Yamabe Equation and Geodesics

David Gu
Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

July 21, 2022

Computation under Isothermal Coordinates

Isothermal Coordinates

Lemma (Isothermal Coordinates)

Let (S, \mathbf{g}) be a metric surface, use isothermal coordinates

$$
\mathbf{g}=e^{2 u(x, y)}\left(d x^{2}+d y^{2}\right)
$$

Then we obtain

$$
\omega_{1}=e^{u} d x \quad \omega_{2}=e^{u} d y
$$

and the orthonormal frame is

$$
\mathbf{e}_{\mathbf{1}}=e^{-u} \partial_{x} \quad \mathbf{e}_{\mathbf{2}}=e^{-u} \partial_{y}
$$

and the connection

$$
\omega_{12}=-u_{y} d x+u_{x} d y
$$

Gaussian Curvature

Proof.

By direct computation, $d s^{2}=\omega_{1}^{2}+\omega_{2}^{2}$,

$$
\begin{array}{rlrl}
d \omega_{1} & =d e^{u} \wedge d x & d \omega_{2} & =d e^{u} \wedge d y \\
& =e^{u}\left(u_{x} d x+u_{y} d y\right) \wedge d x & & =e^{u}\left(u_{x} d x+u_{y} d y\right) \wedge d y \\
& =e^{u} u_{y} d y \wedge d x & & =e^{u} u_{x} d x \wedge d y .
\end{array}
$$

therefore

$$
\begin{aligned}
\omega_{12} & =\frac{d \omega_{1}}{\omega_{1} \wedge \omega_{2}} \omega_{1}+\frac{d \omega_{2}}{\omega_{1} \wedge \omega_{2}} \omega_{2} \\
& =\frac{e^{u} u_{y} d y \wedge d x}{e^{2 u} d x \wedge d y} e^{u} d x+\frac{e^{u} u_{x} d x \wedge d y}{e^{2 u} d x \wedge d y} e^{u} d y \\
\omega_{12} & =-u_{y} d x+u_{x} d y
\end{aligned}
$$

Gaussian Curvature

Lemma (Gaussian curvature)

Under the isothermal coordinates, the Gaussian curvautre is given by

$$
K=-\frac{1}{e^{2 u}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) u
$$

Proof.

From

$$
\omega_{12}=-u_{y} d x+u_{x} d y
$$

we get

$$
K=-\frac{d \omega_{12}}{\omega_{1} \wedge \omega_{2}}=-\frac{\left(u_{x x}+u_{y y}\right) d x \wedge d y}{e^{2 u} d x \wedge d y}=-\frac{1}{e^{2 u}} \Delta u .
$$

Gaussian Curvature

Example

The unit disk $|z|<1$ equipped with the following metric

$$
d s^{2}=\frac{4 d z d \bar{z}}{(1-z \bar{z})^{2}},
$$

the Gaussian curvature is -1 everywhere.

Proof.

$e^{2 u}=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}$, then $u=\log 2-\log \left(1-x^{2}-y^{2}\right)$.

$$
u_{x}=-\frac{-2 x}{1-x^{2}-y^{2}}=\frac{2 x}{1-x^{2}-y^{2}}
$$

Gaussian Curvature

Proof.

then

$$
u_{x x}=\frac{2\left(1-x^{2}-y^{2}\right)-2 x(-2 x)}{\left(1-x^{2}-y^{2}\right)^{2}}=\frac{2+2 x^{2}-2 y^{2}}{\left(1-x^{2}-y^{2}\right)^{2}}
$$

similarly

$$
u_{y y}=\frac{2+2 y^{2}-2 x^{2}}{\left(1-x^{2}-y^{2}\right)^{2}}
$$

so

$$
u_{x x}+u_{y y}=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}=e^{2 u}, K=-\frac{1}{e^{2 u}}\left(u_{x x}+u_{y y}\right)=-1
$$

Yamabe Equation

Lemma (Yamabe Equation)

Conformal metric deformation $\mathbf{g} \rightarrow e^{2 \lambda} \mathbf{g}=\tilde{\mathbf{g}}$, then

$$
\tilde{K}=\frac{1}{e^{2 \lambda}}\left(K-\Delta_{\mathbf{g}} \lambda\right)
$$

Proof.

