Surface Differential Geometry, Movable Frame Method

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 21, 2022

Movable Frame

Figure: A parametric surface.

Orthonormal Movable frame

Movable Frame

Suppose a regular surface S is embedded in \mathbb{R}^3 , a parametric representation is $\mathbf{r}(u, v)$. Select two vector fields $\mathbf{e}_1, \mathbf{e}_2$, such that

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}.$$

Let e_3 be the unit normal field of the surface. Then

$$\{r; e_1, e_2, e_3\}$$

form the orhonormal frame field of the surface.

Orthonormal Movalbe frame

Tangent Vector

The tangent vector is the linear combination of the frame bases,

$$d\mathbf{r} = \omega_1 \mathbf{e}_1 + \omega_2 \mathbf{e}_2$$

where $\omega_k(\mathbf{v}) = \langle \mathbf{e}_k, \mathbf{v} \rangle$. $d\mathbf{r}$ is orthogonal to the normal vector \mathbf{e}_3 .

Motion Equation

$$d\mathbf{e}_i = \omega_{i1}\mathbf{e}_1 + \omega_{i2}\mathbf{e}_2 + \omega_{i3}\mathbf{e}_3,$$

where $\omega_{ij} = \langle d\mathbf{e}_i, \mathbf{e}_j \rangle$. Because

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}, \quad 0 = d \langle \mathbf{e}_i, \mathbf{e}_j \rangle = \langle d\mathbf{e}_i, \mathbf{e}_j \rangle + \langle \mathbf{e}_i, d\mathbf{e}_j \rangle$$

we get

$$\omega_{ij} + \omega_{jj} = 0, \omega_{ij} = 0.$$

Motion Equation

Motion Equation

$$d\mathbf{r} = \omega_1 \mathbf{e}_1 + \omega_2 \mathbf{e}_2,$$

$$\begin{pmatrix} d\mathbf{e}_1 \\ d\mathbf{e}_2 \\ d\mathbf{e}_3 \end{pmatrix} = \begin{pmatrix} 0 & \omega_{12} & \omega_{13} \\ -\omega_{12} & 0 & \omega_{23} \\ -\omega_{13} & -\omega_{23} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix}$$

Fundamental Forms

The first fundamental form is

$$I = \langle d\mathbf{r}, d\mathbf{r} \rangle = \omega_1 \omega_1 + \omega_2 \omega_2.$$

The second fundamental form is

$$II = -\langle d\mathbf{r}, d\mathbf{e}_3 \rangle = -\omega_1 \omega_{31} - \omega_2 \omega_{32} = \omega_1 \omega_{13} + \omega_2 \omega_{23}.$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕久で

Weingarten Mapping

Definition (Weingarten Mapping)

The Gauss mapping is

$$\mathbf{r} \rightarrow \mathbf{e}_3$$
,

its derivative map is called the Weingarten mapping,

$$d\mathbf{r} \rightarrow d\mathbf{e}_3, \omega_1 \mathbf{e}_1 + \omega_2 \mathbf{e}_2 \rightarrow \omega_{31} \mathbf{e}_1 + \omega_{32} \mathbf{e}_2.$$

Definition (Gaussian Curvature)

The area ratio (Jacobian of the Weingarten mapping) is the Gaussian curvature

$$K\omega_1 \wedge \omega_2 = \omega_{31} \wedge \omega_{32}$$
.

Gaussian curvature

Weigarten Mapping

 $\{\omega_1, \omega_2\}$ form the basis of the cotangent space, therefore ω_{13}, ω_{23} can be represented as the linear combination of them,

$$\left(\begin{array}{c}\omega_{13}\\\omega_{23}\end{array}\right) = \left(\begin{array}{cc}h_{11} & h_{12}\\h_{21} & h_{22}\end{array}\right) \left(\begin{array}{c}\omega_{1}\\\omega_{2}\end{array}\right)$$

therefore

$$\omega_{13} \wedge \omega_{23} = \begin{vmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{vmatrix} \omega_1 \wedge \omega_2$$

so $K = h_{11}h_{22} - h_{12}h_{21}$, the mean curvature $H = \frac{1}{2}(h_{11} + h_{22})$.

Gauss's theorem Egregium

Theorem (Gauss' Theorem Egregium)

The Gaussian curvature is intrinsic, solely determined by the first fundamental form.

