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Genus Zero Surface Conformal Mapping and Its
Application to Brain Surface Mapping
Xianfeng Gu, Yalin Wang*, Tony F. Chan, Paul M. Thompson, and Shing-Tung Yau

Abstract—We developed a general method for global conformal
parameterizations based on the structure of the cohomology group
of holomorphic one-forms for surfaces with or without boundaries
(Gu and Yau, 2002), (Gu and Yau, 2003). For genus zero surfaces,
our algorithm can find a unique mapping between any two genus
zero manifolds by minimizing the harmonic energy of the map. In
this paper, we apply the algorithm to the cortical surface matching
problem. We use a mesh structure to represent the brain surface.
Further constraints are added to ensure that the conformal map is
unique. Empirical tests on magnetic resonance imaging (MRI) data
show that the mappings preserve angular relationships, are stable
in MRIs acquired at different times, and are robust to differences in
data triangulation, and resolution. Compared with other brain sur-
face conformal mapping algorithms, our algorithm is more stable
and has good extensibility.

Index Terms—Brain mapping, conformal map, landmark
matching, spherical harmonic transformation.

I. INTRODUCTION

RECENT developments in brain imaging have accelerated
the collection and databasing of brain maps. Nonetheless,

computational problems arise when integrating and comparing
brain data. One way to analyze and compare brain data is to map
them into a canonical space while retaining geometric informa-
tion on the original structures as far as possible [3]–[9]. Among
them, Schwartz et al. [3] and Timsari [7] computed quasi-iso-
metric flat maps of the cerebral cortex. Hurdal et al. [5] and
Haker et al. [6] computed quasi-conformal and conformal maps
of the cerebral cortex, respectively.

A. Previous Work

Conformal surface parameterizations have been studied in-
tensively. Most works on conformal parameterizations deal with
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surface patches homeomorphic to topological disks. For sur-
faces with arbitrary topologies, Gu and Yau [1] introduce a gen-
eral conformal parameterization based on a nonlinear flow for
the genus zero case, and on the structure of the cohomology
group of holomorphic one-forms in the case of genus greater
than one. They generalize the method for surfaces with bound-
aries in [2]. In this paper, we apply part of these algorithms (for
the genus zero case) to the cortical surface matching problem
and report our experimental results. In particular, the algorithms
used in Sections II, III, and IV, are from [1], [2] and the data
compression using spherical harmonic was also conceived there
for other purposes.

It is well known that all orientable surfaces are Riemann
surfaces. If two surfaces can be conformally mapped to each
other, they share the same conformal structure. Therefore,
computing conformal mappings is equivalent to computing
conformal structures for surfaces. For genus zero closed
surfaces, harmonic maps are equivalent to conformal maps
[10]. Many algorithms for surface parameterization are based
on harmonic maps. By adding a periodic boundary condition,
the harmonic mapping method can be generalized for the
genus one case. For the higher genus case, the method is not
applicable any more.

1) Conformal Parameterization for Genus Zero Sur-
faces: Most works on conformal parameterization only deal
with genus zero surfaces. There are five basic approaches to
achieve conformal parameterizations.

a) Harmonic energy minimization. Eck et al. [11] introduce
the discrete harmonic map, which approximates the con-
tinuous harmonic map [10] by minimizing a metric dis-
persion criterion. Desbrun et al. [12], [13] compute the
discrete Dirichlet energy and apply conformal parameter-
ization for interactive geometry remeshing. Pinkall and
Polthier compute the discrete harmonic map and Hodge
star operator for the purpose of creating a minimal sur-
face [14]. Kanai et al. use a harmonic map for geometric
metamorphosis in [15]. While the discrete harmonic map-
ping is used, it is not clear that it approximates the har-
monic map defined in the smooth category. Gu and Yau
in [1] introduce a nonlinear optimization method to com-
pute global conformal parameterizations for genus zero
surfaces. The optimization is carried out in the tangent
spaces of the sphere. It is different from the previous op-
timization methods. It computes global parameterizations
for genus zero surfaces.