Use isothermal parameters, $\mathbf{g}=e^{2 u}\left(d x^{2}+d y^{2}\right), K=-e^{-2 u} \Delta u$, similarly $\tilde{\mathbf{g}}=e^{2 \tilde{u}}\left(d x^{2}+d y^{2}\right), \tilde{K}=-e^{-2 \tilde{u}} \Delta \tilde{u}, \tilde{u}=u+\lambda$,

$$
\begin{aligned}
\tilde{K} & =-\frac{1}{e^{2(u+\lambda)}} \Delta(u+\lambda) \\
& =\frac{1}{e^{2 \lambda}}\left(-\frac{1}{e^{2 u}} \Delta u-\frac{1}{e^{2 u}} \Delta \lambda\right) \\
& =\frac{1}{e^{2 \lambda}}\left(K-\Delta_{\mathbf{g}} \lambda\right)
\end{aligned}
$$

Geodesics

Geodesic Equation

Lemma (Geodesic Equation on a Riemann Surface)

Suppose S is a Riemann surface with a metric, $\rho(z) d z d \bar{z}=e^{2 u(z)} d z d \bar{z}$, then a geodesic γ with local representation $z(t)$ satisfies the equation:

$$
\ddot{\gamma}+\frac{2 \rho_{\gamma}}{\rho} \dot{\gamma}^{2} \equiv 0
$$

equivalently,

$$
\ddot{\gamma}+4 u_{\gamma} \dot{\gamma}^{2} \equiv 0 .
$$

Geodesic Equation

Proof.

Assume the velocity vector is $\dot{\gamma}=f_{1} \mathbf{e}_{\mathbf{1}}+f_{2} \mathbf{e}_{2}$, which is parallel along γ, by parallel transport ODE,

$$
\left\{\begin{array}{l}
\frac{d f_{1}}{d t}-f_{2} \frac{\omega_{12}}{d t}=0 \\
\frac{d f_{2}}{d t}+f_{1} \frac{\omega_{12}}{d t}=0
\end{array}\right.
$$

Suppose the geodesic has local representation $\gamma(t)=(x(t), y(t))$, then $d \gamma=\dot{x} \partial_{x}+\dot{y} \partial_{y}=e^{u} \dot{x} \mathbf{e}_{\mathbf{1}}+e^{u} \dot{y} \mathbf{e}_{2}, \omega_{12} / d t=-u_{y} \dot{x}+u_{x} \dot{y}, \rho=e^{u}$,

$$
\begin{aligned}
& \frac{d}{d t}(\rho \dot{x})-(\rho \dot{y})\left(-u_{y} \dot{x}+u_{x} \dot{y}\right)=0 \\
& \frac{d}{d t}(\rho \dot{y})+(\rho \dot{x})\left(-u_{y} \dot{x}+u_{x} \dot{y}\right)=0
\end{aligned}
$$

Geodesic Equation

continued

in turn,

$$
\begin{aligned}
& \rho \ddot{x}+\dot{\rho} \dot{x}-\dot{y}\left(-\rho_{y} \dot{x}+\rho_{x} \dot{y}\right)=\rho \ddot{x}+\left(\rho_{x} \dot{x}+\rho_{y} \dot{y}\right) \dot{x}-\dot{y}\left(-\rho_{y} \dot{x}+\rho_{x} \dot{y}\right)=0 \\
& \rho \ddot{y}+\dot{\rho} \dot{y}+\dot{x}\left(-\rho_{y} \dot{x}+\rho_{x} \dot{y}\right)=\rho \ddot{y}+\left(\rho_{x} \dot{x}+\rho_{y} \dot{y}\right) \dot{y}+\dot{x}\left(-\rho_{y} \dot{x}+\rho_{x} \dot{y}\right)=0
\end{aligned}
$$

namely

$$
\begin{aligned}
& \rho \ddot{x}+\rho_{x}\left(\dot{x}^{2}-\dot{y}^{2}\right)+2 \rho_{y} \dot{x} \dot{y}=0 \\
& \rho \ddot{y}-\rho_{y}\left(\dot{x}^{2}-\dot{y}^{2}\right)+2 \rho_{x} \dot{x} \dot{y}=0
\end{aligned}
$$

The first row plus $\sqrt{-1}$ times the second row,

$$
\rho(\ddot{x}+\sqrt{-1} \ddot{y})+\left(\rho_{x}-\sqrt{-1} \rho_{y}\right)(\dot{x}+\sqrt{-1} \dot{y})^{2}=0
$$

Geodesic Equation

continued.

