[w, v_{i}\right]\right)=\measuredangle\left(e_{1}^{i-1}, e_{1}^{i}\right)=k\left(v_{i}\right)$. Given a unit vector at $\left[w, v_{0}, v_{1}\right]$, with angle η_{0}; parallel transport to $\left[w, v_{1}, v_{2}\right.$] the angle representation is $\eta_{1}=\eta_{0}-k_{1}$; parallel transport to $\left[w, v_{i}, v_{i+1}\right.$],

$$
\eta_{i}=\eta_{i-1}-k_{i}=\eta_{0}-\sum_{j=1}^{i} k_{j}
$$

Gaussian Curvature

Parallel transport accorss $\left[w, v_{1}\right],\left[w, v_{2}\right], \cdots,\left[w, v_{n}\right]$, where $v_{n}=v_{0}$, then

$$
\eta_{n}=\eta_{0}-\sum_{i=1}^{n} \omega_{12}\left(\left[w, v_{i}\right]\right)=\eta_{0}-\sum_{i=1}^{n} k\left(v_{i}\right)
$$

By Gauss-Bonnet, $K(w)+\sum_{i=1}^{n} k\left(v_{i}\right)=2 \pi$,therefore

$$
\eta_{n}=\eta_{0}-2 \pi+K(w)
$$

Gaussian Curvature

Figure: Gaussian curvature.

Gauss map: $\mathbf{r}(p) \mapsto \mathbf{n}(p)$,

$$
K(p):=\lim _{\Omega \rightarrow\{p\}} \frac{|G(\Omega)|}{|\Omega|}
$$

Gaussian Curvature

Figure: Discrete Gaussian curvature.

$$
G\left(v_{i}\right):=\left\{\mathbf{n} \in \mathbb{S}^{2} \mid \exists \text { Support plane with normal } \mathbf{n}\right\} .
$$

Gaussian Curvature

Figure: Discrete Gaussian curvature for convex vertex.

$$
K\left(v_{i}\right):=\left|G\left(v_{i}\right)\right|=2 \pi-\sum_{j k} \theta_{j k}^{i} .
$$

Gauss-Bonnet

For a closed oriented metric surface (S, \mathbf{g}),

$$
\int_{S} K d A=2 \pi \chi(S)
$$

For a closed oriented discrete polygonal surface M,

$$
\sum_{v_{i}} K\left(v_{i}\right)=2 \pi \chi(M)
$$

Gaussian Curvature

Figure: Discrete Gaussian curvature.

$$
K\left(v_{i}\right)=\left\{\begin{array}{cc}
2 \pi-\sum_{j k} \theta_{i}^{j k} & v_{i} \notin \partial M \tag{1}\\
\pi-\sum_{j k} \theta_{i}^{j k} & v_{i} \in \partial M
\end{array}\right.
$$

Gauss-Bonnet

Theorem (Discrete Gauss-Bonnet Theorem)

Given polyhedral surface (S, V, \mathbf{d}), the total discrete curvature is

$$
\sum_{v \notin \partial M} K(v)+\sum_{v \in \partial M} K(v)=2 \pi \chi(S)
$$

where $\chi(S)$ is the Euler characteristic number of S.

Proof.

We denote the polyhedral surface $M=(V, E, F)$, if M is closed, then
$\sum_{v_{i} \in V} K\left(v_{i}\right)=\sum_{v_{i} \in V}\left(2 \pi-\sum_{j k} \theta_{i}^{j k}\right)=\sum_{v_{i} \in V} 2 \pi-\sum_{v_{i} \in V} \sum_{j k} \theta_{i}^{j K}=2 \pi|V|-\pi|F|$.
Since M is closed, $3|F|=2|E|$,
$\chi(S)=|V|+|F|-|E|=|V|+|F|-\frac{3}{2}|F|=|V|-\frac{1}{2}|F|$.

Discrete Guass-Bonnet

continued.

Assume M has bounary ∂M. Assume the interior vertex set is V_{0}, boundary vertex set is V_{1}, then $|V|=\left|V_{0}\right|+\left|V_{1}\right|$; assume interior edge set is E_{0}, boundary edge set is E_{1}, then $|E|=\left|E_{0}\right|+\left|E_{1}\right|$. Furthermore, all boundaries are closed loops, hence boundry vertex number equals to the boundary edge number, $\left|V_{1}\right|=\left|E_{1}\right|$. Every interior edge is adjacent to two faces, every boundary edge is adjacent to one face, we have $3|F|=2\left|E_{0}\right|+\left|E_{1}\right|=2\left|E_{0}\right|+\left|v_{1}\right|$. We compute the Euler number
$\chi(M)=|V|+|F|-|E|=\left|V_{0}\right|+\left|V_{1}\right|+|F|-\left|E_{0}\right|-\left|E_{1}\right|=\left|V_{0}\right|+|F|-\left|E_{0}\right|$, by $\left|E_{0}\right|=1 / 2\left(3|F|-\left|V_{1}\right|\right)$

$$
\chi(M)=\left|V_{0}\right|-\frac{1}{2}|F|+\frac{1}{2}\left|V_{1}\right|
$$

Discrete Guass-Bonnet

continued.

we have:

$$
\begin{align*}
\sum_{v_{i} \in V_{0}} K\left(v_{i}\right)+\sum_{v_{j} \in V_{1}} K\left(v_{j}\right) & =\sum_{v_{i} \in V_{0}}\left(2 \pi-\sum_{j k} \theta_{i}^{j k}\right)+\sum_{v_{i} \in V_{1}}\left(\pi-\sum_{j k} \theta_{i}^{j k}\right) \\
& =2 \pi\left|V_{0}\right|+\pi\left|V_{1}\right|-\pi|F| \\
& =2 \pi\left(\left|V_{0}\right|-\frac{1}{2}|F|+\frac{1}{2}\left|V_{1}\right|\right) \\
& =2 \pi \chi(M) . \tag{2}
\end{align*}
$$