Proof.

$$0 = d^{2}\mathbf{e}_{1}$$

$$= d(\omega_{12}\mathbf{e}_{2} + \omega_{13}\mathbf{e}_{3})$$

$$= d\omega_{12}\mathbf{e}_{2} - \omega_{12} \wedge d\mathbf{e}_{2} + d\omega_{13}\mathbf{e}_{3} - \omega_{13} \wedge d\mathbf{e}_{3}$$

$$= d\omega_{12}\mathbf{e}_{2} - \omega_{12} \wedge (\omega_{21}\mathbf{e}_{1} + \omega_{23}\mathbf{e}_{3}) +$$

$$d\omega_{13}\mathbf{e}_{3} - \omega_{13} \wedge (\omega_{31}\mathbf{e}_{1} + \omega_{32}\mathbf{e}_{2})$$

$$= (d\omega_{12} - \omega_{13} \wedge \omega_{32})\mathbf{e}_{2} + (d\omega_{13} - \omega_{12} \wedge \omega_{23})\mathbf{e}_{3}$$

therefore

$$d\omega_{12} = -\omega_{13} \wedge \omega_{23} = -K\omega_1 \wedge \omega_2$$
.

Gauss's theorem Egregium

Lemma

The connection is given by the Riemannian metric:

$$\omega_{12} = \frac{d\omega_1}{\omega_1 \wedge \omega_2} \omega_1 + \frac{d\omega_2}{\omega_1 \wedge \omega_2} \omega_2$$

Proof.

$$0 = d^{2}\mathbf{r}$$

$$= d(\omega_{1}\mathbf{e}_{1} + \omega_{2}\mathbf{e}_{2})$$

$$= d\omega_{1}\mathbf{e}_{1} - \omega_{1} \wedge d\mathbf{e}_{1} + d\omega_{2}\mathbf{e}_{2} - \omega_{w} \wedge d\mathbf{e}_{2}$$

$$= d\omega_{1}\mathbf{e}_{1} - \omega_{1} \wedge (\omega_{12}\mathbf{e}_{2} + \omega_{13}\mathbf{e}_{3}) + d\omega_{2}\mathbf{e}_{2} - \omega_{2} \wedge (\omega_{21}\mathbf{e}_{1} + \omega_{23}\mathbf{e}_{3})$$

$$= (d\omega_{1} - \omega_{2} \wedge \omega_{21})\mathbf{e}_{1} + (d\omega_{2} - \omega_{1} \wedge \omega_{12})\mathbf{e}_{2} + -(\omega_{1} \wedge \omega_{13} + \omega_{2} \wedge \omega_{23})\mathbf{e}_{3}.$$

Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet)

Suppose M is a closed orientable C^2 surface, then

$$\int_{M} K dA = 2\pi \chi(M),$$

where dA is the area element of hte surface, $\chi(M)$ is the Euler characteristic number of M.

Proof.

Construct a smooth vector field v, with isolated zeros $\{p_1, p_2, \dots, p_n\}$. Choose a small disk $D(p_i, \varepsilon)$. On the surface

$$\bar{M} = M \setminus \bigcup_{i=1}^n D(p_i, \varepsilon)$$

Gauss-Bonnet Theorem

Proof.

construct orthonormal frame $\{p, e_1, e_2, e_3\}$, where

$$e_1(p) = \frac{v(p)}{|v(p)|}, \quad e_3(p) = n(p).$$

The integration

$$\int_{\bar{M}} \textit{KdA} = \int_{\bar{M}} \textit{K}\omega_1 \wedge \omega_2 = -\int_{\bar{M}} \textit{d}\omega_{12}$$

by Stokes theorem and Poincarère-Hopf theorem, we obtain

$$-\sum_{i=1}^n \int_{\partial D(p_i,\varepsilon)} \omega_{12} = 2\pi \sum_{i=1}^n \operatorname{Index}(p_i,v) = 2\pi \chi(M).$$

Here by $\omega_{12}=\langle de_1,e_2\rangle$, ω_{12} is the rotation speed of e_1 . Let $\varepsilon\to 0$, the equation holds.

Computing Geodesics

Figure: Geodesics.