Represent $\gamma(t)=z(t)$, where $z=x+\sqrt{-1} y, \rho_{z}=\frac{1}{2}\left(\rho_{x}-\sqrt{-1} \rho_{y}\right)$, we obtain the equation for geodesic on complex domain,

$$
\ddot{\gamma}+\frac{2 \rho_{\gamma}}{\rho} \dot{\gamma}^{2} \equiv 0 .
$$

Geodesic Curvature

Lemma

Given a curve γ on a surface (S, \mathbf{g}), with isothermal coordinates (x, y), the angle between ∂_{x} and $\dot{\gamma}$ is θ, then

$$
k_{g}(s)=\frac{d \theta}{d s}+\frac{\omega_{12}}{d s}
$$

Proof.

Construct an orthonormal frame $\left\{\overline{\mathbf{e}}_{1}, \overline{\mathbf{e}}_{2}\right\}$ by rotating $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}\right\}$ by angle θ, hence $\overline{\mathbf{e}}_{\mathbf{1}}$ is the tangent vector of γ.

$$
\left.\begin{array}{rl}
\left\{\begin{array}{l}
\overline{\mathbf{e}}_{\mathbf{1}}= \\
\overline{\mathbf{e}}_{2}= \\
=
\end{array}\right. & -\cos \theta \mathbf{e}_{\mathbf{1}}+\sin \theta \mathbf{e}_{\mathbf{1}}+\cos \theta \mathbf{e}_{2}
\end{array}\right\}
$$

Geodesic Curvature

continued

$$
\begin{aligned}
\bar{\omega}_{12} & =\left\langle d \overline{\mathbf{e}}_{\mathbf{1}}, \overline{\mathbf{e}}_{2}\right\rangle \\
& =\left(-\sin \theta d \theta-\sin \theta \omega_{12}\right)(-\sin \theta)+\left(\cos \theta \omega_{12}+\cos \theta d \theta\right) \cos \theta \\
& =d \theta+\omega_{12}
\end{aligned}
$$

Therefore

$$
k_{g}=\frac{\bar{\omega}_{12}}{d s}=\frac{d \theta}{d s}+\frac{\omega_{12}}{d s}
$$

Geodesic Curvature

Lemma (Geodesic Curvature)

Under the isothermal coordinates, the geodesic curvature is given by

$$
k_{g}=e^{-u}\left(k-\partial_{\mathbf{n}} u\right)
$$

where k is the curvature on the parameter plane, \mathbf{n} is the exterior normal to the cure on the parameter plane.

Proof.

We have $\omega_{12}=-u_{y} d x+u_{x} d y$. On the parameter plane, the arc length is $d t$, then $d s=e^{u} d t$. The parameterization preserves angle, therefore

$$
\begin{aligned}
k_{g} & =\frac{d \theta}{d s}+\frac{-u_{y} d x+u_{x} d y}{d s}=\frac{d t}{d s}\left(\frac{d \theta}{d t}+\frac{-u_{y} d x+u_{x} d y}{d t}\right) \\
& =e^{-u}(k-\langle\nabla u, n\rangle) \\
& =e^{-u}\left(k-\partial_{\mathbf{n}} u\right)
\end{aligned}
$$

Geodesic Curvature

Lemma

Given a metric surface (S, \mathbf{g}), under conformal deformation, $\overline{\mathbf{g}}=e^{2 \lambda} \mathbf{g}$, the geodesic curvature satisfies

$$
k_{\overline{\mathbf{g}}}=e^{-\lambda}\left(k_{\mathbf{g}}-\partial_{\mathbf{n}, \mathbf{g}} \lambda\right)
$$

