# Circle Domain Mapping: Koebe's Theorem

#### David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 28, 2022

# Motivation

< 1 k

æ

# Conformal Module for Poly-annulus



Figure: Conformal mapping from a poly-annulus to a circle domain.

### Definition (Circle Domain)

Suppose  $\Omega \subset \hat{\mathbb{C}}$  is a planar domain, if  $\partial \Omega$  has finite number of connected components, each of them is either a circle or a point, then  $\Omega$  is called a circle domain.

#### Theorem (Koebe)

Suppose S is of genus zero,  $\partial S$  has finite number of connected components, then S is conformal equivalent to a circle domain. Furthermore, all such conformal mappings differ by a Möbius transformation.

# Schwartz Reflection Principle

#### Definition (Mirror Reflection)

Given a circle  $\Gamma : |z - z_0| = \rho$ , the reflection with respect to  $\Gamma$  is defined as:

$$\varphi_{\Gamma}: re^{i\theta} + z_0 \mapsto \frac{\rho^2}{r}e^{i\theta} + z_0.$$
 (1)

Two planar domains S and S' are symmetric about  $\Gamma$ , if  $\varphi_{\Gamma}(S) = S'$ .



Figure: Reflection about a circle.

### Definition (Reflection)

Suppose  $\Gamma$  is an analytic curve, domain S, S' and  $\Gamma$  are included in a planar domain  $\Omega$ . There is a conformal map  $f : \Omega \to \hat{\mathbb{C}}$ , such that  $f(\Gamma)$  is a canonical circle, f(S) and f(S') are symmetric about  $f(\Gamma)$ , then we say S and S' are symmetric about  $\Gamma$ , and denoted as

 $S|S' (\Gamma).$ 



Figure: General symmetry.

### Theorem (Schwartz Reflection Principle)

Assume f is an analytic function, defined on the upper half disk  $\{|z| < 1, \Im(z) > 0\}$ . If f can be extended to a real continuous function on the real axis, then f can be extended to an analytic function F defined on the whole disk, satisfying

$$F(z) = \begin{cases} \frac{f(z)}{f(\bar{z})}, & \Im(z) \ge 0\\ \frac{f(z)}{f(\bar{z})}, & \Im(z) < 0 \end{cases}$$



Figure: Schwartz reflection principle.



8 / 27



David Gu (Stony Brook University)

Computational Conformal Geometry

July 28, 2022

9 / 27

æ



David Gu (Stony Brook University)

Computational Conformal Geometry

July 28, 2022

10 / 27

æ

- Initial circle domain C<sup>0</sup>: complex plane remove three disks, its boundary is {Γ<sub>1</sub>, Γ<sub>2</sub>, Γ<sub>3</sub>};
- **②** First level reflection:  $C^0$  is reflected about  $\Gamma_{i_1}$  to  $C^{i_1}$ ,  $i_1 = 1, 2, 3$ ;

$$\partial C^{i_1} = \Gamma^{i_1}_{i_1} - \sum_{j \neq i_1} \Gamma^{i_1}_j,$$

where  $\Gamma_{i_1}^{i_1} = \Gamma_{i_1}$ .

Second level reflection:  $C^{i_1}$  is reflected about  $\Gamma_{i_2}$  to  $C^{i_1i_2}$ ,  $i_1 \neq i_2$ ; the boundary of  $C^{i_1i_2}$  are  $\Gamma_j^{i_1i_2}$ , when  $j \neq i_1$ ,  $\Gamma_j^{i_1i_2}$  is an interior boundary; when  $j = i_1$ ,  $\Gamma_j^{i_1i_2}$  is the exterior boundary,  $\Gamma_{i_1}^{i_1i_2} = \Gamma_{i_1}^{i_2}$ .

$$\partial C^{i_1i_2} = \Gamma_{i_1}^{i_2} - \sum_{j \neq i_1} \Gamma_j^{i_1i_2}$$

when  $j = i_1$ ,  $\Gamma_{i_1}^{i_1 i_2} = \Gamma_{i_1}^{i_2}$ ;