b) Cauchy–Riemann equation approximation. Levy et
al. [16] compute a quasi-conformal parameterization of
topological disks by approximating the Cauchy–Riemann
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TABLE I
APPROACHES FOR CONFORMAL AND HARMONIC SURFACE PARAMETERIZATION

equation using the least squares method. They show rig-
orously that the quasi-conformal parameterization exists
uniquely, and is invariant to similarity transformations,
independent of resolution, and orientation-preserving.

c) Laplacian operator linearization. Haker et al. [6], [17]
use a method to compute a global conformal mapping
from a genus zero surface to a sphere by representing the
Laplace–Beltrami operator as a linear system.

d) Angle-based method. Sheffer et al. [18] introduce an
angle-based flattening method to flatten a mesh to a
two-dimensional plane so that it minimizes the relative
distortion of the planar angles with respect to their
counterparts in the three-dimensional (3-D) space.

e) Circle packing. Circle packing is introduced in [5], [19].
Classical analytic functions can be approximated using
circle packing. For general surfaces in , the circle
packing method considers only the connectivity but not
the geometry, so it is not suitable for our parameterization
purpose.

2) Global Conformal Parameterization for Nonzero Genus
Closed Surfaces: For genus one surfaces, conformal parame-
terization is introduced in [20] by adding periodic constraints
for harmonic maps defined on the fundamental domain of the
surface.

It is impossible to generalize the current harmonic mapping
method to the high genus case. The problem of computing con-
formal structures for general surfaces with arbitrary topologies
is completely solved by Gu and Yau in [1], [2]. The method is
based on Hodge theory, and applicable for both closed surfaces
and open surfaces with arbitrary genus.

We summarize current conformal and harmonic surface pa-
rameterization methods in Table I.

There are some methods applying the Möbius automorphism
group to brain conformal mapping. For instance, Tosun et al.
[22], [23] used an approach based on Haker’s conformal map-
ping and employed a Möbius transformation to minimize area
distortion and sulcal alignment across multiple brains.

B. Basic Idea

Suppose are two surfaces. Locally they can be repre-
sented as , where are their local
coordinates, and are vector-valued functions.
The first fundamental form of is ,
where

Fig. 1. Conformal surface parameterization examples. (a) Is a real male face.
(c) Is a square into which the human face is conformally mapped. (b) Is the
conformal parameterization illustrated by the texture map. As shown, the right
angles on the checkboard are well preserved on the surface in (b).

Similarly, the first fundamental form of is defined in the
same way. . Define a mapping

between two surfaces. Using local coordinates, can be
represented as .
Then any tangent vector on will be mapped to a
tangent vector on

(1)

The length of is

(2)

We use the length of to define the length of .
Namely, we define a new metric for which is induced by
the mapping and the metric on . We call this metric the
pull-back metric, and denote it by . Replacing in (2)
by (1), we get the analytic formula for the pull-back metric

(3)

We call a conformal mapping, if there exists a positive scalar
function , such that

(4)

where is called the conformal factor.
Intuitively, all the angles on are preserved on . Fig. 1

shows a conformal mapping example. Fig. 1(a) shows a real
male face. We conformally map it to a square as in 1(c) and
get its conformal parameterization. We illustrate the conformal
parameterization via the texture mapping of a checkerboard in
Fig. 1.