Proof.

$$
\begin{aligned}
k_{\overline{\mathbf{g}}} & =e^{-(u+\lambda)}\left(k-\partial_{\mathbf{n}}(u+\lambda)\right) \\
& =e^{-\lambda}\left(e^{-u}\left(k-\partial_{\mathbf{n}} u\right)-e^{-u} \partial_{\mathbf{n}} \lambda\right) \\
& =e^{-\lambda}\left(k_{\mathbf{g}}-\partial_{\mathbf{n}, \mathbf{g}} \lambda\right)
\end{aligned}
$$

Geodesics

Definition (geodesic)

Given a metric surface (S, \mathbf{g}), a curve $\gamma:[0,1] \rightarrow S$ is a geodesic if $k_{\mathbf{g}}$ is zero everywhere.

Figure: Stable and unstable geodesics.

Geodesics

Lemma (geodesic)

If γ is the shortest curve connecting p and q, then γ is a geodesic.

Proof.

Consider a family of curves, $\Gamma:(-\varepsilon, \varepsilon) \rightarrow S$, such that $\Gamma(0, t)=\gamma(t)$, and

$$
\Gamma(s, 0)=p, \Gamma(s, 1)=q, \frac{\partial \Gamma(s, t)}{\partial s}=\varphi(t) \mathbf{e}_{2}(t)
$$

where $\varphi:[0,1] \rightarrow \mathbb{R}, \varphi(0)=\varphi(1)=0$. Fix parameter s, curve $\gamma_{s}:=\Gamma(s, \cdot),\left\{\gamma_{s}\right\}$ for a variation. Define an energy,

$$
L(s)=\int_{0}^{1}\left|\frac{d \gamma_{s}(t)}{d t}\right| d t, \quad \frac{\partial L(s)}{\partial s}=-\int_{0}^{1} \varphi k_{\mathbf{g}}(\tau) d \tau
$$

First Variation of arc length

Let $\gamma_{v}:[a, b] \rightarrow M$, where $v \in(-\varepsilon, \varepsilon) \in \mathbb{R}$ be a 1-parameter family of paths. We define the map $\Gamma:[a, b] \times[0,1] \rightarrow M$ by

$$
\Gamma(u, v):=\gamma_{v}(u)
$$

Define the vector fields \mathbf{u} and \mathbf{v} along γ_{v} by

$$
\mathbf{u}:=\frac{\partial \Gamma}{\partial u}=\Gamma_{*}\left(\partial_{u}\right), \quad \text { and } \quad \mathbf{v}:=\frac{\partial \Gamma}{\partial v}=\Gamma_{*}\left(\partial_{v}\right)
$$

We call \mathbf{u} the tangent vector field and \mathbf{v} the variation vector field.

First Variation of arc length

Lemma (First variation of arc length)

If The length of γ_{v} is given by

$$
L\left(\gamma_{v}\right):=\int_{a}^{b}\left|\mathbf{u}\left(\gamma_{v}(u)\right)\right| d u
$$

γ_{0} is parameterized by arc length, that is, $\left|\mathbf{u}\left(\gamma_{0}(u)\right)\right| \equiv 1$, then

$$
\left.\frac{d}{d v}\right|_{v=0} L\left(\gamma_{v}\right)=-\int_{a}^{b}\left\langle D_{\mathbf{u}} \mathbf{u}, \mathbf{v}\right\rangle d u+\left.\langle\mathbf{u}, \mathbf{v}\rangle\right|_{a} ^{b}
$$

If we choose $\mathbf{u}=\mathbf{e}_{\mathbf{1}}$, the tangent vector of $\gamma, \mathbf{v}=\mathbf{e}_{\mathbf{2}}$ orthogonal to $\mathbf{e}_{\mathbf{1}}$, and fix the starting and ending points of paths, then

$$
\frac{d}{d v} L\left(\gamma_{v}\right)=-\int_{a}^{b} k_{g} d s
$$

First variation of arc length

Proof.