- Third level reflection:  $C^{i_1i_2}$  is reflected about  $\Gamma_{i_3}$  to  $C^{i_1i_2i_3}$ ,  $i_1 \neq i_2$ ,  $i_2 \neq i_3$ ; the boundary of  $C^{i_1i_2i_3}$  are  $\Gamma_j^{i_1i_2i_3}$ , when  $j \neq i_1$ ,  $\Gamma_j^{i_1i_2i_3}$  is an interior boundary; when  $j = i_1$ ,  $\Gamma_j^{i_1i_2i_3}$  is the exterior boundary,  $\Gamma_{i_1}^{i_1i_2i_3} = \Gamma_{i_1}^{i_2i_3}$ .  $\partial C^{i_1i_2i_3} = \Gamma_{i_1}^{i_2i_3} - \sum_{i \neq i_1} \Gamma_j^{i_1i_2i_3}$ .
- So The *m*-level reflection:  $C^{i_1i_2...i_{m-1}}$  is reflected about  $\Gamma_{i_m}$  to  $C^{i_1i_2...i_{m-1}i_m}$ ,  $i_k \neq i_{k+1}$ ; the boundary of  $C^{i_1i_2...i_{m-1}i_m}$ ,  $i_k \neq i_{k+1}$  are  $\Gamma_j^{i_1i_2...i_{m-1}i_m}$ , when  $j \neq i_1$ ,  $\Gamma_j^{i_1i_2...i_{m-1}i_m}$  is an interior boundary; when  $j = i_1$ ,  $\Gamma_j^{i_1i_2...i_{m-1}i_m}$  is the exterior boundary,  $\Gamma_{i_1}^{i_1i_2...i_{m-1}i_m} = \Gamma_{i_1}^{i_2...i_{m-1}i_m}$  is an interior boundary,

$$\partial C^{i_1 i_2 \dots i_m} = \Gamma_{i_1}^{i_2 i_3 \dots i_m} - \sum_{j \neq i_1} \Gamma_j^{i_1 i_2 \dots i_m}$$



David Gu (Stony Brook University)

July 28, 2022

æ



Figure: Reflection tree.

- Each node represents a domain  $C^{i_1i_2...i_m};$
- Each edge represents a circle Γ<sub>k</sub>,
   k = 1,..., n;
- Father and Son share an edge  $i_1$

$$\Gamma_{i_1}^{i_1i_2\cdots i_m} = \Gamma_{i_1}^{i_2\cdots i_m}$$

• Each node  $C^{(i)}$ ,  $(i) = i_1 i_2 \dots i_m$  is the path from the root to  $C^{(i)}$ ,

$$C^{(i)} = \varphi_{\Gamma_{i_m}} \circ \varphi_{\Gamma_{i_{m-1}}} \cdots \varphi_{\Gamma_{i_1}}(C^0).$$



Figure: Embedding tree.

• Father node  $C^{i_2 \cdots i_m}$  and child node  $C^{i_1 i_2 \cdots i_m}$  is connected by edge  $i_1$ , the exterior boundary of child equals to an interior boundary of the father

$$\Gamma_{i_1}^{i_1i_2\cdots i_m} = \Gamma_{i_1}^{i_2\cdots i_m}$$

• From the root  $C^0$  to  $C^{i_1 \cdots i_m}$ , the path is inverse to the index

$$(i)^{-1}=i_mi_{m-1}\cdots i_2i_1,$$

starting from  $C^0$  crosses  $\Gamma^{i_m}$  to  $C^{i_m}$ , crosses  $\Gamma^{i_m}_{i_{m-1}}$  to  $C^{i_{m-1}i_m}$ ; when arrives at  $C^{i_{k-1}\cdots i_1}$ , crosses  $\Gamma^{i_{k-1}\cdots i_1}_{i_k}$ to  $C^{i_k i_{k-1}\cdots i_1}$ ; and eventually reach  $C^{(i)}$ .

#### Lemma

Suppose  $C^{(i)}$  is an interior node in the reflection tree,

$$(i)=i_1i_2\cdots i_m,$$

its exterior boundary is  $\Gamma_{i_1}^{(i)}$ , interior boundaries are  $\Gamma_j^{(i)}$ ,  $j \neq i_1$ , we have the estimate:

$$\sum_{j\neq i_1} \alpha(\Gamma_j^{(\prime)}) \leq \mu^4 \alpha(\Gamma_{i_1}^{(\prime)}).$$

() 세금 ( 세금 ) 문

# Hole Area Estimation



Figure: Hole area estimation.

$$\alpha(\Gamma_1^2) + \alpha(\Gamma_3^2) = \mu^2(\alpha(\tilde{\Gamma}_1^2) + \alpha(\tilde{\Gamma}_3^2)) \le \mu^2\alpha(\tilde{\Gamma}_2^2) = \mu^4\alpha(\Gamma^2).$$

David Gu (Stony Brook University)

(

Enlarge all  $\Gamma_k$ 's by factor  $\mu^{-1}$  to  $\tilde{\Gamma}_k$ ,  $\tilde{\Gamma}_1$  and  $\tilde{\Gamma}_3$  touch each other; reflect  $C^0$  about  $\Gamma_2$ 

• 
$$\Gamma_k | \Gamma_k^2$$
 ( $\Gamma_2$ ).  
•  $\tilde{\Gamma}_k | \tilde{\Gamma}_k^2$  ( $\Gamma_2$ ).  
 $\alpha(\tilde{\Gamma}_1^2) = \mu^{-2} \alpha(\Gamma_1^2)$   
 $\alpha(\tilde{\Gamma}_3^2) = \mu^{-2} \alpha(\Gamma_3^2)$   
 $\alpha(\tilde{\Gamma}_2^2) = \mu^2 \alpha(\Gamma_2)$ 

