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Motivation
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Conformal Module for Poly-annulus

Figure: Conformal mapping from a poly-annulus to a circle domain.
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Circle Domain

Definition (Circle Domain)

Suppose Ω ⊂ Ĉ is a planar domain, if ∂Ω has finite number of connected
components, each of them is either a circle or a point, then Ω is called a
circle domain.

Theorem (Koebe)

Suppose S is of genus zero, ∂S has finite number of connected
components, then S is conformal equivalent to a circle domain.
Furthermore, all such conformal mappings differ by a Möbius
transformation.
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Schwartz Reflection Principle

Definition (Mirror Reflection)

Given a circle Γ : |z − z0| = ρ, the reflection with respect to Γ is defined as:

φΓ : re iθ + z0 7→
ρ2

r
e iθ + z0. (1)

Two planar domains S and S ′ are symmetric about Γ, if φΓ(S) = S ′.

ρ

Γ

z

ϕΓ(z)

Figure: Reflection about a circle.
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Schwartz Reflection Principle

Definition (Reflection)

Suppose Γ is an analytic curve, domain S , S ′ and Γ are included in a
planar domain Ω. There is a conformal map f : Ω → Ĉ, such that f (Γ) is
a canonical circle, f (S) and f (S ′) are symmetric about f (Γ), then we say
S and S ′ are symmetric about Γ, and denoted as

S |S ′ (Γ).

Γ

S

S ′

f

f (S)
f (S ′)

f (Γ)Ω f (Ω)

Figure: General symmetry.
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Schwartz Reflection Principle

Theorem (Schwartz Reflection Principle)

Assume f is an analytic function, defined on the upper half disk
{|z | < 1,ℑ(z) > 0}. If f can be extended to a real continuous function on
the real axis, then f can be extended to an analytic function F defined on
the whole disk, satisfying

F (z) =

{
f (z), ℑ(z) ≥ 0

f (z̄), ℑ(z) < 0

f

Figure: Schwartz reflection principle.
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Multiple Reflection
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C0
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Multiple Reflection
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Multiple Reflection
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Multiple Reflection

1 Initial circle domain C 0: complex plane remove three disks, its
boundary is {Γ1, Γ2, Γ3};

2 First level reflection: C 0 is reflected about Γi1 to C i1 , i1 = 1, 2, 3;

∂C i1 = Γi1i1 −
∑
j ̸=i1

Γi1j ,

where Γi1i1 = Γi1 .

3 Second level reflection: C i1 is reflected about Γi2 to C i1i2 , i1 ̸= i2; the
boundary of C i1i2 are Γi1i2j , when j ̸= i1, Γ

i1i2
j is an interior boundary;

when j = i1, Γ
i1i2
j is the exterior boundary, Γi1i2i1

= Γi2i1 .

∂C i1i2 = Γi2i1 −
∑
j ̸=i1

Γi1i2j

when j = i1, Γ
i1i2
i1

= Γi2i1 ;
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Multiple Reflection

4 Third level reflection: C i1i2 is reflected about Γi3 to C i1i2i3 , i1 ̸= i2,
i2 ̸= i3; the boundary of C i1i2i3 are Γi1i2i3j , when j ̸= i1, Γ

i1i2i3
j is an

interior boundary; when j = i1, Γ
i1i2i3
j is the exterior boundary,

Γi1i2i3i1
= Γi2i3i1

.

∂C i1i2i3 = Γi2i3i1
−
∑
j ̸=i1

Γi1i2i3j .

5 The m-level reflection: C i1i2...im−1 is reflected about Γim to
C i1i2...im−1im , ik ̸= ik+1; the boundary of C i1i2...im−1im , ik ̸= ik+1 are

Γ
i1i2...im−1im
j , when j ̸= i1, Γ

i1i2...im−1im
j is an interior boundary; when

j = i1, Γ
i1i2...im−1im
j is the exterior boundary, Γ

i1i2...im−1im
i1

= Γ
i2...im−1im
i1

is
an interior boundary,

∂C i1i2...im = Γi2i3...imi1
−
∑
j ̸=i1

Γi1i2...imj .
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Multiple Reflection

Γ1 Γ2

Γ3

Γ1
2

Γ1
3

Γ2
1

Γ2
3

Γ3
1

Γ3
2

C0

C1
C2

C3

C32
C12C21

C31

C23

C13

Γ3
3

Γ2
2

Γ1
1

David Gu (Stony Brook University) Computational Conformal Geometry July 28, 2022 13 / 27



Multiple Reflection

C0

C1 C3C2

C12 C13 C21 C23 C31 C32

1

2

3

23 1 3 1

2

Figure: Reflection tree.