Covariant Differential

Definition (Covariant Differentiation)

Covariant differentiation is the generalization of directional derivatives, satisfies the following properties: assume v and w are tangent vector fields on a surface, $f: S \to \mathbb{R}$ is a C^1 function, then

- $D(f\mathbf{v}) = df \mathbf{v} + fD\mathbf{v},$

By movable framework, the motion equation of the surface is

$$d\mathbf{e_1} = \omega_{12}\mathbf{e_2} + \omega_{13}\mathbf{e_3}, \quad d\mathbf{e_2} = \omega_{21}\mathbf{e_1} + \omega_{23}\mathbf{e_3},$$

We only keep tangential component, and delete the normal part to obtain covariant differential

$$D\mathbf{e_1} = \omega_{12}\mathbf{e_1}, \quad D\mathbf{e_2} = \omega_{21}\mathbf{e_1}.$$

Covariant Differential

Definition (Parallel transport)

Suppose S is a metric surface, $\gamma:[0,1]\to S$ is a smooth curve, v(t) is a vector field along γ , if

$$\frac{Dv}{dt}\equiv 0,$$

then we say the vector field v(t) is parallel transportation along γ .

Given a tangent vector field $v = f_1 \mathbf{e_1} + f_2 \mathbf{e_2}$, then

$$Dv = df_1 \mathbf{e}_1 + f_1 D \mathbf{e}_1 + df_2 \mathbf{e}_2 + f_2 D \mathbf{e}_2$$

= $(df_1 - f_2 \omega_{12}) \mathbf{e}_1 + (df_2 + f_1 \omega_{12}) \mathbf{e}_2$.

and

$$\frac{Dv}{dt} = \left(\frac{df_1}{dt} - f_2 \frac{\omega_{12}}{dt}\right) \mathbf{e_1} + \left(\frac{df_2}{dt} + f_1 \frac{\omega_{12}}{dt}\right) \mathbf{e_2}.$$

where $\frac{\omega_{12}}{dt} = \langle \omega_{12}, \dot{\gamma} \rangle$. If $\omega_{12} = \alpha dx + \beta dy$, then $\frac{\omega_{12}}{dt} = \alpha \dot{x} + \beta \dot{y}$.

Parallel Transport

Parallel Transport Equation

Therefore parallel vector field satisfies the ODE

$$\begin{cases} \frac{df_1}{dt} - f_2 \frac{\omega_{12}}{dt} = 0\\ \frac{df_2}{dt} + f_1 \frac{\omega_{12}}{dt} = 0 \end{cases}$$

Given an intial condition v(0), the solution uniquely exists.

Levy-Civita Connection

Definition (Levy-Civita Connection)

The connection D is the Levy-Civita connection with respect to the Riemannian metic \mathbf{g} , if it satisfies:

1 compatible with the metric

$$\mathbf{x}\langle \mathbf{y}, \mathbf{z} \rangle_{\mathbf{g}} = \langle D_{\mathbf{x}}\mathbf{y}, \mathbf{z} \rangle_{\mathbf{g}} + \langle \mathbf{y}, D_{\mathbf{x}}\mathbf{z} \rangle_{\mathbf{g}}$$

free of torsion

$$D_{\mathbf{v}}\mathbf{w} - D_{\mathbf{w}}\mathbf{v} = [\mathbf{v}, \mathbf{w}]$$

Suppose \mathbf{v} and \mathbf{w} are two vector fields parallel along γ , then

$$rac{d}{dt}\langle \mathbf{v}, \mathbf{w}
angle_{\mathbf{g}} = \dot{\gamma} \langle \mathbf{v}, \mathbf{w}
angle_{\mathbf{g}} = \langle D_{\dot{\gamma}} \mathbf{v}, \mathbf{w}
angle + \langle \mathbf{v}, D_{\dot{\gamma}} \mathbf{w}
angle \equiv 0.$$

Namely, parallel transportation preserves inner product.

Geodesic Curvature

Definition (Geodesic Curvature)

Assume $\gamma:[0,1]\to S$ is a C^2 curve on a surface S, s is the arc length parameter. Construct orthonormal frame field along the curve $\{\mathbf{e_1},\mathbf{e_2},\mathbf{e_3}\}$, where $\mathbf{e_1}$ is the tangent vector field of γ , $\mathbf{e_3}$ is the normal field of the surface,

$$k_g := \frac{D\mathbf{e_1}}{ds} = k_g \mathbf{e_2}$$

is called geodesic curvature vector,

$$k_{g} = \left\langle \frac{D\mathbf{e_{1}}}{ds}, \mathbf{e_{2}} \right\rangle = \frac{\omega_{12}}{ds}$$

is called geodesic curvature.