#### Lemma

Suppose the boundaries of the initial circle domain  $C^0$  are  $\Gamma_1, \Gamma_2, \dots, \Gamma_n$ , consider the reflection tree with m layers, then the total area of the holes bounded by the interior boundaries of leaf nodes is no greater than  $\mu^{4m}$  times the area bounded by  $\Gamma_k$ 's,

$$\sum_{(i)=i_1i_2\ldots i_m}\sum_{k\neq i_1}\alpha(\Gamma_k^{(i)})\leq \mu^{4m}\sum_{i=1}^n\alpha(\Gamma_i).$$

#### Proof.

By induction on m. The area bounded by the exterior boundaries of the nodes in the k + 1-layer is no greater than  $\mu^4$  times that of the k-layer. The total area of the interior boundaries of leaf nodes is no greater than the area bounded by the exterior boundaries of leaf nodes.

< □ > < □ > < □ > < □ > < □ > < □ >

(2)

### Theorem (Uniqueness)

Given two circle domains  $C_1, C_2 \subset \hat{\mathbb{C}}, f : C_1 \to C_2$  is a univalent holomorphic function, then f is a linear rational, namely a Möbus transformation.

#### Proof.

Assume both  $C_1$  and  $C_2$  include  $\infty$ , and  $f(\infty) = \infty$ . Since f is holomorhic, it maps the boundary circles of  $C_1$  to those of  $C_2$ . By Schwartz reflection principle, f can be extended to the multiple reflected domains. By the area estimation of the holes Eqn. 2, the multiple reflected domains cover the whole  $\hat{\mathbb{C}}$ , hence f can be extended to the whole  $\hat{\mathbb{C}}$ , since  $f(\infty) = \infty$ , f is a linear function. If  $f(\infty) \neq \infty$ , we can use a Möbius map to transform  $f(\infty)$  to  $\infty$ .

イロト 不得 ト イヨト イヨト

### Definition (Kernel)

Suppose  $\{B_n\}$  is a family of domains on the complex plane,  $\infty \in B_k$  for all k. Suppose B is the maximal set:  $\infty \in B$ , and for any closed set  $K \subset B$ , there is an N, such that for any n > N,  $K \subset B_n$ . Then B is called the kernel of  $\{B_n\}$ .

#### Definition (Domain Convergence)

We say a sequence  $\{B_n\}$  converges to its kernel B, if any sub-sequence  $\{B_{n_k}\}$  of  $\{B_n\}$  has the same kernel B. We denote  $B_n \to B$ .

### Theorem (Goluzin)

Let  $\{A_n\}$  be a sequence of domains on the complex domain. Any domain  $A_n$  includes  $\infty$ ,  $n = 1, 2, \dots, A$ ssume  $\{A_n\}$  converges to its kernel A. Let  $\{f_n(z)\}$  be a family of analytic function, for all n,  $f_n(z)$  maps  $A_n$  to  $B_n$  surjectively, such that  $f_n(\infty) = \infty$ ,  $f'_n(\infty) = 1$ . Then  $\{f_n(z)\}$  uniformly converges to a univalent analytic function f(z) in the interior of A, if and only if  $\{B_n\}$  converges to its kernel B, then the univalent analytic function f(z) maps A to B surjectively.

#### Theorem (Existence)

On the z-plane, every n-connected domain  $\Omega$  can be mapped to a circle domain on the  $\zeta$ -plane by a univalent holomorphic function. Choose a point  $a \in \Omega$ , there is a unique map which maps a to  $\zeta = \infty$ , and in a neighborhood of z = a, the map has the power series

$$\frac{1}{z-a} + a_1(z-a) + \cdots \text{ if } a \neq \infty$$
$$z + \frac{a_1}{z} + \cdots \text{ if } a = \infty$$

### Existence

### Proof.

According to Hilbert theorem, all *n*-connected domains are conformally equivalent to slit domains. We can assume  $\Omega$  is a slit domain. We use S represent all the *n*-connected slit domains with horizontal slits, and C the *n*-connected circle domains. We label all the boundaries of the domains,  $\partial \Omega = \bigcup_{k=1}^{n} \gamma_k$ . For each slit  $\gamma_k$ , we represent it by the starting point  $p_k$  and the length  $I_k$ , then we get the coordinates of the slit domain  $\Omega$ 

$$(p_1, l_1, p_2, l_2, \cdots, p_n, l_n).$$

Hence S is a connected open set in  $\mathbb{R}^{3n}$ . Similarly, consider a circle domain  $\mathcal{D} \in \mathcal{C}$ , we use the center and the radius to represent each circle  $(q_k, r_k)$ , and the coordinates of  $\mathcal{D}$  are given by,

$$(q_1, r_1, q_2, r_2, \cdots, q_n, r_n).$$

C is also a connected open set in  $\mathbb{R}^{3n}$ .