Each node represents a domain
C i1i2...im ;

Each edge represents a circle Γk ,
k = 1, . . . , n;

Father and Son share an edge i1

Γi1i2···imi1
= Γi2···imi1

.

Each node C (i), (i) = i1i2 . . . im is
the path from the root to C (i),

C (i) = φΓim
◦ φΓim−1

· · ·φΓi1
(C 0).

David Gu (Stony Brook University) Computational Conformal Geometry July 28, 2022 14 / 27



Multiple Reflection

C0

C1 C3C2

C21 C31 C12 C32 C13 C23

1

2

3

23 1 3 1

2

Figure: Embedding tree.

Father node C i2···im and child node
C i1i2···im is connected by edge i1, the
exterior boundary of child equals to
an interior boundary of the father

Γi1i2···imi1
= Γi2···imi1

.

From the root C 0 to C i1···im , the
path is inverse to the index

(i)−1 = imim−1 · · · i2i1,

starting from C 0 crosses Γim to C im ,
crosses Γimim−1

to C im−1im ; when

arrives at C ik−1···i1 , crosses Γ
ik−1···i1
ik

to C ik ik−1···i1 ; and eventually reach
C (i).
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Hole Area Estimation

Lemma

Suppose C (i) is an interior node in the reflection tree,

(i) = i1i2 · · · im,

its exterior boundary is Γ
(i)
i1
, interior boundaries are Γ

(i)
j , j ̸= i1, we have

the estimate: ∑
j ̸=i1

α(Γ
(i)
j ) ≤ µ4α(Γ

(i)
i1
).
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Hole Area Estimation
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Figure: Hole area estimation.

α(Γ21)+α(Γ23) = µ2(α(Γ̃21)+α(Γ̃23)) ≤ µ2α(Γ̃22) = µ4α(Γ2).

Enlarge all Γk ’s by factor µ−1

to Γ̃k , Γ̃1 and Γ̃3 touch each
other; reflect C 0 about Γ2

Γk |Γ2k (Γ2).

Γ̃k |Γ̃2k (Γ2).

α(Γ̃21) = µ−2α(Γ21)

α(Γ̃23) = µ−2α(Γ23)

α(Γ̃22) = µ2α(Γ2)
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Hole Area Estimation

Lemma

Suppose the boundaries of the initial circle domain C 0 are Γ1, Γ2, · · · , Γn,
consider the reflection tree with m layers, then the total area of the holes
bounded by the interior boundaries of leaf nodes is no greater than µ4m

times the area bounded by Γk ’s,∑
(i)=i1i2...im

∑
k ̸=i1

α(Γ
(i)
k ) ≤ µ4m

n∑
i=1

α(Γi ). (2)

Proof.

By induction on m. The area bounded by the exterior boundaries of the
nodes in the k + 1-layer is no greater than µ4 times that of the k-layer.
The total area of the interior boundaries of leaf nodes is no greater than
the area bounded by the exterior boundaries of leaf nodes.
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Uniqueness

Theorem (Uniqueness)

Given two circle domains C1,C2 ⊂ Ĉ, f : C1 → C2 is a univalent
holomorphic function, then f is a linear rational, namely a Möbus
transformation.

Proof.

Assume both C1 and C2 include ∞, and f (∞) = ∞. Since f is
holomorhic, it maps the boundary circles of C1 to those of C2. By
Schwartz reflection principle, f can be extended to the multiple reflected
domains. By the area estimation of the holes Eqn. 2, the multiple reflected
domains cover the whole Ĉ, hence f can be extended to the whole Ĉ,
since f (∞) = ∞, f is a linear function. If f (∞) ̸= ∞, we can use a
Möbius map to transform f (∞) to ∞.
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Existence

Definition (Kernel)

Suppose {Bn} is a family of domains on the complex plane, ∞ ∈ Bk for all
k . Suppose B is the maximal set: ∞ ∈ B, and for any closed set K ⊂ B,
there is an N, such that for any n > N, K ⊂ Bn. Then B is called the
kernel of {Bn}.