Fixing $u \in[a, b]$, we may consider \mathbf{u} and \mathbf{v} as vector fields along the path $v \mapsto \gamma_{v}(u)$. Then

$$
\begin{aligned}
\frac{\partial}{\partial v}\left|\mathbf{u}\left(\gamma_{v}(u)\right)\right| & =\frac{\partial}{\partial v} \sqrt{\left|\mathbf{u}\left(\gamma_{v}(u)\right)\right|^{2}} \\
& =\frac{1}{2\left|\mathbf{u}\left(\gamma_{v}(u)\right)\right|} \frac{\partial}{\partial v}\left|\mathbf{u}\left(\gamma_{v}(u)\right)\right|^{2} \\
& =\frac{1}{2|\mathbf{u}|} \mathbf{v}|\mathbf{u}|^{2}=|\mathbf{u}|^{-1}\left\langle D_{\mathbf{v}} \mathbf{u}, \mathbf{u}\right\rangle_{\mathbf{g}}=\left\langle D_{\mathbf{v}} \mathbf{u}, \mathbf{u}\right\rangle_{\mathbf{g}}
\end{aligned}
$$

First variation of arc length

Proof.

$$
\frac{d}{d v} L\left(\gamma_{v}\right)=\int_{a}^{b} \frac{\partial}{\partial v}\left|\mathbf{u}\left(\gamma_{v}(u)\right)\right| d u=\int_{a}^{b}\left\langle D_{\mathbf{v}} \mathbf{u}, \mathbf{u}\right\rangle_{\mathbf{g}} d u
$$

Since $D_{\mathbf{v}} \mathbf{u}-D_{\mathbf{u}} \mathbf{v}=[\mathbf{v}, \mathbf{u}]$, and $[\mathbf{v}, \mathbf{u}]=\Gamma_{*}\left(\left[\partial_{v}, \partial_{u}\right]\right)=0$,

$$
\begin{aligned}
\frac{d}{d v} L\left(\gamma_{v}\right) & =\int_{a}^{b}\left\langle D_{\mathbf{u}} \mathbf{v}, \mathbf{u}\right\rangle_{\mathbf{g}} d u \\
& =\int_{a}^{b}\left(\frac{d}{d u}\langle\mathbf{u}, \mathbf{v}\rangle_{\mathbf{g}}-\left\langle\mathbf{v}, D_{\mathbf{u}} \mathbf{u}\right\rangle_{\mathbf{g}}\right) d u \\
& =\left.\langle\mathbf{u}, \mathbf{v}\rangle_{\mathbf{g}}\right|_{a} ^{b}-\int_{a}^{b}\left\langle\mathbf{v}, D_{\mathbf{u}} \mathbf{u}\right\rangle_{\mathbf{g}} d u .
\end{aligned}
$$

Geodesics

The second derivative of the length variation $L(s)$ depends on the Gaussian curvature of the underlying surface. If $K<0$, then the second derivative is positive, the geodesic is stable; if $K>0$, then the secondary derivative is negative, the geodesic is unstable.

Geodesics

Lemma (Uniqueness of geodesics)

Suppose (S, \mathbf{g}) is a closed oriented metric surface, \mathbf{g} induces negative Gaussian curvature everywhere, then each homotopy class has a unique geodesic.

Proof.

The existence can be obtained by variational method. The uniqueness is by Gauss-Bonnet theorem. Assume two geodesics $\gamma_{1} \sim \gamma_{2}$, then they bound a topological annulus Σ, by Gauss-Bonnet,

$$
\int_{\Sigma} K d A+\int_{\partial \Sigma} k_{g} d s=\chi(\Sigma)
$$

The first term is negative, the second is along the geodesics, hence 0 , $\chi(\Sigma)=0$. Contradiction.

Algorithm: Homotopy Detection

Input: A high genus closed mesh M, two loops γ_{1} and γ_{2};
Output: Whether $\gamma_{1} \sim \gamma_{2}$;
(1) Compute a hyperbolic metric of M, using Ricci flow;
(2) Homotopically deform γ_{k} to geodesics, $k=1,2$;
(3) if two geodesics coincide, return true; otherwise, return false;

Figure: Geodesics uniqueness.