Consider a normalized univalent holomorphic function  $f : \Omega \to D$ ,  $\Omega \in S$ and  $\mathcal{D} \in C$ , f maps the k-th boundary curve  $\gamma_k$  to the k-th circular boundary of  $\mathcal{D}$ . By the existence of slit mapping and the uniqueness of circle domain mapping, we have

- Every circle domain  $\mathcal{D} \in \mathcal{C}$  corresponds to a unique slit domain  $\Omega \in \mathcal{S}$ ;
- $\label{eq:constraint} \textbf{@} \mbox{ Every slit domain } \Omega \in \mathcal{S} \mbox{ corresponds to at most one circle domain } \\ \mathcal{D} \in \mathcal{C}.$

Then we establish a mapping from circle domains to slit domains  $\varphi: \mathcal{C} \to \mathcal{S}.$ 

Assume  $\{\mathcal{D}_n\}$  is a family of circle domains, converge to the kernel  $\mathcal{D}^*$ . The domain convergence definition is consistent with the convergence of coordinates, namely, the boundary circles of  $\mathcal{D}_n$  converge to the corresponding boundary circles of  $\mathcal{D}^*$ , denoted as  $\lim_{n\to\infty} \mathcal{D}_n = \mathcal{D}^*$ . The convergence of slit domains can be similarly defined. By Goluzin's theorem, we obtain the mapping  $\varphi : \mathcal{C} \to \mathcal{S}$  is continuous:

$$\varphi(\lim_{n\to\infty}\mathcal{D}_n)=\lim_{n\to\infty}\varphi(\mathcal{D}_n).$$

By the uniqueness of circle domain mapping, we obtain  $\varphi$  is injective. We will prove the mapping  $\varphi$  is surjective.

イロト イヨト イヨト ・

 $\begin{array}{l} \mathcal{C} \text{ is an open set in Euclidean space } \varphi: \mathcal{C} \to \mathcal{S} \text{ is injective continuous map.} \\ \text{According to invariance of domain theorem, } \varphi(\mathcal{C}) \text{ is an open set,} \\ \varphi: \mathcal{C} \to \varphi(\mathcal{C}) \text{ is a homeomorphism.} \\ \text{Choose a circle domain } \mathcal{D}_0 \in \mathcal{C}, \text{ its corresponding slit domain is} \\ \varphi(\mathcal{D}_0) = \Omega_0 \in \mathcal{S}, \text{ then } \Omega_0 \in \varphi(\mathcal{C}). \text{ Choose another slit map } \Omega_1 \in \mathcal{S}, \text{ we} \\ \text{don't know if } \Omega_1 \text{ is in } \varphi(\mathcal{C}) \text{ or not. We draw a path } \Gamma: [0,1] \to \mathcal{S}, \\ \Gamma(0) = \Omega_0 \text{ and } \Gamma(1) = \Omega_1. \text{ Let} \end{array}$ 

$$t^* = \sup\{t \in [0,1] | \forall 0 \le \tau \le t, \Gamma(\tau) \in \varphi(\mathcal{C})\},\$$

namely  $\Gamma$  from starting point to  $t^*$  belongs to  $\varphi(\mathcal{C})$ .

By the definition of domain convergence,

$$\lim_{n\to\infty}\Gamma(t_n)\to\Gamma(t^*).$$

By  $\{\Gamma(t_n)\} \subset \varphi(\mathcal{C})$ , there is a family of circle domains  $\{\mathcal{D}_n\} \subset \mathcal{C}$ ,  $\varphi(\mathcal{D}_n) = \Gamma(t_n)$ . Let  $\lim_{n\to\infty} \mathcal{D}_n = \mathcal{D}^*$ , by domain limit theorem, we have

$$\varphi(\mathcal{D}^*) = \varphi(\lim_{n \to \infty} \mathcal{D}_n) = \lim_{n \to \infty} \varphi(\mathcal{D}_n) = \lim_{n \to \infty} \Gamma(t_n) = \Gamma(t^*),$$

namely  $\varphi(\mathcal{D}^*) = \Gamma(t^*)$ , hence  $\Gamma(t^*) \in \varphi(\mathcal{C})$ . But  $\varphi(\mathcal{C})$  is an open set, hence if  $t^* < 1$ ,  $t^*$  can be further extended. This contradict to the choice of  $t^*$ , hence  $t^* = 1$ . Therefore  $\Omega_1 \in \varphi(\mathcal{C})$ . Since  $\Omega_1$  is arbitrarily chosen, hence  $\varphi : \mathcal{C} \to S$  is surjective. This proves the existence of the circle domain mapping.

(日)

3