Geodesic Curvature

Geodesic curvature, normal curvature

Given a spacial curve, its curvature vector satisfies

$$\frac{d^2\gamma}{ds^2}=k_g\mathbf{e_2}+k_n\mathbf{e_3},$$

where k_n is the normal curvature of the curve. The curvature of the curve, geodesic curvature and normal curvature satisfy

$$k^2 = k_g^2 + k_n^2.$$

Geodesic curvature k_g only depends on the Riemannian metric of the surface, is independent of the 2nd fundamental form. Therefore k_g is intrinsic, k_n is extrinsic.

Gauss-Bonnet

Theorem

Suppose (S, \mathbf{g}) is an oriented metric surface with boundaries, then

$$\int_{S} K dA + \int_{\partial S} k_{g} ds = 2\pi \chi(S).$$

Proof.

Construct a vector field with isolated zeros $\{p_i\}$, \mathbf{e}_1 is tangent to ∂S , small disks $D(p_i, \varepsilon)$. Define $\bar{S} := S \setminus \bigcup_i D(p_i, \varepsilon)$,

$$\int_{\bar{S}} KdA = -\int_{\bar{S}} \frac{d\omega_{12}}{\omega_{1} \wedge \omega_{2}} dA = -\int_{\bar{S}} d\omega_{12} = -\int_{\partial \bar{S}} \omega_{12}$$

$$= -\int_{\partial S - \bigcup_{i} \partial D(p_{i}, \varepsilon)} \omega_{12} = -\int_{\partial S} \frac{\omega_{12}}{ds} ds + \sum_{i} \int_{\partial D(p_{i}, \varepsilon)} \omega_{12}$$

$$= -\int_{\partial S} k_{g} ds + 2\pi \sum_{i} \operatorname{Index}(p_{i}) = -\int_{\partial S} k_{g} ds + 2\pi \chi(S).$$

Compute Minimal Surface

Figure: Minimal surface.

Smooth minimal surface satisfies $\Delta_{\mathbf{g}} r \equiv 0$, equivalently $H(p) \equiv 0$. A discrete minimal surface satisfies $\sum_{v_i \sim v_j} w_{ij} (\mathbf{r}(v_i) - \mathbf{r}(v_j)) = 0$, $\forall v_i \notin \partial M$.

Minimal Surface

Lemma

Given a metric surface (S, \mathbf{g}) embedded in \mathbb{R}^3 , then $\Delta_{\mathbf{g}} \mathbf{r} = 2H(p)\mathbf{n}$, where \mathbf{r} , \mathbf{n} are the position and normal vectors.

Proof.

We choose isothermal coordinates (x, y). Then $\mathbf{g} = {}^{2\lambda(x,y)} (dx^2 + dy^2)$, $\omega_{12} = -\lambda_y dx + \lambda_x dy$, $\omega_{13} = h_{11}\omega_1 + h_{12}\omega_2$, $\omega_{23} = h_{12}\omega_1 + h_{22}\omega_2$, $\omega_1 = e^{\lambda} dx$, $\omega_2 = e^{\lambda} dy$,

$$\frac{\partial}{\partial x} \mathbf{r}_{\mathbf{x}} = \frac{\partial}{\partial x} e^{\lambda} \mathbf{e}_{1} = e^{\lambda} \lambda_{x} \mathbf{e}_{1} + e^{\lambda} \frac{\partial}{\partial x} \mathbf{e}_{1}
= e^{\lambda} \lambda_{x} \mathbf{e}_{1} + e^{\lambda} \langle d\mathbf{e}_{1}, \frac{\partial}{\partial x} \rangle = e^{\lambda} \lambda_{x} \mathbf{e}_{1} + e^{\lambda} \langle \omega_{12} \mathbf{e}_{2} + \omega_{13} \mathbf{e}_{3}, \partial_{x} \rangle
= e^{\lambda} \lambda_{x} \mathbf{e}_{1} + e^{\lambda} (-\lambda_{y}) \mathbf{e}_{2} + e^{\lambda} \mathbf{e}_{3} \langle h_{11} \omega_{1}, \partial_{x} \rangle
= e^{\lambda} \lambda_{x} \mathbf{e}_{1} - e^{\lambda} \lambda_{y} \mathbf{e}_{2} + e^{2\lambda} h_{11} \mathbf{e}_{3}$$

Minimal Surface

Proof.