Algorithm: Shortest Word

Input: A high genus closed mesh M, one loop γ
(1) Compute a hyperbolic metric of M, using Ricci flow;
(2) Homotopically deform γ to a geodesic;
(3) Compute a set of canonical fundamental group basis;
(9) Embed a finite portion of the universal covering space onto the Poincaré disk;
(5) Lift γ to the universal covering space $\tilde{\gamma}$. If $\tilde{\gamma}$ crosses $b_{i}^{ \pm}$, append $a_{i}^{ \pm}$; crosses $a_{i}^{ \pm}$, append b_{i}^{\mp}.

Hyperbolic Geodesics

Lemma

Let Σ be a compact hyperbolic Riemann surface, $K \equiv-1, p, q \in \Sigma$, then there exists a unique geodesic in each homotopy class, the geodesic depends on p and q continuously.

Proof.

Given a path $\gamma:[0,1] \rightarrow \Sigma$ connecting p and q. Let $\pi: \mathbb{H}^{2} \rightarrow \Sigma$ be the universal covering space of Σ. Fix one point $\tilde{p} \in \pi^{-1}(p)$, then there exists a unique lifting of $\gamma, \tilde{\gamma}:[0,1] \rightarrow \mathbb{H}^{2}, \tilde{\gamma}(0)=\tilde{p}$ and $\tilde{\gamma}(1)=\tilde{q}$. On the hyperbolic plane, the geodesic between \tilde{p} and \tilde{q} exists and is unique, $\tilde{\gamma}$ depends on \tilde{p} and \tilde{q} continuously.

Hyperbolic Geodesic

Finite Element Method

Finite Element Method

Given a smooth surface (S, \mathbf{g}), we can construct a sequence of triangle meshes $\varphi_{n}: S \rightarrow\left(M_{n}, \mathbf{d}_{n}\right)$, the pull back metric $\left\{\varphi_{n}^{*} \mathbf{d}_{n}\right\}$ converge to \mathbf{g}.

Finite Element Method

For each M_{n}, construct a harmonic map $f_{n}: M_{n} \rightarrow \mathbb{D}^{2}$. Then $\left\{f_{n}\right\}$ converge to the smooth harmonic map $f: S \rightarrow \mathbb{D}^{2}$.

Finite Element Method

Lemma (Discrete Harmonic Energy)

Given a piecewise linear function $f: M \rightarrow \mathbb{R}$, then the harmonic energy of f is given by

$$
E(f)=\frac{1}{2} \sum_{\left[v_{i}, v_{j}\right] \in M} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)^{2} .
$$

$w_{i j}=\cot \theta_{i j}^{k}+\cot \theta_{j i}^{\prime}$.

Finite Element Method

Definition (Barry-centric Coordinates)

Given a Euclidean triangle with vertices $\mathbf{v}_{i}, \mathbf{v}_{j}, \mathbf{v}_{k}$ the bary-centric coordinates of a planar point $\mathbf{p} \in \mathbb{R}^{2}$ with respect to the triangle are $\left(\lambda_{i}, \lambda_{j}, \lambda_{k}\right), \mathbf{p}=\lambda_{i} \mathbf{v}_{\mathbf{i}}+\lambda_{j} \mathbf{v}_{\mathbf{j}}+\lambda_{k} \mathbf{v}_{\mathbf{k}}$, where

$$
\lambda_{i}=\frac{\left(\mathbf{v}_{j}-\mathbf{p}\right) \times\left(\mathbf{v}_{k}-\mathbf{p}\right) \cdot \mathbf{n}}{\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right) \times\left(\mathbf{v}_{k}-\mathbf{v}_{i}\right) \cdot \mathbf{n}}
$$

the ratio between the area of the triangle $\mathbf{p}, \mathbf{v}_{j}, \mathbf{v}_{k}$ and the area of $\mathbf{v}_{i}, \mathbf{v}_{j}, \mathbf{v}_{k} . \lambda_{j}$ and λ_{k} are defined similarly.