GU et al.: GENUS ZERO SURFACE CONFORMAL MAPPING AND ITS APPLICATION TO BRAIN SURFACE MAPPING 951

It is well known that any genus zero surface can be mapped
conformally onto the sphere and any local portion thereof onto
a disk. This mapping, a conformal equivalence, is one-to-one,
onto, and angle-preserving. Moreover, the elements of the first
fundamental form remain unchanged, except for a scaling factor
(the so-called Conformal Factor). For this reason, conformal
mappings are often described as being similarities in the small.
Since the cortical surface of the brain is a genus zero surface,
conformal mapping offers a convenient method to retain local
geometric information, when mapping data between surfaces.
Indeed, several groups have created flattened representations or
visualizations of the cerebral cortex or cerebellum [5], [6] using
conformal mapping techniques. However, these approaches are
either not strictly angle preserving [5], or there may be areas
with large geometric distortions [6]. In this paper, we propose a
new genus zero surface conformal mapping algorithm [1] and
demonstrate its use in computing conformal mappings between
brain surfaces. Our algorithm depends only on the surface
geometry and is invariant to changes in image resolution
and the specifics of the data triangulation. Our experimental
results show that our algorithm has advantageous properties for
cortical surface matching.

Suppose is a simplicial complex, and , which
embeds in ; then is called a mesh. Given two genus
zero meshes , there are many conformal mappings be-
tween them.Our algorithm for computingconformalmappings is
basedon the fact that forgenuszerosurfaces
is conformal if and only if is harmonic. All conformal mappings
between form a group, the so-called Möbius group. Fig. 2
shows some examples of Möbius transformations. We can con-
formally map the surface of the head of Michelangelo’s David
to a sphere. When we draw the longitude and latitude lines on
the sphere, we can induce corresponding circles on the original
surface [Fig. 2(a) and (b)]. We apply a Möbius transformation to
the sphere and make the two eyes become north and south poles.
When we draw the longitude and latitude lines again [Fig. 2(c)],
we get an interesting result shown in Fig. 2(d). Note all the right
angles between the lines are well preserved in Fig. 2(b) and
(d). This example demonstrates that all the conformal mapping
results form a Möbius group.

Our method is summarized as follows: we first find a home-
omorphism between and , then deform such that
minimizes the harmonic energy. To ensure the convergence of
the algorithm, constraints are added; this also ensures that there
is a unique conformal map.

This paper is organized as follows. In Section II, we give the
definitions of a piecewise linear function space, inner product
and piecewise Laplacian. In Section III, we describe the steepest
descent algorithm which is used to minimize the string energy.
In Section IV, we detail our conformal spherical mapping al-
gorithms. In Section V, the conformal parameterization is opti-
mized by integrating landmark information. Section VI applies
conformal mapping for spherical harmonic transformation, and
rotation-invariant shape analysis. Experimental results on con-
formal mapping for brain surfaces are reported in Section VII.
In Section VIII, we compare our algorithm with other conformal
mapping approaches used in neuroimaging. We conclude the
paper in Section IX.

Fig. 2. Möbius transformation example. We conformally map the surface of
the head of Michelangelo’s David to a sphere. In (a), we select the nose tip as
the north pole and draw longitude and latitude lines on the sphere. (b) Shows the
results on the original David head model. We apply a Möbius transformation on
the sphere in (a) and make the two eyes become the north and south poles. When
drawing the longitude and latitude lines on the sphere (c), we get an interesting
configuration for the lines on the original surface (d).

II. PIECEWISE LINEAR FUNCTION SPACE, INNER PRODUCT

AND LAPLACIAN

If a diffeomorphism between genus zero surfaces minimizing
the harmonic energy, it is conformal. Based on this fact, the
algorithm is designed as a steepest descent method.

This section formulates the mathematical concepts in a rig-
orous way. The major concepts, the harmonic energy of a map
and its derivative, are defined. Because all the calculation is car-
ried out on surfaces, we use the absolute derivative. Further-
more, for the purpose of implementation, we introduce the def-
initions in discrete form.

We use to represent the simplicial complex, to denote
the vertices, and to denote the edge spanned by . We
use to represent the piecewise linear functions defined on

, use to represent vector value functions. We use to
represent the discrete Laplacian operator.

Definition 1: All piecewise linear functions defined on
form a linear space, denoted by .

In practice, we use to approximate all functions de-
fined on . So the final result is an approximation to the con-
formal mapping. The higher the resolution of the mesh is, the
more accurate the approximated conformal mapping is.