Similarly,

$$\frac{\partial}{\partial y} \mathbf{r_y} = \frac{\partial}{\partial y} e^{\lambda} \mathbf{e_2} = e^{\lambda} \lambda_y \mathbf{e_2} + e^{\lambda} \frac{\partial}{\partial y} \mathbf{e_2}
= e^{\lambda} \lambda_y \mathbf{e_2} + e^{\lambda} \langle d\mathbf{e_2}, \frac{\partial}{\partial y} \rangle = e^{\lambda} \lambda_y \mathbf{e_2} + e^{\lambda} \langle \omega_{21} \mathbf{e_1} + \omega_{23} \mathbf{e_3}, \partial_y \rangle
= e^{\lambda} \lambda_y \mathbf{e_2} + e^{\lambda} (-\lambda_y) \mathbf{e_2} + e^{\lambda} \mathbf{e_3} \langle h_{22} \omega_2, \partial_y \rangle
= e^{\lambda} \lambda_y \mathbf{e_2} - e^{\lambda} \lambda_x \mathbf{e_1} + e^{2\lambda} h_{22} \mathbf{e_3}$$

Therefore

$$\Delta_{\mathbf{g}}\mathbf{r} = \frac{1}{e^{2\lambda}}(\mathbf{r}_{xx} + \mathbf{r}_{yy}) = (h_{11} + h_{22})\mathbf{e}_3 = 2H\mathbf{e}_3.$$

Surface Area Variation

Lemma

Given a surface S with position vector $\mathbf{r}(x, y)$, perturb the surface along the normal direction

$$\mathbf{r}_{\varepsilon,\varphi}(x,y) = \mathbf{r}(x,y) + \varepsilon\varphi(x,y)\mathbf{n}(x,y),$$

the area variation is given by

$$\frac{d}{d\varepsilon}\big|_{\varepsilon=0}$$
Area $(\mathbf{r}_{\varepsilon,\varphi})=\int_{\mathcal{S}}2\varphi(x,y)He^{2u(x,y)}dxdy=\int_{\mathcal{S}}2\varphi HdA.$

Surface Area Variation

Proof.

We use isothermal coordinate, the first fundamental form:

$$E = \langle \mathbf{r}_{x} + \varepsilon \mathbf{n}_{x}, \mathbf{r}_{x} + \varepsilon \mathbf{n}_{x} \rangle = e^{2u} + 2\varepsilon \langle \mathbf{r}_{x}, \mathbf{n}_{x} \rangle + \varepsilon^{2} |\mathbf{n}_{x}|^{2}$$

$$G = \langle \mathbf{r}_{y} + \varepsilon \mathbf{n}_{y}, \mathbf{r}_{y} + \varepsilon \mathbf{n}_{y} \rangle = e^{2u} + 2\varepsilon \langle \mathbf{r}_{y}, \mathbf{n}_{y} \rangle + \varepsilon^{2} |\mathbf{n}_{y}|^{2}$$

$$F = \langle \mathbf{r}_{x} + \varepsilon \mathbf{n}_{x}, \mathbf{r}_{y} + \varepsilon \mathbf{n}_{y} \rangle = \varepsilon \langle \mathbf{r}_{x}, \mathbf{n}_{y} \rangle + \varepsilon \langle \mathbf{r}_{y}, \mathbf{n}_{x} \rangle + \varepsilon^{2} \langle \mathbf{n}_{x}, \mathbf{n}_{y} \rangle$$

$$EG - F^{2} = e^{4u} + 2\varepsilon e^{2u} (\langle \mathbf{r}_{x}, \mathbf{n}_{x} \rangle + \langle \mathbf{r}_{y}, \mathbf{n}_{y} \rangle) + O(\varepsilon^{2})$$

$$\frac{d}{d\varepsilon} \Big|_{\varepsilon=0} \sqrt{EG - F^{2}} = \langle \mathbf{r}_{x}, \mathbf{n}_{x} \rangle + \langle \mathbf{r}_{y}, \mathbf{n}_{y} \rangle = 2He^{2u}$$

where we use the mean curvature formula

$$2H = \operatorname{Tr}\left(-\frac{H}{I}\right) = -e^{-2u}(\langle \mathbf{r}_{xx}, \mathbf{n} \rangle + \langle \mathbf{r}_{yy}, \mathbf{n} \rangle) = e^{-2u}(\langle \mathbf{r}_{x}, \mathbf{n}_{x} \rangle + \langle r_{y}, \mathbf{n}_{x} \rangle)$$
$$\frac{d}{d\varepsilon}Area(\varepsilon) = \frac{d}{d\varepsilon}\big|_{\varepsilon=0} \int_{S} \sqrt{EG - F^{2}} dxdy = \int_{S} 2He^{2u} dxdy.$$