By direct computation, the sum of the bary-centric coordinates is 1

$$
\lambda_{i}+\lambda_{j}+\lambda_{k}=1
$$

If \mathbf{p} is the interior point of the triangle, then all components of the bary-centric coordinates are positive.

Finite Element Method

Lemma

Suppose $f: \Delta \rightarrow \mathbb{R}$ is a linear function,

$$
f(p)=\lambda_{i} f\left(v_{i}\right)+\lambda_{j} f\left(v_{j}\right)+\lambda_{k} f\left(v_{k}\right)
$$

then the gradient of the function is

$$
\nabla f(p)=\frac{1}{2 A}\left(s_{i} f\left(v_{i}\right)+s_{j} f\left(v_{j}\right)+s_{k} f\left(v_{k}\right)\right)
$$

its harmonic energy is

$$
\begin{equation*}
\int_{\Delta}\langle\nabla f, \nabla f\rangle d A=\frac{\cot \theta_{i}}{2}\left(f_{j}-f_{k}\right)^{2}+\frac{\cot \theta_{j}}{2}\left(f_{k}-f_{i}\right)^{2}+\frac{\cot \theta_{k}}{2}\left(f_{i}-f_{j}\right)^{2} \tag{1}
\end{equation*}
$$

Finite Element Method

Proof.

We have

$$
\mathbf{s}_{i}+\mathbf{s}_{j}+\mathbf{s}_{k}=\mathbf{n} \times\left\{\left(\mathbf{v}_{k}-\mathbf{v}_{j}\right)+\left(\mathbf{v}_{i}-\mathbf{v}_{k}\right)+\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)\right\}=\mathbf{0}
$$

therefore

$$
\left\langle\mathbf{s}_{i}, \mathbf{s}_{i}\right\rangle=\left\langle\mathbf{s}_{i},-\mathbf{s}_{j}-\mathbf{s}_{k}\right\rangle=-\left\langle\mathbf{s}_{i}, \mathbf{s}_{j}\right\rangle-\left\langle\mathbf{s}_{i}, \mathbf{s}_{k}\right\rangle .
$$

pick a point $\mathbf{p}=\lambda_{i} \mathbf{v}_{i}+\lambda_{j} \mathbf{v}_{j}+\lambda_{k} \mathbf{v}_{k}$, bary-centric coordinates

$$
\lambda_{i}=\frac{1}{2 A}\left(\mathbf{v}_{k}-\mathbf{v}_{j}, \mathbf{p}-\mathbf{v}_{j}, \mathbf{n}\right)=\frac{1}{2 A}\left\langle\mathbf{n} \times\left(\mathbf{v}_{k}-\mathbf{v}_{j}\right), \mathbf{p}-\mathbf{v}_{j}\right\rangle
$$

hence

$$
\lambda_{i}=\frac{1}{2 A}\left\langle\mathbf{p}-\mathbf{v}_{j}, \mathbf{s}_{i}\right\rangle, \lambda_{j}=\frac{1}{2 A}\left\langle\mathbf{p}-\mathbf{v}_{k}, \mathbf{s}_{j}\right\rangle, \lambda_{k}=\frac{1}{2 A}\left\langle\mathbf{p}-\mathbf{v}_{i}, \mathbf{s}_{k}\right\rangle,
$$

where A is the triangle area.

Finite Element Method

continued

The linear function is

$$
\begin{aligned}
f(\mathbf{p}) & =\lambda_{i} f_{i}+\lambda_{j} f_{j}+\lambda_{k} f_{k} \\
& =\frac{1}{2 A}\left\langle\mathbf{p}-\mathbf{v}_{j}, f_{i} \mathbf{s}_{i}\right\rangle+\frac{1}{2 A}\left\langle\mathbf{p}-\mathbf{v}_{k}, f_{j} \mathbf{s}_{j}\right\rangle+\frac{1}{2 A}\left\langle\mathbf{p}-\mathbf{v}_{i}, f_{k} \mathbf{s}_{k}\right\rangle \\
& =\left\langle\mathbf{p}, \frac{1}{2 A}\left(f_{i} \mathbf{s}_{i}+f_{j} \mathbf{s}_{j}+f_{k} \mathbf{s}_{k}\right)\right\rangle-\frac{1}{2 A}\left(\left\langle\mathbf{v}_{j}, f_{i} \mathbf{s}_{i}\right\rangle+\left\langle\mathbf{v}_{k}, f_{j} \mathbf{s}_{j}\right\rangle+\left\langle\mathbf{v}_{i}, f_{k} \mathbf{s}_{k}\right\rangle\right) .
\end{aligned}
$$