Definition 2: Suppose a set of string constants are as-
signed for each edge , the inner product on is defined
as the quadratic form

(5)

The energy is defined as the norm on .
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Fig. 3. Discrete Laplace–Beltrami operator. Edge fv ; v g has two corners
against it �; �. The edge weight is defined as the summation of the cotangents
of these corner angles.

Definition 3: Suppose , the string energy is defined
as:

(6)

By changing the string constants in the energy formula, we
can define different string energies.

Definition 4: If string constants , the string energy
is known as the Tuette energy.

Definition 5: Suppose edge has two adjacent faces
, with , as shown in Fig. 3, define the

parameters

(7)

(8)

(9)

is defined similarly. If , the string energy
obtained is called the harmonic energy.

The string energy is always a quadratic form. By carefully
choosing the string coefficients, we make sure the quadratic
form is positive definite. This will guarantee the convergence
of the steepest descent method.

Definition 6: The piecewise Laplacian is the linear operator
on the space of piecewise linear functions

on , defined by the formula

(10)

If minimizes the string energy, then satisfies the condition
. Suppose are two meshes and the map
is a map between them, can be treated as a map

from to also.
Definition 7: For a map

, we define the energy
as the norm of

(11)

The Laplacian is defined in a similar way.
Definition 8: For a map , the piecewise Lapla-

cian of is

(12)

Fig. 4. Projected Laplacian. The Laplacian�f is a vector inR , which can be
decomposed into a normal component, (� ~f) , and tangential component,
D~f . The normal component is collinear with the normal to the target surface,
and the tangential component is in the tangent space of the target surface.

A map is harmonic, if and only if only
has a normal component, and its tangential component is zero

(13)

A decomposition of Laplacian is shown in Fig. 4.

III. STEEPEST DESCENT ALGORITHM

Suppose we would like to compute a mapping
such that minimizes a string energy . This can be solved
easily by the steepest descent algorithm

(14)

is constrained to be on , so is a tangent vector
field of .

Specifically, suppose , and denote the image
of each vertex as . The normal on at is

. Define the normal component as below.
Definition 9: The normal component

(15)

where is the inner product in .
Definition 10: The absolute derivative is defined as

(16)

Then, (14) is .

IV. CONFORMAL SPHERICAL MAPPING

Suppose is , then a conformal mapping
can be constructed by using the steepest descent method. The
major difficulty is that the solution is not unique but forms a
Möbius group.

Definition 11: Mapping is a Möbius transforma-
tion if and only if

(17)

where is the complex plane.
All Möbius transformations form the Möbius transformation

group. In order to determine a unique solution we can add dif-
ferent constraints. In practice we use the following two con-
straints: the zero mass-center constraint and a landmark con-
straint.

Definition 12: Mapping satisfies the zero
mass-center condition if and only if

(18)

where is the area element on .
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All conformal maps from to satisfying the zero mass-
center constraint are unique up to the Euclidean rotation group
(which is 3-D). We use the Gauss map as the initial condition.

Definition 13: A Gauss map is defined as

(19)

where is the normal at .
Algorithm 1: Spherical Tuette Mapping: Input (mesh
, step length , energy difference threshold ), output

where minimizes the Tuette energy.

1) Compute Gauss map . Let , compute
Tuette energy .

2) For each vertex , compute absolute derivative .
3) Update by .
4) Compute Tuette energy .
5) If , return . Otherwise, assign to

and repeat steps 2)–5).
Because the Tuette energy has a unique minimum, the algorithm
converges rapidly and is stable. We use it as the initial condition
for the conformal mapping.

Algorithm 2: Spherical Conformal Mapping: Input (mesh
, step length , energy difference threshold ), output

. Here minimizes the harmonic energy and satisfies
the zero mass-center constraint.

1) Compute Tuette embedding . Let , compute Tuette
energy .

2) For each vertex , compute the absolute derivative
.