Minimal Surface

Lemma

A surface M, $\mathbf{x}(u, v) = (x_1(u, v), x_2(u, v), x_3(u, v))$, with isothermal coordinates is minimal if and only if x_1, x_2 , and x_3 are all harmonic.

Proof.

If M is minimal, then H=0, $\Delta \mathbf{x}=(2H)e^{2\lambda}\mathbf{n}=0$, therefore x_1,x_2,x_3 are harmonic.

If x_1, x_2, x_3 are harmonic, then $\Delta \mathbf{x} = 0$, $(2H)e^{2\lambda}\mathbf{n} = 0$. Now \mathbf{n} is the unit normal vector, so $\mathbf{n} \neq 0$ and $e^{2\lambda} = \langle x_u, x_u \rangle = |x_u|^2 \neq 0$. So H = 0, M is minimal.

Lemma

Let
$$z = u + \sqrt{-1}v$$
, $\frac{\partial x^j}{\partial z} = \frac{1}{2}(x_u^j - \sqrt{-1}x_v^j)$, define

$$\varphi = \frac{\partial \mathbf{x}}{\partial z} = (x_z^1, x_z^2, x_z^3)$$
$$(\varphi)^2 = (x_z^1)^2 + (x_z^2)^2 + (x_z^3)^2$$

if **x** is isothermal, then $(\varphi)^2 = 0$.

Proof.

$$(\varphi^{j})^{2} = (x_{z}^{j})^{2} = \frac{1}{4}((x_{j}^{j})^{2} - (x_{v}^{j})^{2} - 2ix_{u}^{j}x_{v}^{j}), \text{ so }$$

 $(\varphi)^{2} = \frac{1}{4}(|\mathbf{x}_{u}|^{2} - |\mathbf{x}_{v}|^{2} - 2i\mathbf{x}_{u} \cdot \mathbf{x}_{v}). \text{ If } \mathbf{x} \text{ is isothermal, then } (\varphi)^{2} = 0.$

Theorem

Suppose M is a surface with position **x**. Let $\varphi = \frac{\partial \mathbf{x}}{\partial z}$ and suppose $(\varphi)^2 = 0$. Then M is minimal if and only if φ^j is holomorphic.

Proof.

M is minimal, then x^j is harmonic, therefore $\Delta \mathbf{x} = 0$, therefore

$$\frac{\partial}{\partial \bar{z}} \left(\frac{\partial \mathbf{x}}{\partial z} \right) = \frac{\partial \varphi}{\partial \bar{z}} = 0$$

If φ^j is holomorphic, then $\frac{\partial \varphi}{\partial \bar{z}} = 0$, then $\Delta \mathbf{x} = 0$, x^j is harmonic, hence M is minimal.

Lemma

$$x^{j}(z,\bar{z})=c_{j}+\Re\left(\int \varphi^{j}dz\right).$$

Proof.

$$\varphi^{j}dz + \bar{\varphi}^{j}d\bar{z}^{j} = x^{j}_{u}du + x^{j}_{v}dv = dx^{j}.$$

hence

$$x^j = c_j + \int dx^j = c_j + \Re \left(\int \varphi^j dz \right).$$

Let f be a holomorphic function and g be a meromorphic function, such that fg^2 is holomorphic,

$$\varphi^{1} = \frac{1}{2}f(1-g^{2}), \varphi^{2} = \frac{i}{2}f(1+g^{2}), \varphi^{3} = fg,$$

then

$$(\varphi)^2 = \frac{1}{4}f^2(1-g^2)^2 - \frac{1}{4}f^2(1+g^2)^2 + f^2g^2 = 0.$$

Theorem (Weierstrass-Ennerper)

If f is holomorphic on a domain Ω , g is meromorphic in Ω , and fg^2 is holomorphic on Ω , then a minimal surface is defined by $\mathbf{x}(z,\bar{z}) = (x^1(z,\bar{z}),x^2(z,\bar{z}),x^3(z,\bar{z}))$, where

$$x^{1}(z,\bar{z}) = \Re\left(\int f(1-g^{2})dz\right)$$

$$x^{2}(z,\bar{z}) = \Re\left(\int \sqrt{-1}f(1+g^{2})dz\right)$$

$$x^{3}(z,\bar{z}) = \Re\left(\int 2fgdz\right)$$

Compute Geodesics

Figure: Geodesic on polyhedral surfaces.