Hence we obtain the gradient

$$
\nabla f=\frac{1}{2 A}\left(f_{i} \mathbf{s}_{i}+f_{j} \mathbf{s}_{j}+f_{k} \mathbf{s}_{k}\right)
$$

Finite Element Method

continued

we compute the harmonic energy

$$
\begin{aligned}
& \int_{\Delta}\langle\nabla f, \nabla f\rangle d A \\
= & \frac{1}{4 A}\left\langle f_{i} \mathbf{s}_{i}+f_{j} \mathbf{s}_{j}+f_{k} \mathbf{s}_{k}, f_{i} \mathbf{s}_{i}+f_{j} \mathbf{s}_{j}+f_{k} \mathbf{s}_{k}\right\rangle \\
= & \frac{1}{4 A}\left(\sum_{i}\left\langle\mathbf{s}_{i}, \mathbf{s}_{i}\right\rangle f_{i}^{2}+2 \sum_{i<j}\left\langle\mathbf{s}_{i}, \mathbf{s}_{j}\right\rangle f_{i} f_{j}\right) \\
= & \frac{1}{4 A}\left(-\sum_{i}\left\langle\mathbf{s}_{i}, \mathbf{s}_{j}+\mathbf{s}_{k}\right\rangle f_{i}^{2}+2 \sum_{i<j}\left\langle\mathbf{s}_{i}, \mathbf{s}_{j}\right\rangle f_{i} f_{j}\right) \\
= & -\frac{1}{4 A}\left(\left\langle\mathbf{s}_{i}, \mathbf{s}_{j}\right\rangle\left(f_{i}-f_{j}\right)^{2}+\left\langle\mathbf{s}_{j}, \mathbf{s}_{k}\right\rangle\left(f_{j}-f_{k}\right)^{2}+\left\langle\mathbf{s}_{k}, \mathbf{s}_{i}\right\rangle\left(f_{k}-f_{i}\right)^{2}\right)
\end{aligned}
$$

Finite Element Method

continued

Since

$$
\frac{\left\langle\mathbf{s}_{i}, \mathbf{s}_{j}\right\rangle}{2 A}=-\cot \theta_{k}, \frac{\left\langle\mathbf{s}_{j}, \mathbf{s}_{k}\right\rangle}{2 A}=-\cot \theta_{i}, \frac{\left\langle\mathbf{s}_{k}, \mathbf{s}_{i}\right\rangle}{2 A}=-\cot \theta_{j}
$$

Hence the harmonic energy is

$$
\int_{\Delta}\langle\nabla f, \nabla f\rangle d A=\frac{\cot \theta_{i}}{2}\left(f_{j}-f_{k}\right)^{2}+\frac{\cot \theta_{j}}{2}\left(f_{k}-f_{i}\right)^{2}+\frac{\cot \theta_{k}}{2}\left(f_{i}-f_{j}\right)^{2} .
$$

Finite Element Method

Lemma (Discrete Harmonic Energy)

Given a piecewise linear function $f: M \rightarrow \mathbb{R}$, then the harmonic energy of f is given by

$$
E(f)=\frac{1}{2} \sum_{\left[v_{i}, v_{j}\right] \in M} w_{i j}\left(f\left(v_{i}\right)-f\left(v_{j}\right)\right)^{2} .
$$

$w_{i j}=\cot \theta_{i j}^{k}+\cot \theta_{j i}^{\prime}$.

Proof.

We add the harmonic energies on all faces together, and merge the items associated with the same edge, then each edge contributes $\frac{1}{2} w_{i j}\left(f_{j}-f_{i}\right)^{2}$.