3) Update by .
4) Compute Möbius transformation , such

that

(20)

(21)

where is the area element on . is the mass
center, and minimizes the norm in the mass center
condition. is the conformal automorphism
group of , and it can be analytically represented as

, where is the stereographic
projection

and is a Möbius transformation as defined in
Definition 11.

5) compute the harmonic energy .
6) If , return . Otherwise, assign to

and repeat Step 2) through to Step 6).
Step 4) is nonlinear and expensive to compute. In practice we
use the following procedure to replace it:

compute the mass center ;
for all ;
for all .

This approximation method is good enough for our purpose. The
resulting angle distortion is proportional to the square of the dis-
tance between the mass center and the origin. When the devia-
tion is small, this provides a very accurate approximation to a

Möbius transformation. By choosing the step length carefully,
the energy can be decreased monotonically at each iteration.

V. OPTIMIZE THE CONFORMAL PARAMETERIZATION BY USING

LANDMARKS

In order to compare two brain surfaces, it is desirable to adjust
the conformal parameterization and match the geometric fea-
tures on the brains as well as possible. We define an energy to
measure the quality of the parameterization. Suppose two brain
surfaces are given, conformal parameterizations are de-
noted as and , the matching energy
is defined as

(22)

We can compose a Möbius transformation with , such that

(23)

where is the group of Möbius transformations. We use land-
marks to obtain the optimal Möbius transformation. Landmarks
are commonly used in brain mapping. We manually label the
landmarks on the brain as a set of uniformly parametrized sulcal
curves [8], as shown in Fig. 9. First we conformally map two
brains to the sphere, then we pursue an optimal Möbius trans-
formation to minimize the Euclidean distance between the cor-
responding landmarks on the spheres. Suppose the landmarks
are represented as discrete point sets, and denoted as
and matches . The landmark
mismatch functional for is defined as

(24)

In general, the above variational problem is a nonlinear one. In
order to simplify it, we convert it to a least squares problem. First
we project the sphere to the complex plane, then the Möbius
transformation is represented as a complex linear rational for-
mula, (17). We add another constraint for , so that maps in-
finity to infinity. That means the north poles of the spheres are
mapped to each other. Then can be represented as a linear form

. Then the functional of can be simplified as

(25)

where is the stereo-projection of is the projection of
is the conformal factor from the plane to the sphere, which

can be simplified as

(26)

So the problem is a least squares problem.

VI. SPHERICAL HARMONIC ANALYSIS

Let denote the Hilbert space of square integrable
functions on the . In the spherical coordinates, is taken as
the polar (colatitudinal) coordinate with , and as
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the azimuthal (longitudinal) coordinate with . The
usual inner product is given by

(27)

A function is called a Spherical Harmonic,
if it is an eigenfunction of Laplace–Beltrami operator, namely

, where is a constant. There is a countable set
of spherical harmonics which form an orthonormal basis for

. For any nonnegative integer and integer with
, the -spherical harmonic is a harmonic homoge-

neous polynomial of degree . The harmonics of degree span
a subspace of of dimension which is invariant
under the rotations of the sphere. The expansion of any function

in terms of spherical harmonics can be written

(28)

and denotes the Fourier coefficient, equal to
. Spherical harmonic has an explicit formula

(29)

where is the associated Legendre function of degree and
order , and is a normalization factor. The details are ex-
plained in [24].

Once the brain surface is conformally mapped to ,
the surface can be represented as three spherical func-
tions, , and . The function

is regularly sampled and transformed
to using the fast spherical harmonic transformation as
described in [25].

Many processing tasks that use the geometric surface of the
brain can be accomplished in the frequency domain more effi-
ciently, such as geometric compression, matching, surface de-
noising, feature detection, and shape analysis [26], [27].

A. Brain Geometry Compression

Similar to image compression using Fourier analysis, geo-
metric brain data can be compressed using spherical harmonic
analysis [26]. Global geometric information is concentrated in
the low-frequency components, whereas noise and locally de-
tailed information are concentrated in the high-frequency part.
By using low-pass filtering, we can keep the major geometric
features and compress the brain surface without losing too much
information.