Geodesic on a surface $\gamma:[0,1]\to(S,\mathbf{g})$:

$$D_{\dot{\gamma}}\dot{\gamma}\equiv 0.$$

◆ロト ◆母ト ◆草ト ◆草ト ■ からぐ

Compute Geodesics

Figure: Conjugate point of geodesics.

Geodesic on a surface $\gamma:[0,1]\to(S,\mathbf{g})$:

$$D_{\dot{\gamma}}\dot{\gamma}\equiv 0.$$

Discrete Geodesics

Discrete Geodesics

Suppose γ is a discrete geodesic:

- lacktriangledown isometrically flatten the strip of curve γ onto the plane;
- ${f 2}$ when the γ crosses an edge, it is straight;
- $oldsymbol{\circ}$ γ never crosses any convex vertex;
- when γ crosses a concave vertex, if we flatten the neighborhood from right, then $\theta_1 \geq \pi$; flatten from left, $\theta_2 \geq \pi$.

Discrete Harmonic Map

Smooth surface harmonic map $\varphi: (S, \mathbf{g}) \to \mathbb{D}^2$, $\Delta_{\mathbf{g}} \varphi \equiv 0$, with Dirichlet boundary condition $\varphi|_{\partial} S = f$. A discrete harmonic ma satisfies $\sum_{v_i \sim v_i} w_{ij} (\varphi(v_i) - \varphi(v_j)) = 0$, $\forall v_i \notin \partial M$.

Compute Minimal Surface

Figure: Minimal surface.

Smooth minimal surface satisfies $\Delta_{\mathbf{g}} r \equiv 0$, equivalently $H(p) \equiv 0$. A discrete minimal surface satisfies $\sum_{v_i \sim v_j} w_{ij} (\mathbf{r}(v_i) - \mathbf{r}(v_j)) = 0$, $\forall v_i \notin \partial M$.

Discarete Harmonic One-Form

Harmonic map $\varphi: M \to \mathbb{D}^2$; minimal surface $\varphi: M \to \mathbb{R}^3$.

Parallel Transport

Given $\gamma\subset S$, find an envelope surface Σ_1 of all the tangent planes along $\gamma,\ \varphi:\gamma\to\Sigma_1$ isometrically maps γ to $\Sigma_1.\ \Sigma_1$ is developable, flatten Σ_1 to obtain a planar domain $\Sigma_2,\ \psi:\Sigma_1\to\Sigma_2$. The composition $\psi\circ\varphi$ maps $p,q,v_1\in T_pS,v_2\in T_pS$ to p',q',v_1',v_2' . On the plane, translate a tangent vector v_1' from starting point p to the ending point q to get v_2' , maps back $v_2',\ v_2=(\psi\circ\varphi)^{-1}(v_2')$. Then v_1 is parallelly transported along γ to get v_2 .

Parallel transport v along $\partial \Sigma$, to get v' when returned to the original point p, then the angle difference between v and v' equals to the total Gaussian curvature,

$$\theta = \int_{\Sigma} K dA.$$

Figure: Discrete parallel transport, $K(v) = \theta$.

Parallel transport a vector, when return to the original position, the difference angle equals to the discrete Gaussian curvature of the interior vertices.

For each face $[w,v_i,v_{i+1}]$, build a local frame $\{e_1^i,e_2^i\}$, such that e_1^i is parallel to $[v_i,v_{i+1}]$; Connection ω_{12} is defined at edges, $\omega_{12}([w,v_i])=\angle(e_1^{i-1},e_1^i)=k(v_i)$. Given a unit vector at $[w,v_0,v_1]$, with angle η_0 ; parallel transport to $[w,v_1,v_2]$ the angle representation is $\eta_1=\eta_0-k_1$; parallel transport to $[w,v_i,v_{i+1}]$,

$$\eta_i = \eta_{i-1} - k_i = \eta_0 - \sum_{j=1}^i k_j.$$

Parallel transport accorss $[w, v_1], [w, v_2], \dots, [w, v_n]$, where $v_n = v_0$, then

$$\eta_n = \eta_0 - \sum_{i=1}^n \omega_{12}([w, v_i]) = \eta_0 - \sum_{i=1}^n k(v_i),$$

By Gauss-Bonnet, $K(w) + \sum_{i=1}^{n} k(v_i) = 2\pi$, therefore

$$\eta_n = \eta_0 - 2\pi + K(w).$$

Figure: Gaussian curvature.