Definition (Domain Convergence)

We say a sequence {Bn} converges to its kernel B, if any sub-sequence
{Bnk} of {Bn} has the same kernel B. We denote Bn → B.
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Goluzin Theorem

Theorem (Goluzin)

Let {An} be a sequence of domains on the complex domain. Any domain
An includes ∞, n = 1, 2, · · · ,. Assume {An} converges to its kernel A. Let
{fn(z)} be a family of analytic function, for all n, fn(z) maps An to Bn

surjectively, such that fn(∞) = ∞, f ′n(∞) = 1. Then {fn(z)} uniformly
converges to a univalent analytic function f (z) in the interior of A, if and
only if {Bn} converges to its kernel B, then the univalent analytic function
f (z) maps A to B surjectively.
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Existence

Theorem (Existence)

On the z-plane, every n-connected domain Ω can be mapped to a circle
domain on the ζ-plane by a univalent holomorphic function. Choose a
point a ∈ Ω, there is a unique map which maps a to ζ = ∞, and in a
neighborhood of z = a, the map has the power series

1

z − a
+ a1(z − a) + · · · if a ̸= ∞

z +
a1
z

+ · · · if a = ∞
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Existence

Proof.

According to Hilbert theorem, all n-connected domains are conformally
equivalent to slit domains. We can assume Ω is a slit domain. We use S
represent all the n-connected slit domains with horizontal slits, and C the
n-connected circle domains. We label all the boundaries of the domains,
∂Ω =

⋃n
k=1 γk . For each slit γk , we represent it by the starting point pk

and the length lk , then we get the coordinates of the slit domain Ω

(p1, l1, p2, l2, · · · , pn, ln).

Hence S is a connected open set in R3n. Similarly, consider a circle
domain D ∈ C, we use the center and the radius to represent each circle
(qk , rk), and the coordinates of D are given by,

(q1, r1, q2, r2, · · · , qn, rn).

C is also a connected open set in R3n.
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Existence

continued

Consider a normalized univalent holomorphic function f : Ω → D, Ω ∈ S
and D ∈ C, f maps the k-th boundary curve γk to the k-th circular
boundary of D. By the existence of slit mapping and the uniqueness of
circle domain mapping, we have

1 Every circle domain D ∈ C corresponds to a unique slit domain Ω ∈ S;
2 Every slit domain Ω ∈ S corresponds to at most one circle domain

D ∈ C.
Then we establish a mapping from circle domains to slit domains
φ : C → S.
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Existence

continued

Assume {Dn} is a family of circle domains, converge to the kernel D∗.
The domain convergence definition is consistent with the convergence of
coordinates, namely, the boundary circles of Dn converge to the
corresponding boundary circles of D∗, denoted as limn→∞Dn = D∗. The
convergence of slit domains can be similarly defined. By Goluzin’s
theorem, we obtain the mapping φ : C → S is continuous:

φ( lim
n→∞

Dn) = lim
n→∞

φ(Dn).

By the uniqueness of circle domain mapping, we obtain φ is injective. We
will prove the mapping φ is surjective.
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Existence

continued

C is an open set in Euclidean space φ : C → S is injective continuous map.
According to invariance of domain theorem, φ(C) is an open set,
φ : C → φ(C) is a homeomorphism.
Choose a circle domain D0 ∈ C, its corresponding slit domain is
φ(D0) = Ω0 ∈ S, then Ω0 ∈ φ(C). Choose another slit map Ω1 ∈ S, we
don’t know if Ω1 is in φ(C) or not. We draw a path Γ : [0, 1] → S,
Γ(0) = Ω0 and Γ(1) = Ω1. Let

t∗ = sup{t ∈ [0, 1]|∀0 ≤ τ ≤ t, Γ(τ) ∈ φ(C)},

namely Γ from starting point to t∗ belongs to φ(C).
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Existence

continued

By the definition of domain convergence,

lim
n→∞

Γ(tn) → Γ(t∗).

By {Γ(tn)} ⊂ φ(C), there is a family of circle domains {Dn} ⊂ C,
φ(Dn) = Γ(tn). Let limn→∞Dn = D∗, by domain limit theorem, we have

φ(D∗) = φ( lim
n→∞

Dn) = lim
n→∞

φ(Dn) = lim
n→∞

Γ(tn) = Γ(t∗),

namely φ(D∗) = Γ(t∗), hence Γ(t∗) ∈ φ(C). But φ(C) is an open set,
hence if t∗ < 1, t∗ can be further extended. This contradict to the choice
of t∗, hence t∗ = 1. Therefore Ω1 ∈ φ(C). Since Ω1 is arbitrarily chosen,
hence φ : C → S is surjective. This proves the existence of the circle
domain mapping.
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