B. Rotation Invariant Shape Descriptor

The geometric representation
depends on the orientation of the brain. Brain registration
has to be applied first in order to compare the geometric
representations of two different brains. A rotation-invariant
shape descriptor can be formulated based on the frequency co-
efficients. Because the harmonics of degree span the rotation
invariant subspace of , the following shape descriptor
is also rotation invariant:

(30)

TABLE II
CPU TIMES FOR SURFACES OF DIFFERENT TRIANGLE COUNT ON A 1.9-GHz

PC WITH WINDOWS XP OPERATING SYSTEM

Given two brain surfaces, we can compute their shape de-
scriptor from their spherical harmonic spectrum, and compare
them directly without any registration.

Fig. 12 illustrate the shape descriptors for the same brain with
different orientations. It is clear that the shape descriptor is to-
tally rotation invariant [28].

The brain surface can be represented as a vector valued func-
tion defined on the sphere via conformal mapping of its surface
to the surface. The brain surface can then be decomposed in
terms of linear combination of spherical harmonics. The vector
valued spectrum, i.e., the harmonic coefficients expressed as
components of a vector, can be used to analyze the shape. The
main geometric features are encoded in the low-frequency part,
while the noise will be in the high-frequency part. By filtering
out the high-frequency coefficients, we can smooth the surface,
and compress the geometry. By comparing the low-frequency
coefficients, we can match surfaces, and compute the similarity
of surfaces.

VII. EXPERIMENTAL RESULTS

The algorithm uses covariant differentiation to solve a geo-
metric nonlinear partial differential equation (PDE). The com-
plexity of the algorithm is , where is the number of the
vertices of the brain mesh, is the number of required iterations.

mainly depends on the initial condition, i.e., how close it is to
a conformal map. also depends on the step length. Table II
illustrates the CPU time for computing conformal maps of sur-
faces of different triangle numbers on a 1.9-GHz PC with the
Windows XP operating system.

Comparing to other algorithms that solve a linear system,
such as Haker et al. [6], our nonlinear algorithm has the
following unique advantages. First, every point on the brain
is treated in a uniform way—no point maps to infinity as in
[6]. Therefore, there are no specific areas with large distortion.
Second, the method is very general, as it does not require the
target surface to be a sphere. It can be easily generalized to
compute harmonic maps between any two arbitrary genus zero
surfaces.

The 3-D brain meshes are reconstructed from 3-D
256 256 124 T1 weighted SPGR (spoiled gradient)
MRI images, by using an active surface algorithm that deforms
a triangulated mesh onto the brain surface [9]. Fig. 5(a) and (c)
shows the same brain scanned at different times [8]. Because
of the inaccuracy introduced by scanner noise in the input data,
as well as slight biological changes over time, the geometric
information is not exactly the same. Fig. 5(a) and (c) reveals
minor differences.

The conformal mapping results are shown in Fig. 5(b) and (d).
From this example, we can see that although the brain meshes
are slightly different, the mapping results look quite similar. The
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Fig. 5. Reconstructed brain meshes and their spherical harmonic mappings.
(a) and (c) are the reconstructed surfaces for the same brain scanned at different
times. Due to scanner noise and inaccuracy in the reconstruction algorithm,
there are visible geometric differences. (b) and (d) are the spherical conformal
mappings of (a) and (c), respectively; the normal information is preserved. By
the shading information, the correspondence is illustrated.

Fig. 6. Conformal texture mapping. (a) Texture mapping of the sphere;
(b) Texture mapping of the brain. The conformality is visualized by texture
mapping of a checkerboard image. The sphere is mapped to the plane by
stereographic projection, then the planar coordinates are used as the texture
coordinates. This texture parameter is assigned to the brain surface through
the conformal mapping between the sphere and the brain surface. All the right
angles in the texture are preserved on the brain surface.

major features are mapped to the same position on the sphere.
This suggests that the computed conformal mappings continu-
ously depend on the geometry, and can match the major features
consistently and reproducibly. In other words, conformal map-
ping may be a good candidate for a canonical parameterization
in brain mapping.