Gauss map: $\mathbf{r}(p) \mapsto \mathbf{n}(p)$,

$$K(p) := \lim_{\Omega \to \{p\}} \frac{|G(\Omega)|}{|\Omega|}$$

Figure: Discrete Gaussian curvature.

 $G(v_i) := \{ \mathbf{n} \in \mathbb{S}^2 | \exists \mathsf{Support plane with normal } \mathbf{n} \}.$

Figure: Discrete Gaussian curvature for convex vertex.

$$K(v_i) := |G(v_i)| = 2\pi - \sum_{jk} \theta^i_{jk}.$$

Gauss-Bonnet

For a closed oriented metric surface (S, \mathbf{g}) ,

$$\int_{S} K dA = 2\pi \chi(S).$$

For a closed oriented discrete polygonal surface M,

$$\sum_{v_i} K(v_i) = 2\pi \chi(M).$$

Figure: Discrete Gaussian curvature.

$$K(v_i) = \begin{cases} 2\pi - \sum_{jk} \theta_i^{jk} & v_i \notin \partial M \\ \pi - \sum_{jk} \theta_i^{jk} & v_i \in \partial M \end{cases}$$
(1)

Gauss-Bonnet

Theorem (Discrete Gauss-Bonnet Theorem)

Given polyhedral surface (S, V, \mathbf{d}) , the total discrete curvature is

$$\sum_{v \notin \partial M} K(v) + \sum_{v \in \partial M} K(v) = 2\pi \chi(S),$$

where $\chi(S)$ is the Euler characteristic number of S.

Proof.

We denote the polyhedral surface M = (V, E, F), if M is closed, then

$$\sum_{v_i \in V} K(v_i) = \sum_{v_i \in V} \left(2\pi - \sum_{jk} \theta_i^{jk} \right) = \sum_{v_i \in V} 2\pi - \sum_{v_i \in V} \sum_{jk} \theta_i^{jK} = 2\pi |V| - \pi |F|.$$

Since M is closed, 3|F| = 2|E|,

$$\chi(S) = |V| + |F| - |E| = |V| + |F| - \frac{3}{2}|F| = |V| - \frac{1}{2}|F|.$$

David Gu (Stony Brook University)

Discrete Guass-Bonnet

continued.

Assume M has bounary ∂M . Assume the interior vertex set is V_0 , boundary vertex set is V_1 , then $|V|=|V_0|+|V_1|$; assume interior edge set is E_0 , boundary edge set is E_1 , then $|E|=|E_0|+|E_1|$. Furthermore, all boundaries are closed loops, hence boundry vertex number equals to the boundary edge number, $|V_1|=|E_1|$. Every interior edge is adjacent to two faces, every boundary edge is adjacent to one face, we have $3|F|=2|E_0|+|E_1|=2|E_0|+|v_1|$. We compute the Euler number

$$\chi(M) = |V| + |F| - |E| = |V_0| + |V_1| + |F| - |E_0| - |E_1| = |V_0| + |F| - |E_0|,$$

by
$$|E_0| = 1/2(3|F| - |V_1|)$$

$$\chi(M) = |V_0| - \frac{1}{2}|F| + \frac{1}{2}|V_1|$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (

Discrete Guass-Bonnet

continued.

we have:

$$\sum_{v_{i} \in V_{0}} K(v_{i}) + \sum_{v_{j} \in V_{1}} K(v_{j}) = \sum_{v_{i} \in V_{0}} \left(2\pi - \sum_{jk} \theta_{i}^{jk} \right) + \sum_{v_{i} \in V_{1}} \left(\pi - \sum_{jk} \theta_{i}^{jk} \right)$$

$$= 2\pi |V_{0}| + \pi |V_{1}| - \pi |F|$$

$$= 2\pi \left(|V_{0}| - \frac{1}{2}|F| + \frac{1}{2}|V_{1}| \right)$$

$$= 2\pi \chi(M).$$