Fig. 6 shows that the mapping is conformal by texture map-
ping a checkerboard to both the brain surface mesh and a spher-
ical mesh. Each black or white square in the texture is mapped to
sphere by stereographic projection, and pulled back to the brain.
Note that the right angles are preserved both on the sphere and
the brain.

Comparing conformal mapping to other spherical mapping
method, such as Tuette brain mapping, the major difference is
that Tuette is not intrinsic, and it highly depends on the represen-
tation of the surface, including the triangulation and resolution.

Fig. 7. Conformal mappings of surfaces with different resolutions. (a) Surface
with 20 000 faces; (b) Surface with 50 000 faces. The original brain surface has
50 000 faces, and is conformally mapped to a sphere, as shown in (a). Then, the
brain surface is simplified to 20 000 faces, and its spherical conformal mapping
is shown in (b).

Fig. 8. Conformality measurement. (a) Intersection angles; (b) Angle
distribution. The curves of iso-polar angle and iso-azimuthal angle are mapped
to the brain, and the intersection angles are measured on the brain. The
histogram is illustrated.

Even for the same brain, different representations will produce
different mapping results. Conformal mapping is more valuable
for practical purposes. Conformal mappings are stable and de-
pend continuously on the input geometry but not on the triangu-
lations, and are insensitive to the resolutions of the data. Fig. 7
shows the same surface with different resolutions, and their con-
formal mappings. The mesh simplification is performed using
a standard method. The refined model has 50 k faces, but the
coarse one has 20 k faces. The conformal mappings map the
major features to the same positions on the spheres.

In order to measure the conformality, we map the iso-polar
angle curves and iso-azimuthal angle curves from the sphere to
the brain by the inverse conformal mapping, and measure the
intersection angles on the brain. The distribution of the angles
of a subject (A) are illustrated in Fig. 8. The angles are concen-
trated about the right angle.

Fig. 9 shows the landmarks, and the result of the optimization
by a Möbius transformation. Our landmarks consist of a set of
sulcal lines that were manually traced on 3-D surface models ex-
tracted from individual MRI images [29]. The lines correspond
to various sulci, such as the central sulcus, post-central sulcus,
pre-central sulcus, etc. The mappings were constrained by all
landmarks that occur consistently in the brains being matched.

We also computed the matching energy, following (22). We
did our testing on three example subjects. Their information
is shown in Table III. We took subject A as the target brain.
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Fig. 9. Möbius transformation to minimize the deviations between landmarks.
The dark curves are the landmarks. The correspondence between curves has
been preassigned. The desired Möbius transformation is obtained to minimize
the matching error on the sphere.

TABLE III
MATCHING ENERGY FOR THREE SUBJECTS. SUBJECT A WAS USED AS

THE TARGET BRAIN. FOR SUBJECTS B AND C, WE FOUND MÖBIUS

TRANSFORMATIONS THAT MINIMIZED THE LANDMARK MISMATCH

FUNCTIONS, RESPECTIVELY

For each new subject model, we found a Möbius transforma-
tion that minimized the landmark mismatch energy on the max-
imum intersection subsets of it and A. As shown in Table III,
the matching energies were reduced after the Möbius transfor-
mation.

Fig. 10 illustrates the geometric compression results using
spherical harmonic compression. Fig. 11 shows the errors
of the compression result. The low-pass filters are applied to re-
move high-frequency components, and the surfaces are recon-
structed from the remaining low-frequency components. The
surface is normalized such that the total area is , then the
error between the reconstructed surface and the original surface
is computed. The curve shows the normalized error vs the
ratio of retained low-frequency components. The figure illus-
trates that the major geometric information is encoded in the
low-frequency part.

Fig. 12 illustrates the relative error between the rotation-in-
variant shape descriptors for the original brain surface and for
the rotated brain surface. Because the first 30 low-frequency
components generate more than 99% of the total energy, only
the first 30 shape descriptor errors are shown in the figure. From
the figure, it is clear that the relative errors are less than 1% and,
therefore, the shape descriptors are rotation invariant.

Fig. 10. This figure illustrates the geometric compression results using
spherical harmonics. After we conformally map the brain to a sphere, we
can use spherical harmonics to compress the geometry. (a) is the original
brain surface. (b), (c), and (d) are brain surfaces reconstructed from spherical
harmonics with (1=8); (1=64), and (1=256) of the original low-frequency
coefficients, separately.

Fig. 11. This figure illustrates the normalized L errors of the compression.

The method described in this paper is quite general. We tested
the algorithm on other genus zero surfaces, including the hand
and foot surface. Some of the experimental results are illustrated
in Fig. 13.

VIII. COMPARISON WITH OTHER WORK

Several other studies of conformal mappings between brain
surfaces are reported in [5], [6], [17], and [19]. In [5] and [19],
Hurdal et al. used the circle packing theorem and the ring lemma
to establish a theorem: there is a unique circle packing in the
plane (up to certain transformations) which is quasi-conformal
(i.e., angular distortion is bounded) for a simply-connected tri-
angulated surface. They demonstrated their experimental results
for the surface of the cerebellum. This method only considers
the topology without considering the brain’s geometric struc-
ture. Given two different mesh structures of the same brain, one
can predict that their methods may generate two different map-
ping results. Compared with their work, our method preserves
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Fig. 12. The brain surface is rotated 90 degree with respect to x-axis. The
shape descriptors defined in (30) are computed for both the original surface and
the rotated surface, denoted as s(l) and s (l), respectively. The relative errors
(s(l) � s (l))=s(l) are illustrated as a function of l. Because the first 30s(l)
generate almost all the energy, the curve is truncated at l = 30. From the curve
it can be verified that the relative error is less than 1%, and, thus, the shape
descriptors are rotation invariant.

Fig. 13. Spherical conformal mapping of genus zero surfaces. Extruding parts
(such as fingers and toes) are mapped to denser regions on the sphere.

angles and establishes a good mapping between brains and a
canonical space.

Haker et al. [6], [17] built a finite element approximation
of the conformal mapping method for brain surface parame-
terization. They selected a point as the north pole and confor-
mally mapped the cortical surface to the complex plane. In the
resulting mapping, the local shape is preserved and distances
and areas are only changed by a scaling factor. Based on Haker
et al. [6], Joshi et al. [30] obtained a unique conformal map-
ping by fixing three point correspondences between two brains.
Since stereo projection is involved, there is significant distor-
tion around the north pole areas, which brings instability to this
approach. Compared with their work, our method is more ac-
curate, with no regions of large area distortion. It is also more
stable and can be readily extended to compute maps between
two general manifolds.

Finally, we note that Memoli et al. [31] mentioned they were
developing implicit methods to compute harmonic maps be-
tween general source and target manifolds. They used level sets
to represent the brain surfaces. Due to the extensive folding of
the human brain surface, these mappings have to be designed
very carefully.

IX. CONCLUSION AND FUTURE WORK

In this paper, we apply part of the algorithms [1], [2] (for
genus zero surface) to the cortical surface matching problem.
The algorithm finds a unique conformal mapping between genus
zero manifolds. Our method only depends on the surface geom-
etry and not on the mesh structure (i.e., gridding) and resolu-
tion. Our algorithm is very fast and stable in reaching a solution.
There are numerous applications of these mapping algorithms,
such as providing a canonical space for automated feature iden-
tification, brain to brain registration, brain structure segmen-
tation, brain surface denoising, shape analysis and convenient
surface visualization, among others. We are trying to generalize
this approach to compute conformal mappings between nonzero
genus surfaces.
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